D3
Internet Architecture

Anja Feldmann

Prof. Anja Feldmann, Ph.D.

Address
Max-Planck-Institut für Informatik
Saarland Informatics Campus
Campus E1 4
66123 Saarbrücken
Location
E1 4 - 501
Phone
+49 681 9325 3501
Fax
+49 681 9325 3599

Personal Information

I studied computer science at Universitaet Paderborn in Germany and received my degree in 1990. After that I continued my studies at Carnegie Mellon University, where I earned my M.Sc. in 1991 and, four years later, my Ph.D. The next four years I did postdoctoral work at AT&T Labs Research, before holding research positions at Saarland University and the Technical University Munich. Since 2006, I have been professor of Internet Network Architectures at Telekom Innovation Laboratories at Technische Universitaet Berlin. In May 2012, I was elected the first woman on the employer side of the Supervisory Board of SAP. Since the beginning of 2018 I am director at the Max Planck Institute for Informatics in Saarbruecken.

Recent Publications

2021
Maghsoudlou, A., Gasser, O., & Feldmann, A. (2021a). Zeroing in on Port 0 Traffic in the Wild. In Passive and Active Measurement (PAM 2021) (pp. 547–563). Virtual Event: Springer. doi:10.1007/978-3-030-72582-2_32
Export
BibTeX
@inproceedings{Maghsoudlou_PAM21, TITLE = {Zeroing in on Port 0 Traffic in the Wild}, AUTHOR = {Maghsoudlou, Aniss and Gasser, Oliver and Feldmann, Anja}, LANGUAGE = {eng}, ISBN = {978-3-030-72581-5}, DOI = {10.1007/978-3-030-72582-2_32}, PUBLISHER = {Springer}, YEAR = {2021}, MARGINALMARK = {$\bullet$}, DATE = {2021}, BOOKTITLE = {Passive and Active Measurement (PAM 2021)}, EDITOR = {Hohlfeld, Oliver and Lutu, Andra and Levin, Dave}, PAGES = {547--563}, SERIES = {Lecture Notes in Computer Science}, VOLUME = {12671}, ADDRESS = {Virtual Event}, }
Endnote
%0 Conference Proceedings %A Maghsoudlou, Aniss %A Gasser, Oliver %A Feldmann, Anja %+ Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society %T Zeroing in on Port 0 Traffic in the Wild : %G eng %U http://hdl.handle.net/21.11116/0000-0008-4577-5 %R 10.1007/978-3-030-72582-2_32 %D 2021 %B 22nd International Passive and Active Measurement Conference %Z date of event: 2021-03-29 - 2021-04-01 %C Virtual Event %B Passive and Active Measurement %E Hohlfeld, Oliver; Lutu, Andra; Levin, Dave %P 547 - 563 %I Springer %@ 978-3-030-72581-5 %B Lecture Notes in Computer Science %N 12671
Feldmann, A., Gasser, O., Lichtblau, F., Pujol, E., Poese, I., Dietzel, C., … Smaragdakis, G. (2021). A Year in Lockdown: How the Waves of COVID-19 Impact Internet Traffic. Communications of the ACM, 64(7). doi:10.1145/3465212
Export
BibTeX
@article{FeldmannCACM2021, TITLE = {A year in lockdown: how the waves of {COVID}-19 impact internet traffic}, AUTHOR = {Feldmann, Anja and Gasser, Oliver and Lichtblau, Franziska and Pujol, Enric and Poese, Ingmar and Dietzel, Christoph and Wagner, Daniel and Wichtlhuber, Matthias and Tapiador, Juan and Vallina-Rodriguez, Narseo and Hohlfeld, Oliver and Smaragdakis, Georgios}, LANGUAGE = {eng}, ISSN = {0001-0782}, DOI = {10.1145/3465212}, PUBLISHER = {ACM}, ADDRESS = {New York, NY}, YEAR = {2021}, MARGINALMARK = {$\bullet$}, JOURNAL = {Communications of the ACM}, VOLUME = {64}, NUMBER = {7}, PAGES = {101--108}, }
Endnote
%0 Journal Article %A Feldmann, Anja %A Gasser, Oliver %A Lichtblau, Franziska %A Pujol, Enric %A Poese, Ingmar %A Dietzel, Christoph %A Wagner, Daniel %A Wichtlhuber, Matthias %A Tapiador, Juan %A Vallina-Rodriguez, Narseo %A Hohlfeld, Oliver %A Smaragdakis, Georgios %+ Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society External Organizations External Organizations Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society External Organizations External Organizations External Organizations External Organizations External Organizations %T A Year in Lockdown: How the Waves of COVID-19 Impact Internet Traffic : %G eng %U http://hdl.handle.net/21.11116/0000-0008-E186-2 %R 10.1145/3465212 %7 2021 %D 2021 %J Communications of the ACM %V 64 %N 7 %& 101 %P 101 - 108 %I ACM %C New York, NY %@ false
Saidi, S. J., Mandalari, A. M., Haddadi, H., Dubois, D. J., Choffnes, D. R., Smaragdakis, G., & Feldmann, A. (2021). Detecting Consumer IoT Devices through the Lens of an ISP. In ANRW ’21, Applied Networking Research Workshop. Virtual Event, USA: ACM. doi:10.1145/3472305.3472885
Export
BibTeX
@inproceedings{Saidi_ANRW21, TITLE = {Detecting Consumer {IoT} Devices through the Lens of an {ISP}}, AUTHOR = {Saidi, Said Jawad and Mandalari, Anna Maria and Haddadi, Hamed and Dubois, Daniel J. and Choffnes, David R. and Smaragdakis, Georgios and Feldmann, Anja}, LANGUAGE = {eng}, ISBN = {978-1-4503-8618-0}, DOI = {10.1145/3472305.3472885}, PUBLISHER = {ACM}, YEAR = {2021}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {ANRW '21, Applied Networking Research Workshop}, PAGES = {36--38}, ADDRESS = {Virtual Event, USA}, }
Endnote
%0 Conference Proceedings %A Saidi, Said Jawad %A Mandalari, Anna Maria %A Haddadi, Hamed %A Dubois, Daniel J. %A Choffnes, David R. %A Smaragdakis, Georgios %A Feldmann, Anja %+ Internet Architecture, MPI for Informatics, Max Planck Society External Organizations External Organizations External Organizations External Organizations Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society %T Detecting Consumer IoT Devices through the Lens of an ISP : %G eng %U http://hdl.handle.net/21.11116/0000-0009-741F-3 %R 10.1145/3472305.3472885 %D 2021 %B Applied Networking Research Workshop %Z date of event: 2021-06-24 - 2021-06-30 %C Virtual Event, USA %B ANRW '21 %P 36 - 38 %I ACM %@ 978-1-4503-8618-0
Shukla, A., Hudemann, K. N., Vági, Z., Hügerich, L., Smaragdakis, G., Hecker, A., … Feldmann, A. (2021). Fix with P6: Verifying Programmable Switches at Runtime. In IEEE INFOCOM 2021. Vancouver, Canada: IEEE. doi:10.1109/INFOCOM42981.2021.9488772
Export
BibTeX
@inproceedings{Shukla_INFOCOM21, TITLE = {Fix with {P6}: {V}erifying Programmable Switches at Runtime}, AUTHOR = {Shukla, Apoorv and Hudemann, Kevin Nico and V{\'a}gi, Zsolt and H{\"u}gerich, Lily and Smaragdakis, Georgios and Hecker, Artur and Schmid, Stefan and Feldmann, Anja}, LANGUAGE = {eng}, ISBN = {978-1-6654-0325-2}, DOI = {10.1109/INFOCOM42981.2021.9488772}, PUBLISHER = {IEEE}, YEAR = {2021}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {IEEE INFOCOM 2021}, PAGES = {1--10}, ADDRESS = {Vancouver, Canada}, }
Endnote
%0 Conference Proceedings %A Shukla, Apoorv %A Hudemann, Kevin Nico %A Vági, Zsolt %A Hügerich, Lily %A Smaragdakis, Georgios %A Hecker, Artur %A Schmid, Stefan %A Feldmann, Anja %+ External Organizations External Organizations External Organizations External Organizations External Organizations External Organizations External Organizations Internet Architecture, MPI for Informatics, Max Planck Society %T Fix with P6: Verifying Programmable Switches at Runtime : %G eng %U http://hdl.handle.net/21.11116/0000-0009-7430-E %R 10.1109/INFOCOM42981.2021.9488772 %D 2021 %B IEEE Conference on Computer Communications %Z date of event: 2021-05-10 - 2021-05-13 %C Vancouver, Canada %B IEEE INFOCOM 2021 %P 1 - 10 %I IEEE %@ 978-1-6654-0325-2
Prehn, L., & Feldmann, A. (2021). How Biased is our Validation (Data) for AS Relationships? In IMC ’21, ACM Internet Measurement Conference. Virtual Event, USA: ACM. doi:10.1145/3487552.3487825
Export
BibTeX
@inproceedings{Prehn_IMC21, TITLE = {How Biased is our Validation (Data) for {AS} Relationships?}, AUTHOR = {Prehn, Lars and Feldmann, Anja}, LANGUAGE = {eng}, ISBN = {978-1-4503-9129-0}, DOI = {10.1145/3487552.3487825}, PUBLISHER = {ACM}, YEAR = {2021}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {IMC '21, ACM Internet Measurement Conference}, PAGES = {612--620}, ADDRESS = {Virtual Event, USA}, }
Endnote
%0 Conference Proceedings %A Prehn, Lars %A Feldmann, Anja %+ Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society %T How Biased is our Validation (Data) for AS Relationships? : %G eng %U http://hdl.handle.net/21.11116/0000-0009-7426-A %R 10.1145/3487552.3487825 %D 2021 %B ACM Internet Measurement Conference %Z date of event: 2021-11-02 - 2021-11-04 %C Virtual Event, USA %B IMC '21 %P 612 - 620 %I ACM %@ 978-1-4503-9129-0
Maghsoudlou, A., Gasser, O., & Feldmann, A. (2021b). Zeroing in on Port 0 Traffic in the Wild. Retrieved from https://arxiv.org/abs/2103.13055
(arXiv: 2103.13055)
Abstract
Internet services leverage transport protocol port numbers to specify the source and destination application layer protocols. While using port 0 is not allowed in most transport protocols, we see a non-negligible share of traffic using port 0 in the Internet. In this study, we dissect port 0 traffic to infer its possible origins and causes using five complementing flow-level and packet-level datasets. We observe 73 GB of port 0 traffic in one week of IXP traffic, most of which we identify as an artifact of packet fragmentation. In our packet-level datasets, most traffic is originated from a small number of hosts and while most of the packets have no payload, a major fraction of packets containing payload belong to the BitTorrent protocol. Moreover, we find unique traffic patterns commonly seen in scanning. In addition to analyzing passive traces, we also conduct an active measurement campaign to study how different networks react to port 0 traffic. We find an unexpectedly high response rate for TCP port 0 probes in IPv4, with very low response rates with other protocol types. Finally, we will be running continuous port 0 measurements and providing the results to the measurement community.
Export
BibTeX
@online{Maghsoudlou_2103.13055, TITLE = {Zeroing in on Port 0 Traffic in the Wild}, AUTHOR = {Maghsoudlou, Aniss and Gasser, Oliver and Feldmann, Anja}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2103.13055}, EPRINT = {2103.13055}, EPRINTTYPE = {arXiv}, YEAR = {2021}, MARGINALMARK = {$\bullet$}, ABSTRACT = {Internet services leverage transport protocol port numbers to specify the source and destination application layer protocols. While using port 0 is not allowed in most transport protocols, we see a non-negligible share of traffic using port 0 in the Internet. In this study, we dissect port 0 traffic to infer its possible origins and causes using five complementing flow-level and packet-level datasets. We observe 73 GB of port 0 traffic in one week of IXP traffic, most of which we identify as an artifact of packet fragmentation. In our packet-level datasets, most traffic is originated from a small number of hosts and while most of the packets have no payload, a major fraction of packets containing payload belong to the BitTorrent protocol. Moreover, we find unique traffic patterns commonly seen in scanning. In addition to analyzing passive traces, we also conduct an active measurement campaign to study how different networks react to port 0 traffic. We find an unexpectedly high response rate for TCP port 0 probes in IPv4, with very low response rates with other protocol types. Finally, we will be running continuous port 0 measurements and providing the results to the measurement community.}, }
Endnote
%0 Report %A Maghsoudlou, Aniss %A Gasser, Oliver %A Feldmann, Anja %+ Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society %T Zeroing in on Port 0 Traffic in the Wild : %G eng %U http://hdl.handle.net/21.11116/0000-0009-7436-8 %U https://arxiv.org/abs/2103.13055 %D 2021 %X Internet services leverage transport protocol port numbers to specify the source and destination application layer protocols. While using port 0 is not allowed in most transport protocols, we see a non-negligible share of traffic using port 0 in the Internet. In this study, we dissect port 0 traffic to infer its possible origins and causes using five complementing flow-level and packet-level datasets. We observe 73 GB of port 0 traffic in one week of IXP traffic, most of which we identify as an artifact of packet fragmentation. In our packet-level datasets, most traffic is originated from a small number of hosts and while most of the packets have no payload, a major fraction of packets containing payload belong to the BitTorrent protocol. Moreover, we find unique traffic patterns commonly seen in scanning. In addition to analyzing passive traces, we also conduct an active measurement campaign to study how different networks react to port 0 traffic. We find an unexpectedly high response rate for TCP port 0 probes in IPv4, with very low response rates with other protocol types. Finally, we will be running continuous port 0 measurements and providing the results to the measurement community. %K Computer Science, Networking and Internet Architecture, cs.NI
Hoseini, M., Melo, P., Benevenuto, F., Feldmann, A., & Zannettou, S. (2021). On the Globalization of the QAnon Conspiracy Theory Through Telegram. Retrieved from https://arxiv.org/abs/2105.13020
(arXiv: 2105.13020)
Abstract
QAnon is a far-right conspiracy theory that became popular and mainstream over the past few years. Worryingly, the QAnon conspiracy theory has implications in the real world, with supporters of the theory participating in real-world violent acts like the US capitol attack in 2021. At the same time, the QAnon theory started evolving into a global phenomenon by attracting followers across the globe and, in particular, in Europe. Therefore, it is imperative to understand how the QAnon theory became a worldwide phenomenon and how this dissemination has been happening in the online space. This paper performs a large-scale data analysis of QAnon through Telegram by collecting 4.5M messages posted in 161 QAnon groups/channels. Using Google's Perspective API, we analyze the toxicity of QAnon content across languages and over time. Also, using a BERT-based topic modeling approach, we analyze the QAnon discourse across multiple languages. Among other things, we find that the German language is prevalent in QAnon groups/channels on Telegram, even overshadowing English after 2020. Also, we find that content posted in German and Portuguese tends to be more toxic compared to English. Our topic modeling indicates that QAnon supporters discuss various topics of interest within far-right movements, including world politics, conspiracy theories, COVID-19, and the anti-vaccination movement. Taken all together, we perform the first multilingual study on QAnon through Telegram and paint a nuanced overview of the globalization of the QAnon theory.
Export
BibTeX
@online{, TITLE = {On the Globalization of the {QAnon} Conspiracy Theory Through {Telegram}}, AUTHOR = {Hoseini, Mohamad and Melo, Philipe and Benevenuto, Fabricio and Feldmann, Anja and Zannettou, Savvas}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2105.13020}, EPRINT = {2105.13020}, EPRINTTYPE = {arXiv}, YEAR = {2021}, MARGINALMARK = {$\bullet$}, ABSTRACT = {QAnon is a far-right conspiracy theory that became popular and mainstream over the past few years. Worryingly, the QAnon conspiracy theory has implications in the real world, with supporters of the theory participating in real-world violent acts like the US capitol attack in 2021. At the same time, the QAnon theory started evolving into a global phenomenon by attracting followers across the globe and, in particular, in Europe. Therefore, it is imperative to understand how the QAnon theory became a worldwide phenomenon and how this dissemination has been happening in the online space. This paper performs a large-scale data analysis of QAnon through Telegram by collecting 4.5M messages posted in 161 QAnon groups/channels. Using Google's Perspective API, we analyze the toxicity of QAnon content across languages and over time. Also, using a BERT-based topic modeling approach, we analyze the QAnon discourse across multiple languages. Among other things, we find that the German language is prevalent in QAnon groups/channels on Telegram, even overshadowing English after 2020. Also, we find that content posted in German and Portuguese tends to be more toxic compared to English. Our topic modeling indicates that QAnon supporters discuss various topics of interest within far-right movements, including world politics, conspiracy theories, COVID-19, and the anti-vaccination movement. Taken all together, we perform the first multilingual study on QAnon through Telegram and paint a nuanced overview of the globalization of the QAnon theory.}, }
Endnote
%0 Report %A Hoseini, Mohamad %A Melo, Philipe %A Benevenuto, Fabricio %A Feldmann, Anja %A Zannettou, Savvas %+ Internet Architecture, MPI for Informatics, Max Planck Society External Organizations External Organizations Internet Architecture, MPI for Informatics, Max Planck Society Internet Architecture, MPI for Informatics, Max Planck Society %T On the Globalization of the QAnon Conspiracy Theory Through Telegram : %G eng %U http://hdl.handle.net/21.11116/0000-0009-749D-4 %U https://arxiv.org/abs/2105.13020 %D 2021 %X QAnon is a far-right conspiracy theory that became popular and mainstream over the past few years. Worryingly, the QAnon conspiracy theory has implications in the real world, with supporters of the theory participating in real-world violent acts like the US capitol attack in 2021. At the same time, the QAnon theory started evolving into a global phenomenon by attracting followers across the globe and, in particular, in Europe. Therefore, it is imperative to understand how the QAnon theory became a worldwide phenomenon and how this dissemination has been happening in the online space. This paper performs a large-scale data analysis of QAnon through Telegram by collecting 4.5M messages posted in 161 QAnon groups/channels. Using Google's Perspective API, we analyze the toxicity of QAnon content across languages and over time. Also, using a BERT-based topic modeling approach, we analyze the QAnon discourse across multiple languages. Among other things, we find that the German language is prevalent in QAnon groups/channels on Telegram, even overshadowing English after 2020. Also, we find that content posted in German and Portuguese tends to be more toxic compared to English. Our topic modeling indicates that QAnon supporters discuss various topics of interest within far-right movements, including world politics, conspiracy theories, COVID-19, and the anti-vaccination movement. Taken all together, we perform the first multilingual study on QAnon through Telegram and paint a nuanced overview of the globalization of the QAnon theory. %K Computer Science, Computers and Society, cs.CY,cs.SI
Wagner, D., Kopp, D., Wichtlhuber, M., Dietzel, C., Hohlfeld, O., Smaragdakis, G., & Feldmann, A. (2021). United We Stand: Collaborative Detection and Mitigation of Amplification DDoS Attacks at Scale. In CCS ’21, ACM SIGSAC Conference on Computer and Communications Security. Virtual Event, Republic of Korea: ACM. doi:10.1145/3460120.3485385
Export
BibTeX
@inproceedings{Wagner_CCC2021, TITLE = {United We Stand: {C}ollaborative Detection and Mitigation of Amplification {DDoS} Attacks at Scale}, AUTHOR = {Wagner, Daniel and Kopp, Daniel and Wichtlhuber, Matthias and Dietzel, Christoph and Hohlfeld, Oliver and Smaragdakis, Georgios and Feldmann, Anja}, LANGUAGE = {eng}, ISBN = {978-1-4503-8454-4}, DOI = {10.1145/3460120.3485385}, PUBLISHER = {ACM}, YEAR = {2021}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {CCS '21, ACM SIGSAC Conference on Computer and Communications Security}, EDITOR = {Kim, Yongdae and Kim, Jong and Vigna, Giovanni and Shi, Elaine and Kim, Hyoungshick and Hong, Jin B.}, PAGES = {970--987}, ADDRESS = {Virtual Event, Republic of Korea}, }
Endnote
%0 Conference Proceedings %A Wagner, Daniel %A Kopp, Daniel %A Wichtlhuber, Matthias %A Dietzel, Christoph %A Hohlfeld, Oliver %A Smaragdakis, Georgios %A Feldmann, Anja %+ Internet Architecture, MPI for Informatics, Max Planck Society External Organizations External Organizations Internet Architecture, MPI for Informatics, Max Planck Society External Organizations External Organizations Internet Architecture, MPI for Informatics, Max Planck Society %T United We Stand: Collaborative Detection and Mitigation of Amplification DDoS Attacks at Scale : %G eng %U http://hdl.handle.net/21.11116/0000-0009-C6C3-B %R 10.1145/3460120.3485385 %D 2021 %B ACM SIGSAC Conference on Computer and Communications Security %Z date of event: 2021-11-15 - 2021-11-19 %C Virtual Event, Republic of Korea %B CCS '21 %E Kim, Yongdae; Kim, Jong; Vigna, Giovanni; Shi, Elaine; Kim, Hyoungshick; Hong, Jin B. %P 970 - 987 %I ACM %@ 978-1-4503-8454-4

More Publications

More Publications can be found here:

Research Interests

  • Internet traffic analysis
  • Internet Modeling
  • Internet Routing

Honours and Awards

  • 2018: Schelling Prize
  • 2017: Scientific member of the Max Planck Society
  • 2013: Full member of the Academia Europaea
  • 2011: Gottfried Wilhelm Leibniz Prize
  • 2011: Berlin Science Prize
  • since March 2010: Member of AcademiaNet after nomination by Leopoldina and the German Research Foundation
  • since July 15, 2009: Member (Matricel-No. 7279) of the German Academy of Sciences Leopoldina

Teachings