7 Lecture 1:
Expander Decomposition

Thatchaphol Saranurak
U of Michigan

August 18, 2025
ADFOCS

Part 0
Setting expectation

Expanders in TCS:

There are 2 main different regimes of expanders in TCS

1. Tailor-made expanders
* Strong expansion
* Non-trivial to even construct explicitly.

2. Expandersin the wild
* Weaker expansion
e Can find everywhere

Taillor-made expanders

* Goal: Explicit construction of extremely strong expanders
* Key objects:
* Ramanujan expanders

* Lossless expanders, monotone expanders, more
* High dimensional expanders

* Main applications:
* Coding theory

* Pseudo-randomness (extractors, condensers, dispersers)
 PCP construction

 Sampling algorithms

Expanders in the wild

* Goal: Find and use expanding subsets in an arbitrary graph

* Key objects:
* Expander Decomposition
* Expander Hierarchies

 Main applications:
* Graphtheory (grid minor theorem, edge disjoint paths)
* Graph algorithms (max flow, mincut, sparsifiers, oblivious routing)
* Dynamic / Fault-tolerant data structures (connectivity, distance)

This series is about expanders in this regime

Topics for 5 lectures

Lecture 1 Expander decomposition
Lecture 2,3 Two types of expanding hierarchies
Lecture 4,5 Overview of whole area

Expectation

You will learn:

* Intuition of the structure of expander decomposition/hierarchy
* Unified view = you can navigate the literature much easier

* Algorithms and data structures based on them

Omit:
* Fast algorithms for computing expander decomposition/hierarchy
* See myvideos on Expanders and Fast Graph Algorithms

Part 1
Basic Definitions

Flow and Demands

In this talk, graph G = (V, E) is always undirected

(Multi-commodity) flow F
 assigns flow value F(P) on path P
e Congestion:
* congr(e) = F(e)/cap(e)
* cong(F) = max congr(e)

Flow F routes demand D if
* D(a,b) =Z(qp)-pa pF(P)forall(a,b)
* Think of D as a capacitated graph

Demand D is routable with congestion k if
» 3F routing D with cong(F) = k
» Say“Disroutable”’ifk <1

X
R~ 1
Example: F s £/
 cong(F) =15
* Froutes D such that 4 k.

D(a,b) =1.5,D(x,y) =1

Node-Weighting

* Demand D is A-respecting if
* degp(v) = Zpw)D(v) < A(v) forallv

* We call A a node-weighting
° |A] =Z2,A(v)
© A(S) = ZpesA(V)

* AnSissuchthat(AnNS)(v) = {A(v) v es

0 ifve&s

* Key examples:
e A=15forSCV
A =deg;
e A=degpforF CE

Part 2
Expansion

Two equivalent ways to think about expansion

Flow and Cut Expansions: Informal

* Ais flow-expandingin G if
e can route flow between A with low congestion

* Ais cut-expandingin G if
* No bottleneck cut preventing routing flow between A with low congestion

Flow and Cut Expansions: Formal

* Ais ¢p-flow-expandingin G if
* Every A-respecting demand is routable in G with congestion 1/¢
» & Every (¢ - A)-respecting demand is routable in G

* Ais ¢p-cut-expandingin G if
* ForeverysetS c V, cap(S,V\S) = ¢ min{A(S), A(V\S)}
* Sisa ¢-sparse cutw.rt. Aif cap(S,V\S) < ¢ min{A(S), A(V\S)}
* Ais not ¢p-cut-expanding < no ¢-sparse cut w.r.t. 4

U
* S 5 éws‘omrse WV‘.TA

Flow and Cut Expansions: Equivalence

Fact:

if Ais ¢-flow-expandingin G = A is ¢-cut-expandingin G
* Proof: suppose not. 35 where cap(S, V\S) < ¢ min{A(S), A(V\S)}.
e Then, 3(¢pA)-respecting demand require congestion > 1.

g s é—-s‘amrsz w.irt A
= VQMﬁV\j jz_A(S)—A..Z\.]At(V\S) I/W_@O'{S >1 Cowngestion)

[Leighton Rao’88]:
if Ais ¢p-cut-expandinginG = Ais

¢

og n-flow-expandlng inG

“Expanding”
* Think: flow-expanding =~ cut-expanding

* Will say “expanding” for both

* Ignore the logn factor loss

* When we say “expanding” without ¢, think of ¢ = 1/polylog(n)

Expanders and Expanding Edge Sets

Def: G is a ¢p-expander & deg is p-expandingin G
* Intuition: “reasonable” demand is routable with congestion 1/¢

* “Reasonable” demand = deg,-respecting demand.
* To route with congestion 1, we must respect the vertex degree.

Def: F C E is ¢p-expandingin ¢ < degr is ¢p-expandingin G

When G has many connected components

Suppose ¢ has many connected components.
Def: Ais ¢-expandingin G &
foreach componentU in G, A N U is ¢p-expandingin G

Va
Def: G is ¢-expander & —
every component of G is ¢p-expander Q Anv,
ANY:
° o . ¢>0 A (\\/3

Quiz: which one is an expander?

v

\/

4 Clique

~
\@/

DIS]OInt cllques

Dumbbell A

- J

-

Single vertex

[]

J

/Empty graphs\

Star Hypercube

==

-

A-scaled cliqued K 4

A(w)A(v)
AV)

cap(u,v) =
degg, =4

-

Quiz: which set is expanding?

C_l'lque /

@ — A s gxf,,ml,pj C) is Not egdaano‘l‘:)}
A=1g ><
v

@@ P ey

Quiz

Suppose A is ¢p-expandingin G.

Are these true?

* Ais ¢p-expandingin G’ 2 G.

* Forany A’ < A, A’ is ¢p-expandingin G.
« 2Ais ¢p/2-expandingin (.

Part 3
Algorithms on Expanders

Expanders are Algorithmic Friendly

Problems usually become easy on expanders
You will see many examples in this series.

Example: Approx Max Flow on Expanders
On ¢-expander, can ¢-approximate (s, t)-maxflow Ag, in 0(1) time.
¢ min{deg(s),deg(t)} < A5+ < min{deg(s),deg(t)}

*Ag¢ < min{deg(s),deg(t)} as {s}and {t} are (s, t)-cuts

* Ase = ¢pmin{deg(s), deg(t)}
* Demand D where D(s,t) = min{deg(s), deg(t)}
* D respectsdeg; = D is routable with congestion 1/¢.
« =3 (s — t) flow of size pD (s, t) with congestion 1

Part 4
Expander Decomposition

Motivation

G might not be an expander, but...
We can make G a ¢p-expander after removing = ¢ fraction of edges

¢-expander decomposition of G

Theorem: Given G = (V,E), ¢, thereexistsC € E
* |IC] < (¢plogn) -m
* deg; is ¢p-expandingin G — C.{ So, G — C is a ¢p-expander]

~
C “decompose” graph G so that

foreach componentU inG — C,
G[U] is an expander

J

¢-expander decompositionof Ain G

Theorem: Given G = (V,E), A, ¢, thereexists C € E
* |C] < (¢ logn) - |A]
* Ais ¢p-expandinginG — C

A s not prwnv'i@ m

~
C “decompose” graph G so that

foreach componentU inG — C,
ANUisexpandingin G[U]

J

A s q:’—exﬁmv\o‘\'\g i 6-C

Algorithm

N,
* While A is not ¢p-expandingin G — C
* So, 3 ¢-sparsecut (S,U — S) incomponentU of G — C
E(S,U—S5)| < ¢ min{A(S),A(U — S)}
cC<CUE(S,U—-YS5)
 ReturnC

Analysis: After terminated
* Ais ¢p-expanding in G — C (4 n Uisexpandingin G[U] VU)
* Remain to bound |C]|

Bound [C]|

Plan:

* Initially, each A-vertex has $(¢pA(v)logn)
* Pay $1 per edge in C without debt

e = |C| < ¢l|A|llogn

When C <« C U E(S,U — S), each A-vertex in the smaller side pays $¢pA (1)
» Total Budget: $¢ min{A(S),A(U — S)}

« Total Cost: $E(S,U—Y5)

* Cost<Budgetas Sis ¢-sparse (E(S,U—5) < ¢min{A(S), AU —5)})

U-§

Each vertex has > $0 at all time
» Avertexis put to the smaller side < logn times U

¢-expander decompositionof Ain G

Theorem: Given G = (V,E), A, ¢, there exists C € E
* |C] < (¢ logn) - |A]
* Ais ¢p-expandinginG — C

A s wot prwnv'i@ m

| [WillcallC an ¢p-ED of Ain G
A s q:’-exﬁmv\o‘\'\g i 6-C

¢-expander decomposition of G

Theorem: Given G = (V,E), ¢, thereexistsC € E
* |IC] < (¢plogn) -m
* deg. is ¢p-expandingin G — C.

G is wot eqmolw

[Will call € an ¢-ED of G

Part5

Repeated Expander Decomposition

Repeated Expander Decomposition

Idea:
Compute an expander decomposition C of G.
Then, recurse on the graph induced by C.

Repeated Expander Decomposition

Theorem: Given G = (V, E), can partition E
1
4logn

* Each partinduces a ()-expander

* Each vertexis in < logn expanders

Repeated Expander Decomposition

1
4logn

(

)-expander

C;is1/4logn-ED of G]

Repeated Expander Decomposition

Expander decomposition]
(!)-expander

4logn
@ Q Graph induced by C; J

m
< > edges

Repeated Expander Decomposition

1
(m)-expander 1

0 (4logn)-expander
'—_
@ SEan
‘: - — C, is1/4logn-ED of G]
\ 4 A
C,| < e
€2l < 7

Repeated Expander Decomposition

G———)expander

)expander

Repeated Expander Decomposition

1

(!)-expander
4logn P
4logn

(

)-expander (ﬁ)-expander

&)
O

Go G3 Glog n

Repeated Expander Decomposition

Theorem: Given G = (V, E), can partition E
1
4log

* Each vertexis in < logn expanders

* Each partinduces a ()-expander

1
(H)-expander 1

(

1
)-expander (@)-expander

4logn
-
jj @

Part 6

Application of Expander Decomposition:
Edge Sparsifier

Edge Sparsifiers for Cuts

Input: graph G = (V,E)

Output: weighted graph H = (V,E")

* H has O(n) weighted edges
cwe(S,V—=8) =i, wy(S,V=85)VScV

Sparsifier of ¢p-Expanders: Degree-Sampling

Linear-Time Algo: for each e = (u, v)
100 logn

e2¢min{degg u,degg v}

}

* Put edge e into H with prob p, = min{1,
» Setweightofeto1/p,

Correctness:

— N 2
* [E(H)| = 0(n/e*¢)
* Assign each edge to the lower degree endpoint.
* Eachvertexu is assigned < degu edges, each of which is sampled with rate = 1/ degu

* (1 + €)-approximation

* This works as long as pg) = min{1, 100 logn

€2 Ay p
* We knew 4, ,, = ¢min{degs u,degg v} on ¢-expander

} [Fung Hariharan Harvey Panirahi]

Sparsifier on General Graphs

Algo:
1. {X;}; < repeated (1/ 4logn)-expander decomposition of G
2. Foreach expander X;, X; «degree-sampling(X;)

~

3. Return H =U; X;

Size: |E(H)| = 0(n/e?)
Approximation: union of sparsifiers is a sparsifier of the union
* LetG = G, U G,. Let Gy, G, be a-sparsifier of Gy, G,.

* Then, G = G, U G, is a-sparsifier of G

Sparsifier on General Graphs

Algo:
1. {X;}; < repeated (1/ 4logn)-expander decomposition of G
2. Foreach expander X;, X; «degree-sampling(X;)

~

3. Return H =U; X;

1
(@)-expand er 1

(m -expander so=)-expander
B2 (B

Gy

Comment on this approach:
* First construction of “spectral sparsifiers” by [Spielman-Teng’04]

* Dynamic algorithm = £,-IPM for max flow in 0 (m + n1->) time

Part 7

Boundary-Linked Expander Decomposition

Recall: ¢p-expander decomposition of Ain G

Theorem: Given G = (V,E), A, ¢, there exists C € E
* |C] < (¢ logn) - |A]
* Ais ¢p-expandinginG — C

A s wot prwnv'i@ m

- " ‘;' g < :1.
‘ { Willcall € an qb-lw
P\ (S qa-exﬁaav\o‘\'\g i 6G-C

Boundary-linked ¢-expander decomposition of Ain G

Theorem: Given G = (V,E), A, ¢ < 1/4logn, thereexistsC C E
* |[C] < (2¢logn) - |A]
* A+ deg. is ¢p-expandinginG — C

A \s ot prvmo'i@ i (5

~

foreach componentU inG — C,
ANU+0d;Uisexpandingin G[U]
J

O{Q’SC + A (S q)—exﬁadnoh"j n 6-C

Algorithm

N,
* While A" = A + deg is not ¢p-expandingin G — C
* So, 3 ¢-sparsecut (S,U — S) incomponentU of G — C
|E(S,U—S5)| < ¢ min{A'(S),A"(U — S)}
cC<CUE(S,U—-YS5)
 ReturnC

Analysis: After terminated
e« A'is qb-expanding in G — C (4’ n U is expandingin G[U] VU)
* Remainto bound |C|

Bound |[C|: Plan

e Initially, each A-vertex has $(2¢A(v) logn)
* Without debt
* Pay $1 peredgein C = |C| < 2¢|A|logn
 Maintain Invariant “Each A'-vertex v has $(2¢A’(v) log |U,|)”
* U, isthe componentin G — C containing v”

Bound |C|: Payment scheme

When C <« C U E(S,U — S), each A'-vertex in the smaller side pays $2¢A'(v)

* Total Budget: $2¢ min{A'(S),A'(U — S)} ¢
* Total Cost: $2E(S,U —S) -
* $E(S,U — S) for new edges in C
* $2¢| | log U to maintain invariant
o | | = 2|E(S,U — S)| as edges has two endpoints
« p<1/4logn
* So, $2¢| |logU < $E(S,U —S)

* Cost < Budgetas Sis ¢-sparse (E(S,U—5) < ¢pmin{A'(5), A (U —5)})
Observe: Invariant is maintained

Boundary-linked ¢-expander decomposition of Ain G

Theorem: Given G = (V,E), A, < 1/4logn, thereexistsC C E
* |C] < 2¢logn) - [A]
* A+ deg.is ¢p-expandinginG — C

A \s ot Qx[)omc'i@ i (5

deg e + A is g-expanding in 6-C

Part 8

Application of Boundary-Linked Expander Decomposition:
Vertex Sparsifiers

Vertex Sparsifiers: Informal
Given a huge graph G and a node weighting A.

Informal Goal:
 Compress G to size = |A]
* Preserve routability of all A-respecting demands

Vertex Sparsifiers
Given a huge graph G and a node weighting A.

Goal: find H s.t. for every A-respecting demand D
* Disroutablein G = D isroutable in H

* Disroutablein H = D isroutable in G with congestion g = 4 logn

- |[E(H)| = 0(lA
[ECH)| = 0(]A]) /E;\ N

xercise: Preserve mincuts between all subsets.
foranyU c V,
e ForallX,Y € U,

mincut; (X,Y) < mincuty (X,Y) < g - mincut;(X,Y)
» |E(H)| = 0(degg(U)log®n)

J

* [Cl=@2gplogn) - [A]

Theorem: Given G, A, ¢ < 1/4logn, thereisC C E
A+ deg.is¢-expandinginG — C

Construction ichuznoy2;

1. Find C where A + deg.is (¢ = 1/4logn)-expandinginG —C
2. Foreach A-vertex v, add edge (v, v') with capacity A(v).ﬁ reDrosents b. J
3. H < contracteach componentof G — C

G, A

Size: |[E(H)| < |A| + |C| = O(|A]).
Next: show that H preserves routability

Routablein G = Routablein H

* Let D be an A-respecting demand.
* Suppose F; routes D in G with congestion 1
* Goal: Construct Fy routing D in H with congestion 1

D respects A .
, Contraction never
= Dummy edges (v, v') . .
, increases congestion.
have congestion < 1

ROUtable in H = ROUtable in G with low congestion

* Let D be an A-respecting demand.
* Suppose Fy routes D in H with congestion 1
* Goal: Construct F; routing D in G with congestion g = 4logn

Foreach componentU inG — C
* Fy induces demand Dy,

* Dy respects (A + deg-) NU
* whichis (1/4logn)-expandingin G[U]

« Dy isroutable in G[U] with congestion 4 logn

F; < concatenate flowin G on each U

Vertex Sparsifiers
Given a huge graph G and a node weighting A.

Goal: find H s.t. for every A-respecting demand D
* Disroutablein G = D isroutable in H

* Disroutablein H = D isroutable in G with congestion g = 4 logn
* |[ECH)| = 0(lA])

Summary

What we learned

* Flow expansion = Cut-expansion

* Easy algorithms on expanders
* Approx max flow from degree

* Expander decomposition
* Repeated expander decomposition
* Application: edge sparsifiers for cuts

* Boundary-linked expander decomposition
* Application: vertex sparsifiers for flow

Boundary-linked ¢-expander decomposition of Ain G

Theorem: Given G = (V,E), A, < 1/4logn, thereexistsC C E
* |C] < 2¢logn) - [A]
* A+ deg.is ¢p-expandinginG — C

A \s ot Qx[)omc'i@ i (5

deg e + A is g-expanding in 6-C

Repeated Expander Decomposition

Theorem: Given G = (V, E), can partition E
1
4logn

* Each vertexis in < logn expanders

* Each partinduces a ()-expander

1
(H)-expander 1

(

1
)-expander (@)-expander

4logn
-
jj @

