Newcastle
Q) Lniversity

How to design little digital, yet
highly concurrent, electronics?

Alex Yakovlev
Newcastle University

Newcastle upon Tyne, U.K.

Outline

 “Little” Digital electronics: Why going asynchronous?
* Six Asynchronous Design Principles

* (Some of the) Models, Techniques and Tools for
Asynchronous Design

* Asynchronous control logic synthesis using STGs
* Case study: Async control for power converter
* Messages to take away

10/20/2017 DISC Workshop on HW Design, Wien

Asynchronous Behaviour

e Synchronous vs Asynchronous behaviour in general terms, examples:
* Orchestra playing with vs without a conductor
* Party of people having a set menu vs a la carte

* Synchronous means all parts of the system acting globally in tact,
even if some or all part ‘do nothing’

* Asynchronous means parts of the system act on demand rather than
on global clock tick

e Acting in computation and communication is, generally, changing the
system state

e Synchrony and Asynchrony can be in found in CPUs, Memory,
Communications, SoCs, NoCs etc.

Parallel vs Concurrent

* Synchronous circuits can be VERY parallel (executing many things at
the same time!) but NOT concurrent (independently firing events),
because clock is sequential, and actions are done in total SYNC -
hence total, instead of partial, order

* Asynchronous circuits are fundamentally concurrent, they are self-
timed - i.e. many clocking threads which synchronize by themselves
in many different ways — hence partial order

Emergence of little digital electronics

. IP cores (big digital) + Legend:

ity ————GevelshifterSD————————————1'

| (| digital
—» A2D |- @ynchroniserg (sensors) ' D2A —
A |

I
I
K o N
| power | analog
: converters | \. J
--------- |
:_ ‘ : e - — - -
P ' v sensor/tlmlng/energy |
, | infrastructure |
sanltlsers ———————————————————————
E ‘i T == : . time bands
] . slow i : fast ; local al . v
control for analog layer (little digital) _scope for
design automation

* Analog and digital electronics are becoming more intertwined
 Analog domain becomes complex and needs digital control

Example: Buck (DC-DC)
converter control

over-current (oc) /

/]

L control

ocC

uv

ap

gn

N

e __ __ __

N

—OTh_nmos

under-voltage (uv) \

over-curment

Zero-crossing

+—ol_max {1_0)

. ‘_QH; Y pmos
_ackl e EETEE PR EEE SRRy
i buck
ocl
gpl —={= I:
| PMOS[1]
i cph—
Y
o
INMOS[1]
gml —* : I:
1
zcl
n_ac +—oV nmos | ¢
1 — :
! L w00 ZI_r'En;l]:
control ' :
1
' _max ZI_I}]I
gp_ackN — |HTTEE::15"“:: """""
|
nc i
‘ |
gph —{x ; >||: |
! \PMOS[N] ;
1 h— :
e — !
: ol 1
_ INMOSN] b | =
q ! 1o =
gni —= I: - ! L=}
i e
zcM ! |
I = = | =
gn_ackN oV'nmos T[T

+—al 0 {_negl

y
over-voltage oV _max |

under-voltage Je—o _ref

1a
Righ-Joad ~M—o_min

Example: Switched Capacitor (DC-DC)

Converter control

T
§51—=—51 V1n
reg dlir
Vin —=| delayl 52 —=——52
51\ ack dla
) S3—=—53
| T req —=——-o{d2r 54 —=—154
53\ Coiy2 S5 —=| delay2 controller converter
Sz, +| Ciy1 ack d2a 55 —=—55
+
| — 56 —=—| 56
E:’3/ req d3r E,i_T U |
. —| delay3 a o . 57 57
Cout S S4 ack d3a B 8 S _
4l . 20 P B 3 P S8 58 V out
_ load 1
55\ Pt
* _\} ET = EI - § load
L 1 e AOAA
U_lj 1||.|r_5 | -.."l \ -.-"l "'-.-

mode_control

10/20/2017 DISC Workshop on HW Design, Wien

Asynchronous vs Synchronous for little digital

» Synchronous control

© Conventional RTL design flow

® Slow response (defined by the clock period)

) Power consumed even when idle

© Non-negligible probability of a synchronisation failure
» Asynchronous control

© Prompt response (delay of few gates)

© No dynamic power consumption when inactive

© Non-conventional methodology and tool support

10/20/2017 DISC Workshop on HW Design, Wien

Example: Buck converter

under—vnltageq..__; v _ref

OVEr-CUITent Ao oo Phase diagram specification:
gp_ack e _‘f __________
R analog! late ZC early ZC
ap —EE}D—GH bUCki |_max| __________}f__ _____________
. oc digital | PMOS = Y4
| control | = @ @g‘? Gl
1™ | 1 5 PMOS OFF @‘57
ol 7c ENMGS ! - QLo NMOS OFF 1 "
' | o Yy oC N ZC oc ZC L oc
gn | 1 T Time
e P e pa =
zern—cmssingq:' |0 . .
Buck conditions: Operating modes:
Building asynchronous circuits in AMS |
context requires extending traditional ~ * under-voltage (UV) « no ZEro-crossing
assumptions about speed- « over-current (OC) « late zero-crossing
independence o zero-crossing (ZC) « early zero-crossing
1?/20/2017 e DISC Workshop on HW Design, Wien

Key Principles of Asynchronous Design

* Asynchronous handshaking

* Delay-insensitive encoding

* Completion detection

e Causal acknowledgment (aka indication or indicatability)
 Strong and weak causality (full indication and early evaluation)
* “Time comparison” (synchronisation, arbitration)

Why and what is handshaking?

Mutual Synchronisation is via Handshake

10/20/2017 DISC Workshop on HW Design, Wien

Synchronous clocking

Y V V V
How we : R1 R2 j@: R3 R4 j
think (a)
clock gate signal . “
What we !) V) !
design
—| Rt R2 R3 > R4 :>
7 (b)

Asynchronous handshaking

What we
design

How we
think

Req | [

Ak L1
Data —4§ ___)——
Ack
cTL el ~ el ~ cTL
[Req | | |
v v v v
— RN CL3 cL4
R1 [Dala | R2 j R3 R4 j o
:>R1f>ﬁzi@:>ﬁs R4:>
(d)

"Channel” or “"Link”

;

Handshake CL

Handshake latch

Handshake Signalling Protocols
Level Signalling (RTZ or 4-phase)

S I o N Vo
ack ack / \ /S
One cycle
(a) : (b)

Transition Signalling (NRZ or 2-phase) ' '
w \ /
ack / \ E /_

i Onecycle i Onecycle :

Why and what is delay-insensitive coding?

10
o]
100

01010
1001010
01010010
100100101
01010100100
0010101010010

1001010100100l

Data Token = (Data Value, Validity Flag)

Bundled Data

Data

req

>

ack

Return to Zero:

U Gy, 22 Gl

reqg

ack

/ \

/ \

—
a

One cycle

Non-Return-to-Zero

R G, b, G

reqg

ack

\
/T

e

i Onecycle i Onecycle

DI encoded data (Dual-Rail)

10/20/2017

Data.O
Data.l

\ 4

\ 4

ack

a

NRZ coding leads to
complex logic
implementation;
special ways to track

odd and even phases
and logic values are
needed, such as
LEDR

RTZ: NUEL (spacer) : NULL
D P
Logical 1 : : : '

Data.l 4._/_\ ;

i_Onecycle : Opecycle |

NRZ:

Data.0 @ogical 0 _
Ei?sical X ogical 1i,-Logical 1

Data.l : M

ack

) cycle cycle i cycle i cycle:

P
<

g
< r.‘ gDl

DISC Workshop on HW Design, Wien

DI codes (1-of-n and m-of-n)
* 1-of-4:
* 0001=>00, 0010=>01, 0100=>10, 1000=>11
* 2-of-4:

1100, 1010, 1001, 0110, 0101, 0011 — total 6 combinations
(cf. 2-bit dual-rail — 4 comb.)

* 3-of-6:

111000, 110100, ..., 000111 — total 20 combinations (can
encode 4 bits + 4 control tokens)

* 2-of-7:

e 1100000, 1010000, ..., 0000011 — total 21 combinations (4
bits + 5 control tokens)

Why and what is completion detection?

Signalling that the Transients are over

Bundled-data logic blocks

d

— Single-rail logic

start O delay . done
w

Conventional logic + matched delay

Completion
is implicit:
by done
signal

The delay must scale
with the worst case
delay path,

So ... not really self-
timed

rue completion detection

Dual-rail
logic

Completion
/ detection for one

dual-rail bit

Multi-input C-
element

done

N
N
N
S
RS
N —_—
N [J
N
S []
\ o
N
N
N

A AN

.

Completion detection tree

The Muller C element

A—
— L
BJ
C
A B | Z
0 00
0 1| Z
1 0] Z
1 111

Vdd

-

Gnd

{>O_Z

Static Logic
Implementation

[van Berkel 91]

Why and what is causal acknowledgment?

C

:3..
L

Hop T

Every sighal event must be acknowledged
by another event

10/20/2017 DISC Workshop on HW Design, Wien

Causal acknowledgment

wimea sl i
— >3§2(1‘, }Cj
Daas

C-element implementation using simple gates

%{ x1+

X2+

a+ x1- c+

b+

X3+

Unack’ed transitions x2-
However, under Fundamental

and x3- may cause a Mode (slow environment) the

hazard on output ¢ circuit is safe
10/20/2017 DISC Workshop on HW Design, Wien

Principle of causal acknowledgement

x1(1)
a(0)

—e

=

x4(0)

b(0)

x2

x3(1)

c(0)

at

b+

C-element implementation using simple gates

a+t

b+

e XZ)
__________ A x4+

X3-

X2-

x1+

C+

Each transition is
causally ack’ed,
hence no hazards
can appear

Why and what are strong and weak causality ?

CORRELATION
DOES NOT IMPLY
CAUSATION.

Degree of necessity of precedence of some events for
other events

10/20/2017 DISC Workshop on HW Design, Wien

Strong Causality

* Petri net transitions synchronising as rendez-vous

Strong precedence

@

e Logic circuits: Muller C-element (in 0-1 and 1-0 transitions),
AND gate (in 0-1 transitions), OR gate (in 1-0 tranisitions)

A
C)* C

B

>

k
FB

A c*

(WY

o
, O R O W
= O 0O O

(WY

10/20/2017 DISC Workshop on HW Design, Wien

Weak Causality

* Petri net transitions communicating via places

k
FB

Weak precedence

>

@

e Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1
transitions)

A(1->0)

B(1->0)

10/20/2017

D

c(0) C(1)
A(0->1) >
B(0->1)

DISC Workshop on HW Design, Wien

Full indication versus Early Evaluation

At —
8t C C.t
At Dual-rail AND gate
'f E)— with full input
i'f cf acknowledgement
=
R —)
A.f
o
B.f —
At —} c Dual-rail AND gate
B.t —— | with “early propagation”
Af Allows outputs to be produced from NULL
' Cf to Codeword only when some (required)
B.f inputs have transitioned from NULL to
Codeword (similar for Codeword to NULL)

Why and what is timing comparison?

Telling if some event happened before
another event

10/20/2017 DISC Workshop on HW Design, Wien

Synchronizers and arbiters
Input
® Synchronizer

Decides which clock
cycle to use for the

input data

Input 1
® Asynchronous
arbiter

Decides the order of
Inputs

Input 2

10/20/2017 DISC Workshop on HW Design, Wien

Metastability is....

Set-up time violated

D
Request
—| fe—
At;,
Processor Clock Clock
At,,->0

Not being able to decide...

10/20/2017 DISC Workshop on HW Design, Wien

Typical responses

Q Trigger
58 Q Output

v

* We assume all starting points are equally probable
* Most are a long way from the “balance point”
* A few are very close and take a long time to resolve

10/20/2017 DISC Workshop on HW Design, Wien

Synchronizer

* t is time allowed for the Q to change between CLK a and CLK b
* T is the recovery time constant, usually the gain-bandwidth of the circuit

* T, is the “metastability window” (aperture around clock edge in which the
capture of data edge causes a delay that is greater than normal propagation
delay of the FF)

* rand T, depend on the circuit

* We assume that all values of At are equally probable

:' :' CLK b

CLK a

10/20/2017 DISC Workshop on HW Design, Wien

et/r

T .f.f,

W" " C

MTBF =

Two-way arbiter (Mutual exclusion element)

Basic arbitration element: Mutex (due to Seitz, 1979)

reql (0)

req2 (0)

et

>>

): (1)

Metastability
resolver (0)
ack2
LT?J I
<
ackl
(0)

An asynchronous data latch with
metastability resolver can be built similarly

10/20/2017

DISC Workshop on HW Design, Wien

Importance of Timing Comparison

* Understanding metastability is becoming very important as analogue
and digital domains get closer, and timing uncertainty and PVT
variations increase

* Arbitration and synchronization are increasing their importance due
to many-core, timing domains, NoCs, GALS

* Design automation for metastability and synchronization is turning
from research to practice (Blendix)

Models and techniques igr design

Models and techniques for asynchronous design

 Nature of Models:

* Delay model (inertial, pure, gate delay, wire delay, bounded and unbounded
delays)

* Models of environment (fundamental mode, input-output)
* Models of switching behaviour (state-based, event-based, hybrid)

e RTL level:

e Data and control paths separate (data flow graphs, FSMs, Signal Transition
Graphs, Synchronised Transitions)

* Pipeline based (Combinational logic plus registers and latch controllers, e.g.
micropipelines, gate-level pipelining)

* Process-based (CSP-like, Balsa, Haste, Communicating Hardware Processes)
* High-level models

* Flow graphs (Marked graphs, extended MGs), Petri nets, Markov Chains
e Behavioural HDLs (C, System()

Gate vs wire delay models

* Gate delay model: delays in gates, no delays in wires
* Wire delay model: delays in gates and wires

.—-—

Delay models for async. circuits

* Bounded delays (BD): realistic for gates and wires.
* Technology mapping is easy, verification is difficult

* Speed independent (SI): Unbounded (pessimistic)
delays for gates and “negligible” (optimistic) delays
for wires.

* Technology mapping is more difficult, verification is easy

* Delay insensitive (DI): Unbounded (pessimistic)
delays for gates and wires.
* DI class (built out of basic gates) is almost empty

e Quasi-delay insensitive (QDI): Delay insensitive
except for critical wire forks (isochronic forks).
* |n practice it is the same as speed independent

Control Logic

* Control specification based on Petri
nets (Signal Transition graphs)

Control specification

Signal Transition Graph

(STG)
a

B+
?

N

10/20/2017

Timing Diagram

A +

A input
B output

DISC Workshop on HW Design, Wien

Control specification

-

? |
_|

10/20/2017 DISC Workshop on HW Design, Wien

Control specification

-

? |
_|

10/20/2017 DISC Workshop on HW Design, Wien

Control specification

10/20

/2017

N/

DISC Workshop on HW Design, Wien

Control specification

10/20

/2017

N/

DISC Workshop on HW Design, Wien

VME bus example using Petri nets

Bus

Data
Transceiver

Read Cycle

10/20/2017 DISC Workshop on HW Design, Wien

STG for the READ cycle

—

LDS+ — LDTACK+

xf LDTACK-+

DSr
DTACK

10/20/2017

DSr+ «—@

VME Bus

ControllerA

DISC Workshop on HW Design, Wien

DTACK«j

—> D+ — DTACK+—> DSr- —

LDS- 42

LDS
LDTACK

10/20/2017

Choice: Read and Write cycles

DSr+ DSw+

v

LDS+ D+

v

LDTACK+ /'/» LDS+

DTACK- D+ LDTACK- LDTACK- LDTACK+ DTACK-

A

v v

DTACK+ T_
Dfr- LDS- LDS- DTACK+

D- DSw-

DISC Workshop on HW Design, Wien

Choice: Read and Write cycles

DTACK-
DSr+ : DSw+
l /\@)/\
LDS+ — D+
LDTACK+ LDS+
LDTACK- !
LDTACK+
i 3
LDS- l
DTACK+

10/20/2017 D_ DISC Workfhop onHW Design, Wien DSW'

Workcraft tool

* Workcraft is a software package for graphical edit, analysis, synthesis
and visualisation of asynchronous circuit behaviour

* Petrify plus a few other tools are part of it as plug-ins
* It is based in Java tools
e Can be downloaded from http://workcraft.org/

* And installed in few minutes
* There is a simple to use tutorial for that

* Many other tutorials on various aspects of Petri nets modelling, STG
synthesis and analysis, circuit verification, visualisation etc.

http://workcraft.org/

Some references

« General Async Design: J. Sparsg and S.B. Furber, editors. Principles
of Asynchronous Circuit Design, Kluwer Academic Publishers, 2001.
(electronic version of a tutorial based on this book can be found on:
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm
855.pdf

« Async Control Synthesis: J. Cortadella, M. Kishinevsky,
A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic Synthesis of
Asynchronous Controllers and Interfaces. Springer-Verlag, 2002.
(Petrify software can be downloaded from:
http://www.lIsi.upc.edu/~jordicf/petrify/)

« Arbiters and Synchronizers: D.J. Kinniment, Synchronization and
Arbitration in Digital Systems, Wiley and Sons, 2007 (a tutorial on
arbitration and synchronization from ASYNC/NOCS 2008 can be
found: http://async.org.uk/async2008/async-nocs-slides/Tutorial-
Monday/Kinniment-ASYNC-2008-Tutorial.pdf)

xyz-example: Specification

X
X —
y
Z

Z+ — X~

/ N

X+ y+

~o

y

Z_

Signal Transition Graph (STG)

10/20/2017 DISC Workshop on HW Design, Wien

Token flow

10/20/2017

X / \
y / | N
Z / ‘
Z+ @~ X-
] L
x+—Q—>y+:.—>/z_
\o\y_

DISC Workshop on HW Design, Wien

State graph

XyZz
> 000
|
100
Z+ @ Xx- 7 Yf
o o 101 110
X+ —@— y+ —@— z- y X/ yN ‘/Z+
\o\ /0/ 001 111
Y- N

011

\Z_

10/20/2017 DISC Workshop on HW Design, Wien

010

Next-state functions

Xyz
- 000
|+
X=7-(X+Y¥) 7ﬁﬂ%f
101 110
=7+ X :
y ‘ y- V y& A/z+
. 001 111
Z=X+Y-7 N

011

\Z_

10/20/2017 DISC Workshop on HW Design, Wien

010

Complex Gate netlist

X=Z-(Xx+Y)]
y=2+X
z:x+yz‘

10/20/2017 DISC Workshop on HW Des ign, Wien

Circuit synthesis

e Goal:

e Derive a hazard-free circuit
under a given delay model and
mode of operation

Speed independence

* Delay model
* Unbounded gate / environment delays
* Certain wire delays shorter than certain paths in the circuit

e Conditions for implementability:
* Consistency
* Complete State Coding
* Persistency

10/20/2017 DISC Workshop on HW Design, Wien

Implementability conditions

* Consistency
* Rising and falling transitions of each signal alternate in any trace

* Complete state coding (CSC)
* Next-state functions correctly defined

* Persistency
* No event can be disabled by another event (unless they are both inputs)

Implementability conditions

* Consistency + CSC + persistency 1

* There exists a speed-independent circuit that implements the
behavior of the STG

(under the assumption that ay Boolean function can be implemented
with one complex gate)

Persistency
100 —&— 000 —<*— 001 a:)_b
| b+ | b+ C
a \
C /

b /\/
N IS this a pulse ?

Speed independence = glitch-free output behavior under any delay

10/20/2017 DISC Workshop on HW Design, Wien

CASE Study: Buck converter controller

Case study: Buck converter - synchronous control

Behavioural Verilog specification: Design Compiler synthesis resuli:

nrst

module control (clk, nrst, oc, uv, zc, gp_ack, gn_ack, gp, gn): gp_ack [é
input clk, nrst, uv, oc, zc, gp_ack, gn_ack: it
gn_ack D Q ap
output reg gp, gn; } CK
L &

always @(posedge clk or negedge nrst) begin oc g
if (nrst == 0) begin .
gp<=0;gn<=1; ' E ><
end else case ({gp_ack, gn_ack}) 7 [A
2b00:if(uv==1)gp<=1;elseif(oc==1)gn<=1; -— SB

Mn
2b10: if (oc == 1) gp<=0; « g
2b01:if(uv==1]|lzc==1)gn<=0; [_:éj) ZaN
endcase
end 5

endmodule

» lf clock is slow, the control is unresponsive to the buck changes
8.0M clock is fast, it burns energy when.the buck is, inactive

Buck converter —asynchronous control

STG specification:

__

\late ZC ! zc+
|_ _____ -
|
|
V79 T9nack——gp+——gp_ack+—IV
I
:naZC:
(i
LUV + gn

I. ___
I_T __
i ZC+ an
(AR N,
' early ZC, uv+
______ L e e e e ——a
0C-=——gn_ack+-—gn+-——gp_ack-——gp-- oc+

S| implementation:

gn ack
oc — gp

UV D—e

gp ack b
————————a gn
ZC D

» Formal specification using Signal Transition Graph (STG) model — similar to Petri nets

» \Verifiable speed-independent (Sl) implementation — hazard-free for any gate delays

» Prompt reaction time to the buck changes — latency of a complex gate

10/20/2017 DISC Workshop on HW Design, Wien

verification
and validation

libraries and
design guidelines

specification and synthesis

: informal design intent
: (waveforms, phase diagrams)

. . e) architectural decomposition - ‘
I_ | tt | e d | g I t a | design concepts and compenent formalisation
L/ !
d e S | n -I: | OW : formal specification of components
g I (signal transition graph)

k

manual effort

sanity check
(Punf, MPSat)

]

verification report
(violation traces)

functional verification
(PComp, Puni, MPS5at)

-"...
-

: : logic synthesis & technology mapping
E gate library (Petrify, Punf MPSat)

I

i (speed-independent components

.-"'"'..f
’
&

(Verilog netlist)

:

T E
e
.-#"'"Hﬂ#

signoff report
(timing viclations)

conventional design flow

Te offline testing features
and place & route

N, ¥
_ - system integration reachability report
AZAInterfaces ! (Workcraft) (hazard traces)
E ¥ "
: little digital asynchronous controller timing verification
I (Verilog netlisit) (PrimeTime)

10/20/2017 DISC Workshop on HW Design, Wien

Analog to Async (A2A) components

» Interface analog world of dirty signals
» Provide hazard-free sanitised digital signals
» Basic A2A components

WAIT / WAITO — wait for analog input to become high / low and
latch it until explicit release signal

RWAIT / RWAITO - modification of WAIT / WAITO with a possibility
to persistently cancel the waiting request

WAITO1 / WAIT10 — wait for a rising / falling edge

» Advanced A2A components

WAIT2 - combination of WAIT and WAITO to wait for high and low
input values, one after the other.

WAITX - arbitrate between two non-persistent analog inputs
WAITX2 —behaves as WAITX in the rising phase and as WAITO in the falling phase

10/20/2017 DISC Workshop on HW Design, Wien

Interfacing analog to async: WAIT element

Component interface: STG specification:
san+ ctril-
— sig san— sig- _
WAIT Jf O——:
E sig+
| ctri+-—e—san-
ME-based implementation: Gate-level implementation:

sig I_TDSEFI

sigb—qrl gl
ME
ctrib—r2 g2|—D>san

| can be removed |

ctri

10/20/2017 DISC Workshop on HW Design, Wien

WOR
design
automation

10/20/2017

File Edit View Tools Conversion Transformations Verification Help

CCRAFT

DISC Workshop on HW Design, Wien

buck.stg [STG] & Property editor X
| Title 'Untitled
el LR . |Environment | ,./buck.st... x
’ [
uv+ -Qn- -gn ack- -~gp+-—= ack+ “uv-|
. : AL - - : Editor tools X
no 2C = ' = 1
@ -uv+ -gn- -gn_ack- -gp+ ~-gp_ack+ -UV-E -:O % ‘ AI‘ f | ‘ l L
. - ' 1 — |, 741 b— -
. P
" . > || Sy 5
i ZC+ ——gn-——gn_ack-——zsgp+—gp_ack+—— UV~
| : Tool controls
sarly ZC uv+— “zc- @| ‘QI ’ ‘?
: o 2)| |
0C-=——gn_ack+=-—gn+=-—gp_ack--——gp-- oc+ - ’ s)
n RadiE NN
buck. circuit [circuit] ,
Verification results
gn_ack . . S
=~ ocC ap i Under the given environment (buck.stg.work) the circuit is:
* conformant
uv * deadlock-free
* hazard-free
ack D gn
ap_ b] OK
as q

Synthesis example: mult

ohase Buck

10/20/2

under-voltage Ae—: v ref
) over-current I_max [1_0) . .
o 0 » Activation of phases
o=k ‘_<] [analo &
o .
el | ! buck 3 Sequential
e PMOS § May overlap
s LW VT g - -
L
) MNMOS l E E i
. on —-vj—’—{ T 1= < o More operating modes
k W _nmaos - - -
on-sek o, | High-load (HL)
i - =i +—|_0 (l_neg)
SRS : Over-voltage (OV)
*+—|_max (I_0) -
. gp_ackN ‘g . . .
o . > e [ransistor min ON times
o .
" o PMIN delay for PMOS switch
1= e NMIN delay for NMOS switch
Lo = PMIN+PEXT for PMOS at first cycle
ZCh =
r gn_ackN g
+—|_0 (I_neg) }V
nuer—voltageﬂ\[‘-‘—'i’_wal
017 s BtSE-Workshop oh HW Design, Wien
high-load “w*—<V_min

SYNC PHASE CTRL
in out ac grP > gpd
zclD in out Zc gp_ack out in|—Aagp_ackl
hio—in out 4 hil 1
Multiphase buck: — »o-— @~ =
* ov o—] in out ’ ov ;3 '-E gn_ack out in—<aQgn_ackl
svnchronous design ! -
™
SYNC_PHASE _CTRL *®
ochN o—— in out oc gp o goi
zchN o in out ZC gp_ack out inf—<agp_ackN
Rl N
PHASE ACTIVATOR
uv gn D gni
ﬂctl ® "'_l . :
phase cik b— act : ov s T gn ack out in—<Aagn ackN
|
act Note: fsm_clk is implicit in
fsm clk b #

synchronizers (grey boxes)
Two clocks: phase activation (slow) and sampling (fast)
Conventional RTL design flow for phase control

Need for multiple synchronizers (grey boxes)
10/20/2017

DISC Workshop on HW Design, Wien

Multiphase buck: async design

* Token ring architecture, no
need for phase activations
clock

* No need for synchronisers

* A4A design flow for phase
control

ocl o

ASYNC _PHASE CTRL

Zcl o

hil o

Uuv o

OV D

ochN D

ocC
i

hi

QW

gp—ogpl

gp_ack —Qgp_ackl

gnpF—0Cgnl

gn_ack F—agn_ackl

— pass

ASYNC PHASE CTRL

N D

oc
ZC
hi

L

ow

gel—

pass

gp —>2 gph

gp ack F—Qgp_ackN

gnk——= gni

gn_ack —AQgn_ackN

Multiphase buck: async phase control

PMIN TIMER PEXT TIMER
) o Lils : _____ : : _____ :
- synthesised S| components ls_m LW
. I |t
- A2A interface components T & @ o
L‘ o
o - san |——— ext " °
e B 5 sig WAITO1 EXT DELAY CTRL
! - external delay elements WAITX2 Ci——wext = %
re —~ oy
5 FE &
i L W i
l B 3
gel—n ro ril :; ; 3 rp ri o b—=o gp
pass G— ai a0 ail
PMOS DELAY CTRL
MERGE TOKEMN _CTRL MODE CTRL CHARGE CTRL
NMOS_DELAY CTRL
o rigd
HL CTRL ao ai a0 ai aa al i ri ro — gn
—_— _ [o
J:g = ao al? © t“: 'g 2 :-j g zan af ao—QAgn ac
| SN b
I
| T & U E &]
T 5 (- A J
UWAIT 0 ,—Ll_—— ol RWAIT WAIT2 ,—Ll_—— ol
=3 l : 2 2 | |
= L____1I h il L ——_1
10/202017 hi & DERKFALTIMER N HW Design, Wid oc & NMIN_TIMER

Synthesis of async control components

Token control

Speed-independent implementation

ri D—e
j D ro
— i ro 7
TOKEN_CTRL
— ai .. 4o ai g— o] 20
o % H—C@ 0 o 80
|
>
STG specification i
- o<
.
output handshake ‘
ro+ ao+ ro- ao
\ | | /
r+ al+— r al-
Input hur'.d:.lmki.z' T _ |
rd+ ad+ rd- ——ad
delay handshake ‘ (k]
* B 9

10/20/2017

DISC Workshop on HW Design, Wien

References on asynchronous little digital
design

1. D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and A. Yakovlev. Benefits of
asynchronous control for analog electronics: multiphase buck case study. In Proc. Design,
Automation & Test in Europe (DATE), Lausanne, Switzerland, March 2017.

2. V. Khomenko, D. Sokolov, A. Mokhov, and A. Yakovlev. WAITX: An arbiter for non-persistent
signals. In Proc. IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), San
Diego, CA., May 2017.

3. V. Dubikhin, D. Sokolov, A. Yakovlev, and C. J. Myers. Design of mixed-signal systems with
asynchronous control. IEEE Design & Test, 33(5):44--55, 2016.

4. S. Mileiko, A. Kushnerov, D. Sokolov, and A. Yakovlev. Self-timed control of two-phase switched
capacitor converters. In IEEE International Conference on the Science of Electrical Engineering
(ICSEE), Eilat, Israel, November 2016.

5. A. Mokhoy, D. Sokolov, V. Khomenko and A. Yakovlev. Asynchronous Arbitration Primitives for
New Generation of Circuits and Systems. In IEEE New Generation of Circuits and Systems (NGCAS),
Genoa, Italy, September 2017.

Messages to take away

Little digital circuits can be highly concurrent!

Asynchronous circuits began their life (in the 50s) for ‘little digital’ and today is
the right time for them

Analog and mixed-signal is a good application — it combines:
* Need for low latency and high range of feedback types
* Analog designers are more inclined towards async than digital designers

Design tools are (slowly) coming up and industry is a good drive!

Interesting research problems are there — tech maﬁping, holistic analog-mixed
signal verification, behavioural mining, dealing with complexity

In particular, extending the notion of speed-independence into the world of
relative timing, circuits with time comparison (arbitration), with analog
components

Where else do we have little digital? ... Plastic electronics?

