
How to design little digital, yet 
highly concurrent, electronics? 

Alex Yakovlev 

Newcastle University 

Newcastle upon Tyne, U.K. 
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• Six Asynchronous  Design Principles 
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• Asynchronous control logic synthesis using STGs 
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Asynchronous Behaviour 

• Synchronous vs Asynchronous behaviour in general terms, examples: 
• Orchestra playing with vs without a conductor 
• Party of people having a set menu vs a la carte 

• Synchronous means all parts of the system acting globally in tact, 
even if some or all part ‘do nothing’ 

• Asynchronous means parts of the system act on demand rather than 
on global clock tick 

• Acting in computation and communication is, generally, changing the 
system state 

• Synchrony and Asynchrony can be in found in CPUs, Memory, 
Communications, SoCs, NoCs etc. 
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Parallel vs Concurrent 

• Synchronous circuits can be VERY parallel (executing many things at 
the same time!) but NOT concurrent (independently firing events), 
because clock is sequential, and actions are done in total SYNC – 
hence total, instead of partial, order 

• Asynchronous circuits are fundamentally concurrent, they are self-
timed – i.e. many clocking threads which synchronize by themselves 
in many different ways – hence partial order 
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Emergence of little digital electronics 
 

• Analog and digital electronics are becoming more intertwined 
• Analog domain becomes complex and needs digital control 
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Example: Buck (DC-DC) 
converter control 
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Example: Switched Capacitor (DC-DC) 
Converter control 
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Asynchronous vs Synchronous for little digital 
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Example: Buck converter 

Building asynchronous circuits in AMS 
context requires extending traditional  
assumptions about speed-
independence … 
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Key Principles of Asynchronous Design 

• Asynchronous handshaking 

• Delay-insensitive encoding 

• Completion detection 

• Causal acknowledgment (aka indication or indicatability) 

• Strong and weak causality (full indication and early evaluation) 

• “Time comparison” (synchronisation, arbitration) 
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Why and what is handshaking? 

Mutual Synchronisation is via Handshake 
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Synchronous clocking  

How we  
think 

What we  
design 

10/20/2017 DISC Workshop on HW Design, Wien 



Asynchronous handshaking  

 

 What we  
design 

How we  
think 

Handshake latch 
Handshake CL ”Channel” or ”Link” 
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Handshake Signalling Protocols 
 Level Signalling (RTZ or 4-phase) 

Transition Signalling (NRZ or 2-phase) 

One cycle 

req 

ack 

req 

One cycle 

req 

ack 

One cycle 

ack 

(a) (b) 
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Why and what is delay-insensitive coding? 

Data Token = (Data Value, Validity Flag) 
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Bundled Data  

req 

ack 

Data 

One cycle 

req 

ack 

Data 

Return to Zero: 

Non-Return-to-Zero 

One cycle 

req 

ack 

Data 

One cycle 
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DI encoded data (Dual-Rail) 

ack 

Data.0 

One cycle 

Data.1 

ack 

Data.0 Data.1 

Logical 1 
Logical 0 

One cycle 

NULL (spacer) NULL 

cycle 

Data.1 

ack 

Data.0 
Logical 1 

Logical 0 

cycle cycle 

Logical 1 Logical 1 

cycle 

RTZ: 

NRZ: NRZ coding leads to 
complex logic 
implementation; 
special ways to track 
odd and even phases 
and logic values are 
needed, such as 
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DI codes (1-of-n and m-of-n) 
• 1-of-4:  

• 0001=> 00, 0010=>01, 0100=>10, 1000=>11 

• 2-of-4: 
• 1100, 1010, 1001, 0110, 0101, 0011 – total 6 combinations 

(cf. 2-bit dual-rail – 4 comb.) 

• 3-of-6: 
• 111000, 110100, …, 000111 – total 20 combinations (can 

encode 4 bits +  4 control tokens) 

• 2-of-7: 
• 1100000, 1010000, …, 0000011 – total 21 combinations (4 

bits + 5 control tokens) 
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Why and what is completion detection? 

Signalling that the Transients are over 
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Bundled-data logic blocks   

Single-rail logic 

• 
• 
• 

• 
• 
• 

delay start done 

Conventional logic + matched delay 

Completion 
is implicit: 
by done 
signal 

The delay must scale 
with the worst case 
delay path,  
So … not really self-
timed 
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True completion detection  

Dual-rail  
logic 

• 
• 
• 

• 
• 
• 

C done 

Completion detection tree 

Completion 
detection for one 
dual-rail bit 

C 

• 
• 
• 

Multi-input C-
element 
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The Muller C element 

C 

A 

B 
Z 

A     B     Z+ 

0      0      0 

0      1      Z 

1      0      Z 

1      1      1 

Vdd 

Gnd 

A 

A 

A 

A B 

B 

B 

B 

Z 

Z 

Z 

[van Berkel 91] 

Static Logic 

Implementation 

C 
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Why and what is causal acknowledgment? 

Every signal event must be acknowledged 
by another event 
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Causal acknowledgment 
a(0) 

b(0) 
c(0) 

x1 (1) 

x2 (1) 

x3(1) 

C-element implementation using simple gates 

a+ 

b+ 

x1- c+ 

x2- 

x1+ 

c- 

x3- 

a+ 

b+ 

a- 

b- 

c+ c- 

a- 

b- x2+ 

x3+ 

Unack’ed transitions x2- 
and x3- may cause a 
hazard on output c 

However, under Fundamental 
Mode (slow environment) the 
circuit is safe 
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Principle of causal acknowledgement 

a(0) 

b(0) 

c(0) 
x1(1) 

x4(0) 

x2(0) 

x3(1) 

a+ 

b+ 

a- 

b- 

c+ c- 

C-element implementation using simple gates 

a- 

b- 

x4- x3+ x2- c- 

a+ 

b+ 

x1- x2+ 
x3- x1+ c+ 

x4+ 

Each transition is 
causally ack’ed, 
hence no hazards 
can appear 
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Why and what are strong and weak causality ? 

Degree of necessity of precedence of some events for 
other events 

10/20/2017 DISC Workshop on HW Design, Wien 



Strong Causality  
• Petri net transitions synchronising as rendez-vous  

 
A 

C 

B 

• Logic circuits: Muller C-element (in 0-1 and 1-0 transitions), 
AND gate (in 0-1 transitions), OR gate (in 1-0 tranisitions) 

A     B     C+ 
0      0      0 
0      1      C 
1      0      C 
1      1      1 

Strong precedence 

A 

B 
C C 
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Weak Causality 
• Petri net transitions communicating via places 

A 

C 

B 

• Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1 
transitions) 

A(1->0) 

B(1->0) 

C(0) 
A(0->1) 

B(0->1) 

C(1) 

Weak precedence 
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Full indication versus Early Evaluation 

A.t 

A.f 

B.t 

B.f 

C.t 

C.f 

Dual-rail AND gate 
with “early propagation” 

Allows outputs to be produced from NULL 
to Codeword only when some (required) 
inputs have transitioned from NULL to 
Codeword  (similar for Codeword to NULL) 

C 

C 

C 

C 

B.t 

A.t 
C.t 

C.f 

A.t 

A.f 

A.f 

B.f 

B.t 

B.f 

Dual-rail AND gate 
with full input 
acknowledgement 

10/20/2017 DISC Workshop on HW Design, Wien 



Why and what is timing comparison? 

Telling if some event happened before 
another event 
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Synchronizers and arbiters 

Your system 

Input 

Your system 

Input 1 

Input 2 

  Synchronizer 

Decides which clock 
cycle to use for the  

input data 

  Asynchronous 
arbiter 

Decides the order of 
inputs 
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Metastability is.... 

Not being able to decide… 

Clock 

D 

tin 

tin -> 0 

Request 

Processor Clock 

Set-up time violated 

Q 

Q 

D 

Clock 
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Typical responses 

• We assume all starting points are equally probable 

• Most are a long way from the “balance point” 

• A few are very close and take a long time to resolve 

Clock 

Q Output 

Clock 

D Q 
#1  

Q Trigger 
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Synchronizer 
• t  is time allowed for the Q to change between CLK a and CLK b 

•   is the recovery time constant, usually the gain-bandwidth of the circuit 

• Tw is the “metastability window” (aperture around clock edge in which the 
capture of data edge causes a delay that is greater than normal propagation 
delay of the FF) 

•  and Tw depend on the circuit 

• We assume that all values of tin are equally probable 

dcw

t

ffT

e
MTBF

..

/

D Q D Q 

CLK a 

VALID 

#1  #2 

CLK b 
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Two-way arbiter (Mutual exclusion element) 

req1 

req2 

ack2 

ack1 

(0) 

(0) 

(1) 

(1) 

(0) 

(0) 

Basic arbitration element: Mutex (due to Seitz, 1979) 

An asynchronous data latch with 
metastability resolver can be built similarly 

Metastability 
resolver 
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• Understanding metastability is becoming very important as analogue 
and digital domains get closer, and timing uncertainty and PVT 
variations increase 

• Arbitration and synchronization are increasing their importance due 
to many-core, timing domains, NoCs, GALS 

• Design automation for metastability and synchronization is turning 
from research to practice (Blendix) 

Importance of Timing Comparison Importance of Timing Comparison 

10/20/2017 DISC Workshop on HW Design, Wien 



Models and techniques for design 
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Models and techniques for asynchronous design 

• Nature of Models: 

• Delay model (inertial, pure, gate delay, wire delay, bounded and unbounded 
delays) 

• Models of environment (fundamental mode, input-output) 

• Models of switching behaviour (state-based, event-based, hybrid) 

• RTL level: 

• Data and control paths separate (data flow graphs, FSMs, Signal Transition 
Graphs, Synchronised Transitions) 

• Pipeline based (Combinational logic plus registers and latch controllers, e.g. 
micropipelines, gate-level pipelining) 

• Process-based (CSP-like, Balsa, Haste, Communicating Hardware Processes) 

• High-level models 

• Flow graphs (Marked graphs, extended MGs), Petri nets, Markov Chains 

• Behavioural HDLs (C, SystemC) 10/20/2017 DISC Workshop on HW Design, Wien 



Gate vs wire delay models 

• Gate delay model: delays in gates, no delays in wires 
 
 
 
 
 

• Wire delay model: delays in gates and wires 



Delay models for async. circuits 

• Bounded delays (BD): realistic for gates and wires. 
• Technology mapping is easy, verification is difficult 

• Speed independent (SI): Unbounded (pessimistic) 
delays for gates and “negligible” (optimistic) delays 
for wires. 
• Technology mapping is more difficult, verification is easy 

• Delay insensitive (DI): Unbounded (pessimistic) 
delays for gates and wires. 
• DI class (built out of basic gates) is almost empty 

• Quasi-delay insensitive (QDI): Delay insensitive 
except for critical wire forks (isochronic forks). 
• In practice it is the same as speed independent 

BD 

SI  QDI 

DI 



Control Logic 
 

 

 

•Control specification based on Petri 
nets (Signal Transition graphs) 
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Control specification 

A+ 

B+ 

A- 

B- 

A 

B 

A input 

B output 

Timing Diagram Signal Transition Graph 

(STG) 
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Control specification 

A+ 

B+ 

A- 

B- 

A B 
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Control specification 

A+ 

B- 

A- 

B+ 

A B 
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Control specification 

A+ 

C- 

A- 

C+ 
A 

C 

B+ 

B- B 

C C 
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Control specification 

A+ 

C- 

A- 

C+ 

B+ 

B- 

C C C 

A 

B 
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VME bus example using Petri nets 

Device 

LDS 

LDTACK 

D 

DSr 

DSw 

DTACK 

VME Bus 
Controller 

Data 

Transceiver 

Bus 
DSr 

LDS 

LDTACK 

D 

DTACK 

Read Cycle 
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STG for the READ cycle 

LDS+ LDTACK+ D+ DTACK+ DSr- D- 

DTACK- 

LDS- LDTACK- 

DSr+ 

LDS 

LDTACK 

D 

DSr 

DTACK 

VME Bus 
Controller 
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Choice: Read and Write cycles 

DSr+ 

LDS+ 

LDTACK+ 

D+ 

DTACK+ 

DSr- 

D- 

DTACK- 

LDS- 

LDTACK- 

DSw+ 

D+ 

LDS+ 

LDTACK+ 

D- 

DTACK+ 

DSw- 

DTACK- 

LDS- 

LDTACK- 
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Choice: Read and Write cycles 

DTACK- 

DSr+ 

LDS+ 

LDTACK+ 

D+ 

DTACK+ 

DSr- 

D- 

LDS- 

LDTACK- 

DSw+ 

D+ 

LDS+ 

LDTACK+ 

D- 

DTACK+ 

DSw- 10/20/2017 DISC Workshop on HW Design, Wien 



Workcraft tool 

• Workcraft is a software package for graphical edit, analysis, synthesis 
and visualisation of asynchronous circuit behaviour 

• Petrify plus a few other tools are part of it as plug-ins 

• It is based in Java tools 

• Can be downloaded from http://workcraft.org/  

• And installed in few minutes 

• There is a simple to use tutorial for that 

• Many other tutorials on various aspects of Petri nets modelling, STG 
synthesis and analysis, circuit verification, visualisation etc. 
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Some references 
• General Async Design: J. Sparsø and S.B. Furber, editors. Principles 

of Asynchronous Circuit Design, Kluwer Academic Publishers, 2001. 
(electronic version of a tutorial based on this book can be found on: 
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm
855.pdf  

• Async Control Synthesis: J. Cortadella, M. Kishinevsky, 
A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic Synthesis of 
Asynchronous Controllers and Interfaces. Springer-Verlag, 2002. 
(Petrify software can be downloaded from: 
http://www.lsi.upc.edu/~jordicf/petrify/)  

• Arbiters and Synchronizers: D.J. Kinniment, Synchronization and 
Arbitration in Digital Systems, Wiley and Sons, 2007 (a tutorial on 
arbitration and synchronization from  ASYNC/NOCS 2008 can be 
found: http://async.org.uk/async2008/async-nocs-slides/Tutorial-
Monday/Kinniment-ASYNC-2008-Tutorial.pdf)  

 



x 

y 

z 

x+ 

x- 

y+ 

y- 

z+ 

z- 

Signal Transition Graph (STG) 

x 

y 

z 

xyz-example: Specification 
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x 

y 

z 

x+ 

x- 

y+ 

y- 

z+ 

z- 

Token flow 
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x+ 

x- 

y+ 

y- 

z+ 

z- 

xyz 

000 
x+ 

100 
y+ z+ 

z+ y+ 

101 110 

111 

x- 

x- 

001 

011 
y+ 

z- 

010 

y- 

State graph 
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x z x y  ( )

y z x 

z x y z  

Next-state functions 
xyz 

000 
x+ 

100 
y+ z+ 

z+ y+ 

101 110 

111 

x- 

x- 

001 

011 
y+ 

z- 

010 

y- 
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x 

z 

y 

Complex Gate netlist 

x z x y  ( )

y z x 

z x y z  
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Circuit synthesis 

• Goal: 
• Derive a hazard-free circuit 

under a given delay model and 
mode of operation 
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Speed independence 

• Delay model 
• Unbounded gate / environment delays 

• Certain wire delays shorter than certain paths in the circuit 
 

• Conditions for implementability: 
• Consistency 

• Complete State Coding 

• Persistency 
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Implementability conditions 

• Consistency 
• Rising and falling transitions of each signal alternate in any trace 

 

• Complete state coding (CSC) 
• Next-state functions correctly defined 

 

• Persistency 
• No event can be disabled by another event (unless they are both inputs) 
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Implementability conditions 

• Consistency + CSC + persistency 
 
 
 

• There exists a speed-independent circuit that implements the 
behavior of the STG 
 
(under the assumption that ay Boolean function can be implemented 
with one complex gate) 

10/20/2017 DISC Workshop on HW Design, Wien 



Persistency 
100 000 001 

a- c+ 

b+ b+ 

a 

c 
b 

a 

c 

b 

is this a pulse ? 

Speed independence  glitch-free output behavior under any delay 
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CASE Study: Buck converter controller 
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Case study: Buck converter - synchronous control 
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Buck converter – asynchronous control 
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Little digital 
design flow 
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Analog to Async (A2A) components 
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Interfacing analog to async: WAIT element 
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WORKCRAFT  
design 
automation 
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Synthesis example: multiphase Buck 
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Multiphase buck:  
synchronous design 
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Multiphase buck: async design 

• Token ring architecture, no 
need for phase activations 
clock 

• No need for synchronisers 
• A4A design flow for phase 

control 
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Multiphase buck: async phase control 
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Synthesis of async control components  
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Messages to take away 

• Little digital circuits can be highly concurrent! 

• Asynchronous circuits  began their life (in the 50s) for ‘little digital’ and today is 
the right time for them 

• Analog and mixed-signal is a good application – it combines: 
• Need for low latency and high range of feedback types 
• Analog designers are more inclined towards async than digital designers 

• Design tools are (slowly) coming up and industry is a good drive! 

• Interesting research problems are there – tech mapping, holistic analog-mixed 
signal verification, behavioural mining, dealing with complexity 

• In particular, extending the notion of speed-independence into the world of 
relative timing, circuits with time comparison (arbitration), with analog 
components 

• Where else do we have little digital? … Plastic electronics? 
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