b'@techreport{,'b'\nTITLE = {A simpler linear time 2/3 -- epsilon approximation for maximum weight matching},\nAUTHOR = {Sanders, Peter and Pettie, Seth},\nLANGUAGE = {eng},\nURL = {http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2004-1-002},\nNUMBER = {MPI-I-2004-1-002},\nINSTITUTION = {Max-Planck-Institut f{\\"u}r Informatik},\nADDRESS = {Saarbr{\\"u}cken},\nYEAR = {2004},\nDATE = {2004},\nABSTRACT = {We present two $\\twothirds -- \\epsilon$ approximation algorithms for the maximum weight matching problem that run in time $O(m\\log\\frac{1}{\\epsilon})$. We give a simple and practical randomized algorithm and a somewhat more complicated deterministic algorithm. Both algorithms are exponentially faster in terms of $\\epsilon$ than a recent algorithm by Drake and Hougardy. We also show that our algorithms can be generalized to find a $1-\\epsilon$ approximatation to the maximum weight matching, for any $\\epsilon>0$.},\nTYPE = {Research Report / Max-Planck-Institut f\xc3\xbcr Informatik},\n}\n'