
How to design little digital, yet
highly concurrent, electronics?

Alex Yakovlev

Newcastle University

Newcastle upon Tyne, U.K.

• “Little” Digital electronics: Why going asynchronous?

• Six Asynchronous Design Principles

• (Some of the) Models, Techniques and Tools for
Asynchronous Design

• Asynchronous control logic synthesis using STGs

• Case study: Async control for power converter

• Messages to take away

Outline

10/20/2017 DISC Workshop on HW Design, Wien

Asynchronous Behaviour

• Synchronous vs Asynchronous behaviour in general terms, examples:
• Orchestra playing with vs without a conductor
• Party of people having a set menu vs a la carte

• Synchronous means all parts of the system acting globally in tact,
even if some or all part ‘do nothing’

• Asynchronous means parts of the system act on demand rather than
on global clock tick

• Acting in computation and communication is, generally, changing the
system state

• Synchrony and Asynchrony can be in found in CPUs, Memory,
Communications, SoCs, NoCs etc.

10/20/2017 DISC Workshop on HW Design, Wien

Parallel vs Concurrent

• Synchronous circuits can be VERY parallel (executing many things at
the same time!) but NOT concurrent (independently firing events),
because clock is sequential, and actions are done in total SYNC –
hence total, instead of partial, order

• Asynchronous circuits are fundamentally concurrent, they are self-
timed – i.e. many clocking threads which synchronize by themselves
in many different ways – hence partial order

10/20/2017 DISC Workshop on HW Design, Wien

Emergence of little digital electronics

• Analog and digital electronics are becoming more intertwined
• Analog domain becomes complex and needs digital control

10/20/2017 DISC Workshop on HW Design, Wien

Example: Buck (DC-DC)
converter control

10/20/2017 DISC Workshop on HW Design, Wien

Example: Switched Capacitor (DC-DC)
Converter control

10/20/2017 DISC Workshop on HW Design, Wien

Asynchronous vs Synchronous for little digital

10/20/2017 DISC Workshop on HW Design, Wien

Example: Buck converter

Building asynchronous circuits in AMS
context requires extending traditional
assumptions about speed-
independence …

10/20/2017 DISC Workshop on HW Design, Wien

Key Principles of Asynchronous Design

• Asynchronous handshaking

• Delay-insensitive encoding

• Completion detection

• Causal acknowledgment (aka indication or indicatability)

• Strong and weak causality (full indication and early evaluation)

• “Time comparison” (synchronisation, arbitration)

10/20/2017 DISC Workshop on HW Design, Wien

Why and what is handshaking?

Mutual Synchronisation is via Handshake

10/20/2017 DISC Workshop on HW Design, Wien

Synchronous clocking

How we
think

What we
design

10/20/2017 DISC Workshop on HW Design, Wien

Asynchronous handshaking

 What we
design

How we
think

Handshake latch
Handshake CL ”Channel” or ”Link”

10/20/2017 DISC Workshop on HW Design, Wien

Handshake Signalling Protocols
 Level Signalling (RTZ or 4-phase)

Transition Signalling (NRZ or 2-phase)

One cycle

req

ack

req

One cycle

req

ack

One cycle

ack

(a) (b)

10/20/2017 DISC Workshop on HW Design, Wien

Why and what is delay-insensitive coding?

Data Token = (Data Value, Validity Flag)

10/20/2017 DISC Workshop on HW Design, Wien

Bundled Data

req

ack

Data

One cycle

req

ack

Data

Return to Zero:

Non-Return-to-Zero

One cycle

req

ack

Data

One cycle

10/20/2017 DISC Workshop on HW Design, Wien

DI encoded data (Dual-Rail)

ack

Data.0

One cycle

Data.1

ack

Data.0 Data.1

Logical 1
Logical 0

One cycle

NULL (spacer) NULL

cycle

Data.1

ack

Data.0
Logical 1

Logical 0

cycle cycle

Logical 1 Logical 1

cycle

RTZ:

NRZ: NRZ coding leads to
complex logic
implementation;
special ways to track
odd and even phases
and logic values are
needed, such as
LEDR 10/20/2017 DISC Workshop on HW Design, Wien

DI codes (1-of-n and m-of-n)
• 1-of-4:

• 0001=> 00, 0010=>01, 0100=>10, 1000=>11

• 2-of-4:
• 1100, 1010, 1001, 0110, 0101, 0011 – total 6 combinations

(cf. 2-bit dual-rail – 4 comb.)

• 3-of-6:
• 111000, 110100, …, 000111 – total 20 combinations (can

encode 4 bits + 4 control tokens)

• 2-of-7:
• 1100000, 1010000, …, 0000011 – total 21 combinations (4

bits + 5 control tokens)

10/20/2017 DISC Workshop on HW Design, Wien

Why and what is completion detection?

Signalling that the Transients are over

10/20/2017 DISC Workshop on HW Design, Wien

Bundled-data logic blocks

Single-rail logic

•
•
•

•
•
•

delay start done

Conventional logic + matched delay

Completion
is implicit:
by done
signal

The delay must scale
with the worst case
delay path,
So … not really self-
timed

10/20/2017 DISC Workshop on HW Design, Wien

True completion detection

Dual-rail
logic

•
•
•

•
•
•

C done

Completion detection tree

Completion
detection for one
dual-rail bit

C

•
•
•

Multi-input C-
element

10/20/2017 DISC Workshop on HW Design, Wien

The Muller C element

C

A

B
Z

A B Z+

0 0 0

0 1 Z

1 0 Z

1 1 1

Vdd

Gnd

A

A

A

A B

B

B

B

Z

Z

Z

[van Berkel 91]

Static Logic

Implementation

C

10/20/2017 DISC Workshop on HW Design, Wien

Why and what is causal acknowledgment?

Every signal event must be acknowledged
by another event

10/20/2017 DISC Workshop on HW Design, Wien

Causal acknowledgment
a(0)

b(0)
c(0)

x1 (1)

x2 (1)

x3(1)

C-element implementation using simple gates

a+

b+

x1- c+

x2-

x1+

c-

x3-

a+

b+

a-

b-

c+ c-

a-

b- x2+

x3+

Unack’ed transitions x2-
and x3- may cause a
hazard on output c

However, under Fundamental
Mode (slow environment) the
circuit is safe

10/20/2017 DISC Workshop on HW Design, Wien

Principle of causal acknowledgement

a(0)

b(0)

c(0)
x1(1)

x4(0)

x2(0)

x3(1)

a+

b+

a-

b-

c+ c-

C-element implementation using simple gates

a-

b-

x4- x3+ x2- c-

a+

b+

x1- x2+
x3- x1+ c+

x4+

Each transition is
causally ack’ed,
hence no hazards
can appear

10/20/2017 DISC Workshop on HW Design, Wien

Why and what are strong and weak causality ?

Degree of necessity of precedence of some events for
other events

10/20/2017 DISC Workshop on HW Design, Wien

Strong Causality
• Petri net transitions synchronising as rendez-vous

A

C

B

• Logic circuits: Muller C-element (in 0-1 and 1-0 transitions),
AND gate (in 0-1 transitions), OR gate (in 1-0 tranisitions)

A B C+
0 0 0
0 1 C
1 0 C
1 1 1

Strong precedence

A

B
C C

10/20/2017 DISC Workshop on HW Design, Wien

Weak Causality
• Petri net transitions communicating via places

A

C

B

• Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1
transitions)

A(1->0)

B(1->0)

C(0)
A(0->1)

B(0->1)

C(1)

Weak precedence

10/20/2017 DISC Workshop on HW Design, Wien

Full indication versus Early Evaluation

A.t

A.f

B.t

B.f

C.t

C.f

Dual-rail AND gate
with “early propagation”

Allows outputs to be produced from NULL
to Codeword only when some (required)
inputs have transitioned from NULL to
Codeword (similar for Codeword to NULL)

C

C

C

C

B.t

A.t
C.t

C.f

A.t

A.f

A.f

B.f

B.t

B.f

Dual-rail AND gate
with full input
acknowledgement

10/20/2017 DISC Workshop on HW Design, Wien

Why and what is timing comparison?

Telling if some event happened before
another event

10/20/2017 DISC Workshop on HW Design, Wien

Synchronizers and arbiters

Your system

Input

Your system

Input 1

Input 2

 Synchronizer

Decides which clock
cycle to use for the

input data

 Asynchronous
arbiter

Decides the order of
inputs

10/20/2017 DISC Workshop on HW Design, Wien

Metastability is....

Not being able to decide…

Clock

D

tin

tin -> 0

Request

Processor Clock

Set-up time violated

Q

Q

D

Clock

10/20/2017 DISC Workshop on HW Design, Wien

Typical responses

• We assume all starting points are equally probable

• Most are a long way from the “balance point”

• A few are very close and take a long time to resolve

Clock

Q Output

Clock

D Q
#1

Q Trigger

10/20/2017 DISC Workshop on HW Design, Wien

Synchronizer
• t is time allowed for the Q to change between CLK a and CLK b

•  is the recovery time constant, usually the gain-bandwidth of the circuit

• Tw is the “metastability window” (aperture around clock edge in which the
capture of data edge causes a delay that is greater than normal propagation
delay of the FF)

•  and Tw depend on the circuit

• We assume that all values of tin are equally probable

dcw

t

ffT

e
MTBF

..

/

D Q D Q

CLK a

VALID

#1 #2

CLK b

10/20/2017 DISC Workshop on HW Design, Wien

Two-way arbiter (Mutual exclusion element)

req1

req2

ack2

ack1

(0)

(0)

(1)

(1)

(0)

(0)

Basic arbitration element: Mutex (due to Seitz, 1979)

An asynchronous data latch with
metastability resolver can be built similarly

Metastability
resolver

10/20/2017 DISC Workshop on HW Design, Wien

• Understanding metastability is becoming very important as analogue
and digital domains get closer, and timing uncertainty and PVT
variations increase

• Arbitration and synchronization are increasing their importance due
to many-core, timing domains, NoCs, GALS

• Design automation for metastability and synchronization is turning
from research to practice (Blendix)

Importance of Timing Comparison Importance of Timing Comparison

10/20/2017 DISC Workshop on HW Design, Wien

Models and techniques for design

10/20/2017 DISC Workshop on HW Design, Wien

Models and techniques for asynchronous design

• Nature of Models:

• Delay model (inertial, pure, gate delay, wire delay, bounded and unbounded
delays)

• Models of environment (fundamental mode, input-output)

• Models of switching behaviour (state-based, event-based, hybrid)

• RTL level:

• Data and control paths separate (data flow graphs, FSMs, Signal Transition
Graphs, Synchronised Transitions)

• Pipeline based (Combinational logic plus registers and latch controllers, e.g.
micropipelines, gate-level pipelining)

• Process-based (CSP-like, Balsa, Haste, Communicating Hardware Processes)

• High-level models

• Flow graphs (Marked graphs, extended MGs), Petri nets, Markov Chains

• Behavioural HDLs (C, SystemC) 10/20/2017 DISC Workshop on HW Design, Wien

Gate vs wire delay models

• Gate delay model: delays in gates, no delays in wires

• Wire delay model: delays in gates and wires

Delay models for async. circuits

• Bounded delays (BD): realistic for gates and wires.
• Technology mapping is easy, verification is difficult

• Speed independent (SI): Unbounded (pessimistic)
delays for gates and “negligible” (optimistic) delays
for wires.
• Technology mapping is more difficult, verification is easy

• Delay insensitive (DI): Unbounded (pessimistic)
delays for gates and wires.
• DI class (built out of basic gates) is almost empty

• Quasi-delay insensitive (QDI): Delay insensitive
except for critical wire forks (isochronic forks).
• In practice it is the same as speed independent

BD

SI  QDI

DI

Control Logic

•Control specification based on Petri
nets (Signal Transition graphs)

10/20/2017 DISC Workshop on HW Design, Wien

Control specification

A+

B+

A-

B-

A

B

A input

B output

Timing Diagram Signal Transition Graph

(STG)

10/20/2017 DISC Workshop on HW Design, Wien

Control specification

A+

B+

A-

B-

A B

10/20/2017 DISC Workshop on HW Design, Wien

Control specification

A+

B-

A-

B+

A B

10/20/2017 DISC Workshop on HW Design, Wien

Control specification

A+

C-

A-

C+
A

C

B+

B- B

C C

10/20/2017 DISC Workshop on HW Design, Wien

Control specification

A+

C-

A-

C+

B+

B-

C C C

A

B

10/20/2017 DISC Workshop on HW Design, Wien

VME bus example using Petri nets

Device

LDS

LDTACK

D

DSr

DSw

DTACK

VME Bus
Controller

Data

Transceiver

Bus
DSr

LDS

LDTACK

D

DTACK

Read Cycle

10/20/2017 DISC Workshop on HW Design, Wien

STG for the READ cycle

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS- LDTACK-

DSr+

LDS

LDTACK

D

DSr

DTACK

VME Bus
Controller

10/20/2017 DISC Workshop on HW Design, Wien

Choice: Read and Write cycles

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

DTACK-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-

DTACK-

LDS-

LDTACK-

10/20/2017 DISC Workshop on HW Design, Wien

Choice: Read and Write cycles

DTACK-

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw- 10/20/2017 DISC Workshop on HW Design, Wien

Workcraft tool

• Workcraft is a software package for graphical edit, analysis, synthesis
and visualisation of asynchronous circuit behaviour

• Petrify plus a few other tools are part of it as plug-ins

• It is based in Java tools

• Can be downloaded from http://workcraft.org/

• And installed in few minutes

• There is a simple to use tutorial for that

• Many other tutorials on various aspects of Petri nets modelling, STG
synthesis and analysis, circuit verification, visualisation etc.

10/20/2017 DISC Workshop on HW Design, Wien

http://workcraft.org/

Some references
• General Async Design: J. Sparsø and S.B. Furber, editors. Principles

of Asynchronous Circuit Design, Kluwer Academic Publishers, 2001.
(electronic version of a tutorial based on this book can be found on:
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm
855.pdf

• Async Control Synthesis: J. Cortadella, M. Kishinevsky,
A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic Synthesis of
Asynchronous Controllers and Interfaces. Springer-Verlag, 2002.
(Petrify software can be downloaded from:
http://www.lsi.upc.edu/~jordicf/petrify/)

• Arbiters and Synchronizers: D.J. Kinniment, Synchronization and
Arbitration in Digital Systems, Wiley and Sons, 2007 (a tutorial on
arbitration and synchronization from ASYNC/NOCS 2008 can be
found: http://async.org.uk/async2008/async-nocs-slides/Tutorial-
Monday/Kinniment-ASYNC-2008-Tutorial.pdf)

x

y

z

x+

x-

y+

y-

z+

z-

Signal Transition Graph (STG)

x

y

z

xyz-example: Specification

10/20/2017 DISC Workshop on HW Design, Wien

x

y

z

x+

x-

y+

y-

z+

z-

Token flow

10/20/2017 DISC Workshop on HW Design, Wien

x+

x-

y+

y-

z+

z-

xyz

000
x+

100
y+ z+

z+ y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

State graph

10/20/2017 DISC Workshop on HW Design, Wien

x z x y  ()

y z x 

z x y z  

Next-state functions
xyz

000
x+

100
y+ z+

z+ y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

10/20/2017 DISC Workshop on HW Design, Wien

x

z

y

Complex Gate netlist

x z x y  ()

y z x 

z x y z  

10/20/2017 DISC Workshop on HW Design, Wien

Circuit synthesis

• Goal:
• Derive a hazard-free circuit

under a given delay model and
mode of operation

10/20/2017 DISC Workshop on HW Design, Wien

Speed independence

• Delay model
• Unbounded gate / environment delays

• Certain wire delays shorter than certain paths in the circuit

• Conditions for implementability:
• Consistency

• Complete State Coding

• Persistency

10/20/2017 DISC Workshop on HW Design, Wien

Implementability conditions

• Consistency
• Rising and falling transitions of each signal alternate in any trace

• Complete state coding (CSC)
• Next-state functions correctly defined

• Persistency
• No event can be disabled by another event (unless they are both inputs)

10/20/2017 DISC Workshop on HW Design, Wien

Implementability conditions

• Consistency + CSC + persistency

• There exists a speed-independent circuit that implements the
behavior of the STG

(under the assumption that ay Boolean function can be implemented
with one complex gate)

10/20/2017 DISC Workshop on HW Design, Wien

Persistency
100 000 001

a- c+

b+ b+

a

c
b

a

c

b

is this a pulse ?

Speed independence  glitch-free output behavior under any delay
10/20/2017 DISC Workshop on HW Design, Wien

CASE Study: Buck converter controller

10/20/2017 DISC Workshop on HW Design, Wien

Case study: Buck converter - synchronous control

10/20/2017 DISC Workshop on HW Design, Wien

Buck converter – asynchronous control

10/20/2017 DISC Workshop on HW Design, Wien

Little digital
design flow

10/20/2017 DISC Workshop on HW Design, Wien

Analog to Async (A2A) components

10/20/2017 DISC Workshop on HW Design, Wien

Interfacing analog to async: WAIT element

10/20/2017 DISC Workshop on HW Design, Wien

WORKCRAFT
design
automation

10/20/2017 DISC Workshop on HW Design, Wien

Synthesis example: multiphase Buck

10/20/2017 DISC Workshop on HW Design, Wien

Multiphase buck:
synchronous design

10/20/2017 DISC Workshop on HW Design, Wien

Multiphase buck: async design

• Token ring architecture, no
need for phase activations
clock

• No need for synchronisers
• A4A design flow for phase

control

10/20/2017 DISC Workshop on HW Design, Wien

Multiphase buck: async phase control

10/20/2017 DISC Workshop on HW Design, Wien

Synthesis of async control components

10/20/2017 DISC Workshop on HW Design, Wien

References on asynchronous little digital
design

1. D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and A. Yakovlev. Benefits of
asynchronous control for analog electronics: multiphase buck case study. In Proc. Design,
Automation & Test in Europe (DATE), Lausanne, Switzerland, March 2017.

2. V. Khomenko, D. Sokolov, A. Mokhov, and A. Yakovlev. WAITX: An arbiter for non-persistent
signals. In Proc. IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), San
Diego, CA., May 2017.

3. V. Dubikhin, D. Sokolov, A. Yakovlev, and C. J. Myers. Design of mixed-signal systems with
asynchronous control. IEEE Design & Test, 33(5):44--55, 2016.

4. S. Mileiko, A. Kushnerov, D. Sokolov, and A. Yakovlev. Self-timed control of two-phase switched
capacitor converters. In IEEE International Conference on the Science of Electrical Engineering
(ICSEE), Eilat, Israel, November 2016.

5. A. Mokhov, D. Sokolov, V. Khomenko and A. Yakovlev. Asynchronous Arbitration Primitives for
New Generation of Circuits and Systems. In IEEE New Generation of Circuits and Systems (NGCAS),
Genoa, Italy, September 2017.

10/20/2017 DISC Workshop on HW Design, Wien

Messages to take away

• Little digital circuits can be highly concurrent!

• Asynchronous circuits began their life (in the 50s) for ‘little digital’ and today is
the right time for them

• Analog and mixed-signal is a good application – it combines:
• Need for low latency and high range of feedback types
• Analog designers are more inclined towards async than digital designers

• Design tools are (slowly) coming up and industry is a good drive!

• Interesting research problems are there – tech mapping, holistic analog-mixed
signal verification, behavioural mining, dealing with complexity

• In particular, extending the notion of speed-independence into the world of
relative timing, circuits with time comparison (arbitration), with analog
components

• Where else do we have little digital? … Plastic electronics?

10/20/2017 DISC Workshop on HW Design, Wien

