@online{Cruciano_arXiv1804.07223,
TITLE = {Phase Transition of the 2-Choices Dynamics on Core-Periphery Networks},
AUTHOR = {Cruciani, Emilio and Natale, Emanuele and Nusser, Andr{\'e} and Scornavacca, Giacomo},
LANGUAGE = {eng},
URL = {http://arxiv.org/abs/1804.07223},
EPRINT = {1804.07223},
EPRINTTYPE = {arXiv},
YEAR = {2018},
ABSTRACT = {Consider the following process on a network: Each agent initially holds either opinion blue or red; then, in each round, each agent looks at two random neighbors and, if the two have the same opinion, the agent adopts it. This process is known as the 2-Choices dynamics and is arguably the most basic non-trivial opinion dynamics modeling voting behavior on social networks. Despite its apparent simplicity, 2-Choices has been analytically characterized only on networks with a strong expansion property -- under assumptions on the initial configuration that establish it as a fast majority consensus protocol. In this work, we aim at contributing to the understanding of the 2-Choices dynamics by considering its behavior on a class of networks with core-periphery structure, a well-known topological assumption in social networks. In a nutshell, assume that a densely-connected subset of agents, the core, holds a different opinion from the rest of the network, the periphery. Then, depending on the strength of the cut between the core and the periphery, a phase-transition phenomenon occurs: Either the core's opinion rapidly spreads among the rest of the network, or a metastability phase takes place, in which both opinions coexist in the network for superpolynomial time. The interest of our result is twofold. On the one hand, by looking at the 2-Choices dynamics as a simplistic model of competition among opinions in social networks, our theorem sheds light on the influence of the core on the rest of the network, as a function of the core's connectivity towards the latter. On the other hand, to the best of our knowledge, we provide the first analytical result which shows a heterogeneous behavior of a simple dynamics as a function of structural parameters of the network. Finally, we validate our theoretical predictions with extensive experiments on real networks.},
}