@online{Roth_arXiv2004.06595,
TITLE = {Counting Small Induced Subgraphs Satisfying Monotone Properties},
AUTHOR = {Roth, Marc and Schmitt, Johannes and Wellnitz, Philip},
LANGUAGE = {eng},
URL = {https://arxiv.org/abs/2004.06595},
EPRINT = {2004.06595},
EPRINTTYPE = {arXiv},
YEAR = {2020},
MARGINALMARK = {$\bullet$},
ABSTRACT = {Given a graph property $\Phi$, the problem $\#\mathsf{IndSub}(\Phi)$ asks, on input a graph $G$ and a positive integer $k$, to compute the number of induced subgraphs of size $k$ in $G$ that satisfy $\Phi$. The search for explicit criteria on $\Phi$ ensuring that $\#\mathsf{IndSub}(\Phi)$ is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property $\Phi$, the problem $\#\mathsf{IndSub}(\Phi)$ cannot be solved in time $f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})}$ for any function $f$, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a $\#\mathsf{W}[1]$-completeness result.},
}