@online{Bringmann_2105.05062,
TITLE = {Current Algorithms for Detecting Subgraphs of Bounded Treewidth are Probably Optimal},
AUTHOR = {Bringmann, Karl and Slusallek, Jasper},
LANGUAGE = {eng},
URL = {https://arxiv.org/abs/2105.05062},
EPRINT = {2105.05062},
EPRINTTYPE = {arXiv},
YEAR = {2021},
MARGINALMARK = {$\bullet$},
ABSTRACT = {The Subgraph Isomorphism problem is of considerable importance in computer science. We examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of applications. This problem has a well-known algorithm via color-coding that runs in time $O(n^{tw(H)+1})$ [Alon, Yuster, Zwick'95], where $n$ is the number of vertices of the host graph $G$. While there are pattern graphs known for which Subgraph Isomorphism can be solved in an improved running time of $O(n^{tw(H)+1-\varepsilon})$ or even faster (e.g. for $k$-cliques), it is not known whether such improvements are possible for all patterns. The only known lower bound rules out time $n^{o(tw(H) / \log(tw(H)))}$ for any class of patterns of unbounded treewidth assuming the Exponential Time Hypothesis [Marx'07]. In this paper, we demonstrate the existence of maximally hard pattern graphs $H$ that require time $n^{tw(H)+1-o(1)}$. Specifically, under the Strong Exponential Time Hypothesis (SETH), a standard assumption from fine-grained complexity theory, we prove the following asymptotic statement for large treewidth $t$: For any $\varepsilon > 0$ there exists $t \ge 3$ and a pattern graph $H$ of treewidth $t$ such that Subgraph Isomorphism on pattern $H$ has no algorithm running in time $O(n^{t+1-\varepsilon})$. Under the more recent 3-uniform Hyperclique hypothesis, we even obtain tight lower bounds for each specific treewidth $t \ge 3$: For any $t \ge 3$ there exists a pattern graph $H$ of treewidth $t$ such that for any $\varepsilon>0$ Subgraph Isomorphism on pattern $H$ has no algorithm running in time $O(n^{t+1-\varepsilon})$. In addition to these main results, we explore (1) colored and uncolored problem variants (and why they are equivalent for most cases), (2) Subgraph Isomorphism for $tw < 3$, (3) Subgraph Isomorphism parameterized by pathwidth, and (4) a weighted problem variant.},
}