2019
Learning to Reconstruct People in Clothing from a Single RGB Camera
T. Alldieck, M. A. Magnor, B. L. Bhatnagar, C. Theobalt and G. Pons-Moll
32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), 2019
(Accepted/in press)
In the Wild Human Pose Estimation using Explicit 2D Features and Intermediate 3D Representations
I. Habibie, W. Xu, D. Mehta, G. Pons-Moll and C. Theobalt
32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), 2019
(Accepted/in press)
Semantic Projection Network for Zero- and Few-Label Semantic Segmentation
Y. Xian, S. Choudhury, Y. He, B. Schiele and Z. Akata
32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), 2019
(Accepted/in press)
f-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning
Y. Xian, S. Sharma, B. Schiele and Z. Akata
32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), 2019
(Accepted/in press)
SimulCap : Single-View Human Performance Capture with Cloth Simulation
T. Yu, Z. Zheng, Y. Zhong, J. Zhao, D. Quionhai, G. Pons-Moll and Y. Liu
32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), 2019
(Accepted/in press)
LiveCap: Real-time Human Performance Capture from Monocular Video
M. Habermann, W. Xu, M. Zollhöfer, G. Pons-Moll and C. Theobalt
ACM Transactions on Graphics, 2019
(Accepted/in press)
Evaluation of Appearance-Based Methods and Implications for Gaze-Based Applications
X. Zhang, Y. Sugano and A. Bulling
CHI 2019, CHI Conference on Human Factors in Computing Systems, 2019
(Accepted/in press)
MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation
X. Zhang, Y. Sugano, M. Fritz and A. Bulling
IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 41, Number 1, 2019
Fashion is Taking Shape: Understanding Clothing Preference Based on Body Shape From Online Sources
H. Sattar, G. Pons-Moll and M. Fritz
2019 IEEE Winter Conference on Applications of Computer Vision (WACV 2019), 2019
Bayesian Prediction of Future Street Scenes using Synthetic Likelihoods
A. Bhattacharyya, M. Fritz and B. Schiele
International Conference on Learning Representations (ICLR 2019), 2019
(Accepted/in press)
Reducing Calibration Drift in Mobile Eye Trackers by Exploiting Mobile Phone Usage
P. Müller, D. Buschek, M. X. Huang and A. Bulling
Proceedings of the ACM Symposium on Eye Tracking Research & Applications, 2019
(Accepted/in press)
PrivacEye: Privacy-Preserving Head-Mounted Eye Tracking Using Egocentric Scene Image and Eye Movement Features
J. Steil, M. Koelle, W. Heuten, S. Boll and A. Bulling
Proceedings of the ACM Symposium on Eye Tracking Research & Applications, 2019
(Accepted/in press)
Privacy-Aware Eye Tracking Using Differential Privacy
J. Steil, I. Hagestedt, M. X. Huang and A. Bulling
Proceedings of the ACM Symposium on Eye Tracking Research & Applications, 2019
(Accepted/in press)
Moment-to-Moment Detection of Internal Thought from Eye Vergence Behaviour
M. X. Huang, J. Li, G. Ngai, H. V. Leong and A. Bulling
Technical Report, 2019
(arXiv: 1901.06572)
Abstract
Internal thought refers to the process of directing attention away from a primary visual task to internal cognitive processing. Internal thought is a pervasive mental activity and closely related to primary task performance. As such, automatic detection of internal thought has significant potential for user modelling in intelligent interfaces, particularly for e-learning applications. Despite the close link between the eyes and the human mind, only a few studies have investigated vergence behaviour during internal thought and none has studied moment-to-moment detection of internal thought from gaze. While prior studies relied on long-term data analysis and required a large number of gaze characteristics, we describe a novel method that is computationally light-weight and that only requires eye vergence information that is readily available from binocular eye trackers. We further propose a novel paradigm to obtain ground truth internal thought annotations that exploits human blur perception. We evaluate our method for three increasingly challenging detection tasks: (1) during a controlled math-solving task, (2) during natural viewing of lecture videos, and (3) during daily activities, such as coding, browsing, and reading. Results from these evaluations demonstrate the performance and robustness of vergence-based detection of internal thought and, as such, open up new directions for research on interfaces that adapt to shifts of mental attention.
SacCalib: Reducing Calibration Distortion for Stationary Eye Trackers Using Saccadic Eye Movements
M. X. Huang and A. Bulling
Technical Report, 2019
(arXiv: 1903.04047)
Abstract
Recent methods to automatically calibrate stationary eye trackers were shown to effectively reduce inherent calibration distortion. However, these methods require additional information, such as mouse clicks or on-screen content. We propose the first method that only requires users' eye movements to reduce calibration distortion in the background while users naturally look at an interface. Our method exploits that calibration distortion makes straight saccade trajectories appear curved between the saccadic start and end points. We show that this curving effect is systematic and the result of distorted gaze projection plane. To mitigate calibration distortion, our method undistorts this plane by straightening saccade trajectories using image warping. We show that this approach improves over the common six-point calibration and is promising for reducing distortion. As such, it provides a non-intrusive solution to alleviating accuracy decrease of eye tracker during long-term use.
2018
NRST: Non-rigid Surface Tracking from Monocular Video
M. Habermann, W. Xu, H. Rohdin, M. Zollhöfer, G. Pons-Moll and C. Theobalt
Pattern Recognition (GCPR 2018), 2018