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 “Little” Digital electronics: Why going asynchronous?
* Six Asynchronous Design Principles

* (Some of the) Models, Techniques and Tools for
Asynchronous Design

* Asynchronous control logic synthesis using STGs
* Case study: Async control for power converter
* Messages to take away
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Asynchronous Behaviour

e Synchronous vs Asynchronous behaviour in general terms, examples:
* Orchestra playing with vs without a conductor
* Party of people having a set menu vs a la carte

* Synchronous means all parts of the system acting globally in tact,
even if some or all part ‘do nothing’

* Asynchronous means parts of the system act on demand rather than
on global clock tick

e Acting in computation and communication is, generally, changing the
system state

e Synchrony and Asynchrony can be in found in CPUs, Memory,
Communications, SoCs, NoCs etc.



Parallel vs Concurrent

* Synchronous circuits can be VERY parallel (executing many things at
the same time!) but NOT concurrent (independently firing events),
because clock is sequential, and actions are done in total SYNC -
hence total, instead of partial, order

* Asynchronous circuits are fundamentally concurrent, they are self-
timed - i.e. many clocking threads which synchronize by themselves
in many different ways — hence partial order



Emergence of little digital electronics

. IP cores (big digital) +  Legend:

ity ————GevelshifterSD————————————1'

| ( | digital
—» A2D |- @ynchroniserg (sensors) ' D2A —
A |

I
I
K o N
| power | analog
: converters | \. J
--------- |
:_ ‘ : e - — - -
P ' v sensor/tlmlng/energy |
, | infrastructure |
sanltlsers ———————————————————————
E ‘i T == : . time bands
] . slow i : fast ; local al . v
control for analog layer (little digital) _scope for
design automation

* Analog and digital electronics are becoming more intertwined
 Analog domain becomes complex and needs digital control



Example: Buck (DC-DC)
converter control
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Example: Switched Capacitor (DC-DC)

Converter control
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Asynchronous vs Synchronous for little digital

» Synchronous control

© Conventional RTL design flow

® Slow response (defined by the clock period)

) Power consumed even when idle

© Non-negligible probability of a synchronisation failure
» Asynchronous control

© Prompt response (delay of few gates)

© No dynamic power consumption when inactive

© Non-conventional methodology and tool support
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Example: Buck converter
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Buck conditions: Operating modes:
Building asynchronous circuits in AMS |
context requires extending traditional ~ * under-voltage (UV) « no ZEro-crossing
assumptions about speed- « over-current (OC) « late zero-crossing
independence o zero-crossing (ZC) « early zero-crossing
1?/20/2017 e DISC Workshop on HW Design, Wien



Key Principles of Asynchronous Design

* Asynchronous handshaking

* Delay-insensitive encoding

* Completion detection

e Causal acknowledgment (aka indication or indicatability)
 Strong and weak causality (full indication and early evaluation)
* “Time comparison” (synchronisation, arbitration)



Why and what is handshaking?

Mutual Synchronisation is via Handshake
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Synchronous clocking
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Asynchronous handshaking
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How we
think
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Handshake Signalling Protocols
Level Signalling (RTZ or 4-phase)
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Why and what is delay-insensitive coding?
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1001010100100l

Data Token = (Data Value, Validity Flag)



Bundled Data

Data

req

>

ack

Return to Zero:

U Gy, 22 Gl

reqg

ack

/ \

/ \

—
a

One cycle

Non-Return-to-Zero

R G, b, G

reqg

ack

\
/T

e

i Onecycle i Onecycle



DI encoded data (Dual-Rail)
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DI codes (1-of-n and m-of-n)
* 1-of-4:
* 0001=>00, 0010=>01, 0100=>10, 1000=>11
* 2-of-4:

1100, 1010, 1001, 0110, 0101, 0011 — total 6 combinations
(cf. 2-bit dual-rail — 4 comb.)

* 3-of-6:

111000, 110100, ..., 000111 — total 20 combinations (can
encode 4 bits + 4 control tokens)

* 2-of-7:

e 1100000, 1010000, ..., 0000011 — total 21 combinations (4
bits + 5 control tokens)



Why and what is completion detection?

Signalling that the Transients are over



Bundled-data logic blocks
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timed



rue completion detection
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The Muller C element
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Why and what is causal acknowledgment?

C

:3..
L

Hop T

Every sighal event must be acknowledged
by another event
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Causal acknowledgment

wimea sl i
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C-element implementation using simple gates
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Unack’ed transitions x2-
However, under Fundamental

and x3- may cause a Mode (slow environment) the

hazard on output ¢ circuit is safe
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Principle of causal acknowledgement
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Why and what are strong and weak causality ?

CORRELATION
DOES NOT IMPLY
CAUSATION.

Degree of necessity of precedence of some events for
other events

10/20/2017 DISC Workshop on HW Design, Wien



Strong Causality

* Petri net transitions synchronising as rendez-vous

Strong precedence

@

e Logic circuits: Muller C-element (in 0-1 and 1-0 transitions),
AND gate (in 0-1 transitions), OR gate (in 1-0 tranisitions)
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Weak Causality

* Petri net transitions communicating via places

k
FB

Weak precedence

>

@

e Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1
transitions)

A(1->0)

B(1->0)

10/20/2017
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Full indication versus Early Evaluation

At —
8t C C.t
At Dual-rail AND gate
'f E)— with full input
i'f cf acknowledgement
=
R — )
A.f
o
B.f —
At —} c Dual-rail AND gate
B.t —— | with “early propagation”
Af Allows outputs to be produced from NULL
' Cf to Codeword only when some (required)
B.f inputs have transitioned from NULL to
Codeword (similar for Codeword to NULL)




Why and what is timing comparison?

Telling if some event happened before
another event
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Synchronizers and arbiters
Input
® Synchronizer

Decides which clock
cycle to use for the

input data

Input 1
® Asynchronous
arbiter

Decides the order of
Inputs

Input 2
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Metastability is....

Set-up time violated

D
Request
—| fe—
At;,
Processor Clock Clock
At,,->0

Not being able to decide...
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Typical responses

Q Trigger
58 Q Output

v

* We assume all starting points are equally probable
* Most are a long way from the “balance point”
* A few are very close and take a long time to resolve
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Synchronizer

* t is time allowed for the Q to change between CLK a and CLK b
* T is the recovery time constant, usually the gain-bandwidth of the circuit

* T, is the “metastability window” (aperture around clock edge in which the
capture of data edge causes a delay that is greater than normal propagation
delay of the FF)

* rand T, depend on the circuit

* We assume that all values of At are equally probable

:' :' CLK b

CLK a
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Two-way arbiter (Mutual exclusion element)

Basic arbitration element: Mutex (due to Seitz, 1979)

reql (0)

req2 (0)

et

>>

): (1)

Metastability
resolver (0)
ack2
LT?J I
<
ackl
(0)

An asynchronous data latch with
metastability resolver can be built similarly
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Importance of Timing Comparison

* Understanding metastability is becoming very important as analogue
and digital domains get closer, and timing uncertainty and PVT
variations increase

* Arbitration and synchronization are increasing their importance due
to many-core, timing domains, NoCs, GALS

* Design automation for metastability and synchronization is turning
from research to practice (Blendix)



Models and techniques igr design




Models and techniques for asynchronous design

 Nature of Models:

* Delay model (inertial, pure, gate delay, wire delay, bounded and unbounded
delays)

* Models of environment (fundamental mode, input-output)
* Models of switching behaviour (state-based, event-based, hybrid)

e RTL level:

e Data and control paths separate (data flow graphs, FSMs, Signal Transition
Graphs, Synchronised Transitions)

* Pipeline based (Combinational logic plus registers and latch controllers, e.g.
micropipelines, gate-level pipelining)

* Process-based (CSP-like, Balsa, Haste, Communicating Hardware Processes)
* High-level models

* Flow graphs (Marked graphs, extended MGs), Petri nets, Markov Chains
e Behavioural HDLs (C, System()



Gate vs wire delay models

* Gate delay model: delays in gates, no delays in wires
* Wire delay model: delays in gates and wires

.—-—




Delay models for async. circuits

* Bounded delays (BD): realistic for gates and wires.
* Technology mapping is easy, verification is difficult

* Speed independent (SI): Unbounded (pessimistic)
delays for gates and “negligible” (optimistic) delays
for wires.

* Technology mapping is more difficult, verification is easy

* Delay insensitive (DI): Unbounded (pessimistic)
delays for gates and wires.
* DI class (built out of basic gates) is almost empty

e Quasi-delay insensitive (QDI): Delay insensitive
except for critical wire forks (isochronic forks).
* |n practice it is the same as speed independent



Control Logic

* Control specification based on Petri
nets (Signal Transition graphs)



Control specification

Signal Transition Graph

(STG)
a

B+
?

N
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Timing Diagram

A +

A input
B output
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Control specification
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? |
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Control specification
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Control specification
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Control specification
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VME bus example using Petri nets

Bus

Data
Transceiver

Read Cycle
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STG for the READ cycle

—

LDS+ — LDTACK+

xf LDTACK-+

DSr
DTACK
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DSr+ «—@

VME Bus

ControllerA
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Choice: Read and Write cycles

DSr+ DSw+

v

LDS+ D+

v

LDTACK+ /'/» LDS+

DTACK- D+ LDTACK- LDTACK- LDTACK+ DTACK-

A

v v

DTACK+ T_
Dfr- LDS- LDS- DTACK+

D- DSw-

DISC Workshop on HW Design, Wien



Choice: Read and Write cycles

DTACK-
DSr+ : DSw+
l /\@)/\
LDS+ — D+
LDTACK+ LDS+
LDTACK- !
LDTACK+
i 3
LDS- l
DTACK+
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Workcraft tool

* Workcraft is a software package for graphical edit, analysis, synthesis
and visualisation of asynchronous circuit behaviour

* Petrify plus a few other tools are part of it as plug-ins
* It is based in Java tools
e Can be downloaded from http://workcraft.org/

* And installed in few minutes
* There is a simple to use tutorial for that

* Many other tutorials on various aspects of Petri nets modelling, STG
synthesis and analysis, circuit verification, visualisation etc.


http://workcraft.org/

Some references

« General Async Design: J. Sparsg and S.B. Furber, editors. Principles
of Asynchronous Circuit Design, Kluwer Academic Publishers, 2001.
(electronic version of a tutorial based on this book can be found on:
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm
855.pdf

« Async Control Synthesis: J. Cortadella, M. Kishinevsky,
A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic Synthesis of
Asynchronous Controllers and Interfaces. Springer-Verlag, 2002.
(Petrify software can be downloaded from:
http://www.lIsi.upc.edu/~jordicf/petrify/)

« Arbiters and Synchronizers: D.J. Kinniment, Synchronization and
Arbitration in Digital Systems, Wiley and Sons, 2007 (a tutorial on
arbitration and synchronization from ASYNC/NOCS 2008 can be
found: http://async.org.uk/async2008/async-nocs-slides/Tutorial-
Monday/Kinniment-ASYNC-2008-Tutorial.pdf)



xyz-example: Specification
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Signal Transition Graph (STG)
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Token flow
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y / | N
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State graph

XyZz
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Next-state functions

Xyz
- 000
|+
X=7-(X+Y¥) 7ﬁﬂ%f
101 110
=7+ X :
y ‘ y- V y& A/z+
. 001 111
Z=X+Y-7 N

011

\Z_
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Complex Gate netlist

X=Z-(Xx+Y)]
y=2+X
z:x+yz‘
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Circuit synthesis

e Goal:

e Derive a hazard-free circuit
under a given delay model and
mode of operation



Speed independence

* Delay model
* Unbounded gate / environment delays
* Certain wire delays shorter than certain paths in the circuit

e Conditions for implementability:
* Consistency
* Complete State Coding
* Persistency

10/20/2017 DISC Workshop on HW Design, Wien



Implementability conditions

* Consistency
* Rising and falling transitions of each signal alternate in any trace

* Complete state coding (CSC)
* Next-state functions correctly defined

* Persistency
* No event can be disabled by another event (unless they are both inputs)



Implementability conditions

* Consistency + CSC + persistency 1

* There exists a speed-independent circuit that implements the
behavior of the STG

(under the assumption that ay Boolean function can be implemented
with one complex gate)



Persistency
100 —&— 000 —<*— 001 a:)_b
| b+ | b+ C
a \
C /

b /\/
N IS this a pulse ?

Speed independence = glitch-free output behavior under any delay

10/20/2017 DISC Workshop on HW Design, Wien



CASE Study: Buck converter controller



Case study: Buck converter - synchronous control

Behavioural Verilog specification: Design Compiler synthesis resuli:

nrst

module control (clk, nrst, oc, uv, zc, gp_ack, gn_ack, gp, gn): gp_ack [ é
input clk, nrst, uv, oc, zc, gp_ack, gn_ack: it
gn_ack D Q ap
output reg gp, gn; } CK
L &

always @(posedge clk or negedge nrst) begin oc g
if (nrst == 0) begin .
gp<=0;gn<=1; ' E ><
end else case ({gp_ack, gn_ack}) 7 [ A
2b00:if(uv==1)gp<=1;elseif(oc==1)gn<=1; -— SB

Mn
2b10: if (oc == 1) gp<=0; « g
2b01:if(uv==1]|lzc==1)gn<=0; [_:éj ) ZaN
endcase
end 5

endmodule

» lf clock is slow, the control is unresponsive to the buck changes
8.0M clock is fast, it burns energy when.the buck is, inactive



Buck converter —asynchronous control

STG specification:

______________________________________________________

\late ZC ! zc+
|_ _____ -
|
|
V79 T9nack——gp+——gp_ack+—IV
I
:naZC:
(i
LUV + gn

I. _______________________________________________________
I_T ____________________________________________________
i ZC+ an
(AR N,
' early ZC, uv+
______ L e e e e ——a
0C-=——gn_ack+-—gn+-——gp_ack-——gp-- oc+

S| implementation:

gn ack
oc — gp

UV D—e

gp ack b
————————a gn
ZC D

» Formal specification using Signal Transition Graph (STG) model — similar to Petri nets

» \Verifiable speed-independent (Sl) implementation — hazard-free for any gate delays

» Prompt reaction time to the buck changes — latency of a complex gate
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verification
and validation

libraries and
design guidelines

specification and synthesis

: informal design intent
: (waveforms, phase diagrams)

. . e ) architectural decomposition - ‘
I_ | tt | e d | g I t a | design concepts and compenent formalisation
L/ !
d e S | n -I: | OW : formal specification of components
g I (signal transition graph)

k

manual effort

sanity check
(Punf, MPSat)

]

verification report
(violation traces)

functional verification
(PComp, Puni, MPS5at)

-"...
-

: : logic synthesis & technology mapping
E gate library (Petrify, Punf MPSat)

I

i ( speed-independent components

.-"'"'..f
’
&

(Verilog netlist)

:

T E
e
.-#"'"Hﬂ#

signoff report
(timing viclations)

conventional design flow

Te offline testing features
and place & route

N, ¥
_ - system integration reachability report
AZAInterfaces ! (Workcraft) (hazard traces)
E ¥ "
: little digital asynchronous controller timing verification
I (Verilog netlisit) (PrimeTime)
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Analog to Async (A2A) components

» Interface analog world of dirty signals
» Provide hazard-free sanitised digital signals
» Basic A2A components

WAIT / WAITO — wait for analog input to become high / low and
latch it until explicit release signal

RWAIT / RWAITO - modification of WAIT / WAITO with a possibility
to persistently cancel the waiting request

WAITO1 / WAIT10 — wait for a rising / falling edge

» Advanced A2A components

WAIT2 - combination of WAIT and WAITO to wait for high and low
input values, one after the other.

WAITX - arbitrate between two non-persistent analog inputs
WAITX2 —behaves as WAITX in the rising phase and as WAITO in the falling phase
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Interfacing analog to async: WAIT element

Component interface: STG specification:
san+ ctril-
— sig san— sig- _
WAIT Jf O——:
E sig+
| ctri+-—e—san-
ME-based implementation: Gate-level implementation:

sig I_TDSEFI

sigb—qrl gl
ME
ctrib—r2 g2|—D>san

| can be removed |

ctri
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WOR
design
automation
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File Edit View Tools Conversion Transformations Verification Help

CCRAFT
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buck.stg [STG] & Property editor X
| Title 'Untitled
el LR . |Environment | ,./buck.st... x
’ [
uv+ -Qn- -gn ack- -~gp+-—= ack+ “uv-|
. : AL - - : Editor tools X
no 2C = ' = 1
@ -uv+ -gn- -gn_ack- -gp+ ~-gp_ack+ -UV-E -:O % ‘ AI‘ f | ‘ l L
. - ' 1 — |, 741 b— -
. P
" . > || Sy 5
i ZC+ ——gn-——gn_ack-——zsgp+—gp_ack+—— UV~
| : Tool controls
sarly ZC uv+— “zc- @| ‘QI ’ ‘?
: o 2 )| |
0C-=——gn_ack+=-—gn+=-—gp_ack--——gp-- oc+ - ’ s )
n RadiE NN
buck. circuit [circuit] ,
Verification results
gn_ack . . S
=~ ocC ap i Under the given environment (buck.stg.work) the circuit is:
* conformant
uv * deadlock-free
* hazard-free
ack D gn
ap_ b ] OK
as q




Synthesis example: mult

ohase Buck

10/20/2

under-voltage Ae—: v ref
) over-current I_max [1_0) . .
o 0 » Activation of phases
o=k ‘_<] [ analo &
o .
el | ! buck 3 Sequential
e PMOS § May overlap
s LW VT g - -
L
) MNMOS l E E i
. on —-vj—’—{ T 1= < o More operating modes
k W _nmaos - - -
on-sek o, | High-load (HL)
i - =i +—|_0 (l_neg)
SRS : Over-voltage (OV)
*+—|_max (I_0) -
. gp_ackN ‘g . . .
o . > e [ransistor min ON times
o .
" o PMIN delay for PMOS switch
1= e NMIN delay for NMOS switch
Lo = PMIN+PEXT for PMOS at first cycle
ZCh =
r gn_ackN g
+—|_0 (I_neg) }V
nuer—voltageﬂ\[‘-‘—'i’_wal
017 s BtSE-Workshop oh HW Design, Wien
high-load “w*—<V_min




SYNC PHASE CTRL
in out ac grP > gpd
zclD in out Zc gp_ack out in|—Aagp_ackl
hio—in out 4 hil 1
Multiphase buck: — »o-— @~ =
* ov o—] in out ’ ov ;3 '-E gn_ack out in—<aQgn_ackl
svnchronous design ! -
™
SYNC_PHASE _CTRL *®
ochN o—— in out oc gp o goi
zchN o in out ZC gp_ack out inf—<agp_ackN
Rl N
PHASE ACTIVATOR
uv gn D gni
ﬂctl ® "'_l . :
phase cik b— act : ov s T gn ack out in—<Aagn ackN
|
act Note: fsm_clk is implicit in
fsm clk b #

synchronizers (grey boxes)
Two clocks: phase activation (slow) and sampling (fast)
Conventional RTL design flow for phase control

Need for multiple synchronizers (grey boxes)
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Multiphase buck: async design

* Token ring architecture, no
need for phase activations
clock

* No need for synchronisers

* A4A design flow for phase
control
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gn_ack F—agn_ackl

— pass

ASYNC PHASE CTRL

N D

oc
ZC
hi

L

ow

gel—

pass

gp —>2 gph

gp ack F—Qgp_ackN

gnk——= gni

gn_ack —AQgn_ackN




Multiphase buck: async phase control

PMIN TIMER  PEXT TIMER
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- synthesised S| components ls_m LW
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5 FE &
i L W i
l B 3
gel—n ro ril :; ; 3 rp ri o b—=o gp
pass G— ai a0 ail
PMOS DELAY CTRL
MERGE TOKEMN _CTRL MODE CTRL CHARGE CTRL
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o rigd
HL CTRL ao ai a0 ai aa al i ri ro — gn
—_— _ [ o
J:g = ao al? © t“: 'g 2 :-j g zan af ao—QAgn ac
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I
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Synthesis of async control components

Token control

Speed-independent implementation

ri D—e
j D ro
— i ro 7
TOKEN_CTRL
— ai .. 4o ai g— o] 20
o % H—C@ 0 o 80
|
>
STG specification i
- o<
.
output handshake ‘
ro+ ao+ ro- ao
\ | | /
r+ al+— r al-
Input hur'.d:.lmki.z' T _ |
rd+ ad+ rd- ——ad
delay handshake ‘ (k]
* B 9
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Messages to take away

Little digital circuits can be highly concurrent!

Asynchronous circuits began their life (in the 50s) for ‘little digital’ and today is
the right time for them

Analog and mixed-signal is a good application — it combines:
* Need for low latency and high range of feedback types
* Analog designers are more inclined towards async than digital designers

Design tools are (slowly) coming up and industry is a good drive!

Interesting research problems are there — tech maﬁping, holistic analog-mixed
signal verification, behavioural mining, dealing with complexity

In particular, extending the notion of speed-independence into the world of
relative timing, circuits with time comparison (arbitration), with analog
components

Where else do we have little digital? ... Plastic electronics?



