Lecture 1: Expander Decomposition

Thatchaphol Saranurak
U of Michigan

August 18, 2025 ADFOCS

Part 0 Setting expectation

Expanders in TCS:

There are 2 main different regimes of expanders in TCS

1. Tailor-made expanders

- Strong expansion
- Non-trivial to even construct explicitly.

2. Expanders in the wild

- Weaker expansion
- Can find everywhere

Tailor-made expanders

- Goal: Explicit construction of extremely strong expanders
- Key objects:
 - Ramanujan expanders
 - Lossless expanders, monotone expanders, more
 - High dimensional expanders

Main applications:

- Coding theory
- Pseudo-randomness (extractors, condensers, dispersers)
- PCP construction
- Sampling algorithms

Expanders in the wild

- Goal: Find and use expanding subsets in an arbitrary graph
- Key objects:
 - Expander Decomposition
 - Expander Hierarchies
- Main applications:
 - Graph theory (grid minor theorem, edge disjoint paths)
 - Graph algorithms (max flow, mincut, sparsifiers, oblivious routing)
 - Dynamic / Fault-tolerant data structures (connectivity, distance)

This series is about expanders in this regime

Topics for 5 lectures

Lecture 1 **Expander decomposition**

Lecture 2,3 **Two types of expanding hierarchies**

Lecture 4,5 Overview of whole area

Expectation

You will learn:

- Intuition of the structure of expander decomposition/hierarchy
 - Unified view ⇒ you can navigate the literature much easier
- Algorithms and data structures based on them

Omit:

- Fast algorithms for computing expander decomposition/hierarchy
- See my videos on <u>Expanders and Fast Graph Algorithms</u>

Part 1 Basic Definitions

Flow and Demands

- In this talk, graph G = (V, E) is always **undirected**
- (Multi-commodity) flow *F*
 - assigns flow value F(P) on path P
 - Congestion:
 - $cong_F(e) = F(e)/cap(e)$
 - $cong(F) = \max_{e} cong_F(e)$
- Flow F routes demand D if
 - $D(a,b) = \Sigma_{(a,b)-pa} PF(P)$ for all (a,b)
 - Think of D as a capacitated graph
- Demand D is routable with congestion κ if
 - $\exists F \text{ routing } D \text{ with } \text{cong}(F) = \kappa$
 - Say "*D* is **routable**" if $\kappa \leq 1$

Example:

- cong(F) = 1.5
- F routes D such that D(a,b) = 1.5, D(x,y) = 1

Node-Weighting

- Demand D is A-respecting if
 - $\deg_D(v) \coloneqq \Sigma_{(v,w)} D(v) \le A(v)$ for all v
- We call A a node-weighting
 - $|A| \coloneqq \Sigma_v A(v)$
 - $A(S) := \sum_{v \in S} A(v)$
 - $A \cap S$ is such that $(A \cap S)(v) = \begin{cases} A(v) & \text{if } v \in S \\ 0 & \text{if } v \notin S \end{cases}$
- Key examples:
 - $A = 1_S$ for $S \subseteq V$
 - $A = \deg_G$
 - $A = \deg_F \text{ for } F \subseteq E$

Part 2 Expansion

Two equivalent ways to think about expansion

Flow and Cut Expansions: Informal

- A is flow-expanding in G if
 - can route flow between A with low congestion
- A is cut-expanding in G if
 - No bottleneck cut preventing routing flow between A with low congestion

Flow and Cut Expansions: Formal

- A is ϕ -flow-expanding in G if
 - Every A-respecting demand is routable in G with congestion $1/\phi$
 - \Leftrightarrow Every $(\phi \cdot A)$ -respecting demand is routable in G
- A is ϕ -cut-expanding in G if
 - For every set $S \subset V$, $cap(S, V \setminus S) \ge \phi \min\{A(S), A(V \setminus S)\}$
 - S is a ϕ -sparse cut w.r.t. A if $\operatorname{cap}(S, V \setminus S) < \phi \min\{A(S), A(V \setminus S)\}$
 - A is not ϕ -cut-expanding \Leftrightarrow no ϕ -sparse cut w.r.t. A

Flow and Cut Expansions: Equivalence

Fact:

if A is ϕ -flow-expanding in $G \Rightarrow A$ is ϕ -cut-expanding in G

- **Proof**: suppose not. $\exists S$ where $\operatorname{cap}(S, V \setminus S) < \phi \min\{A(S), A(V \setminus S)\}$.
- Then, $\exists (\phi A)$ -respecting demand require congestion > 1.

[Leighton Rao'88]:

if A is ϕ -cut-expanding in $G \Rightarrow A$ is $\frac{\phi}{\log n}$ -flow-expanding in G

"Expanding"

- Think: flow-expanding \approx cut-expanding
- Will say "expanding" for both
 - Ignore the $\log n$ factor loss
- When we say "expanding" without ϕ , think of $\phi \geq 1/\text{polylog}(n)$

Expanders and Expanding Edge Sets

Def: G is a ϕ -expander \Leftrightarrow deg_G is ϕ -expanding in G

- Intuition: "reasonable" demand is routable with congestion $1/\phi$
- "Reasonable" demand = \deg_G -respecting demand.
 - To route with congestion 1, we must respect the vertex degree.

Def: $F \subseteq E$ is ϕ -expanding in $G \Leftrightarrow \deg_F$ is ϕ -expanding in G

When G has many connected components

Suppose G has many connected components.

Def: A is ϕ -expanding in $G \Leftrightarrow$ for each component U in G, $A \cap U$ is ϕ -expanding in G

Def: G is ϕ -expander \Leftrightarrow every component of G is ϕ -expander

Quiz: which one is an expander?

Quiz: which set is expanding?

Quiz

Suppose A is ϕ -expanding in G.

Are these true?

- A is ϕ -expanding in $G' \supseteq G$.
- For any $A' \leq A$, A' is ϕ -expanding in G.
- 2A is $\phi/2$ -expanding in G.

Part 3 Algorithms on Expanders

Expanders are Algorithmic Friendly

Problems usually become easy on expanders You will see many examples in this series.

Example: Approx Max Flow on Expanders

On ϕ -expander, can ϕ -approximate (s,t)-maxflow $\lambda_{s,t}$ in O(1) time.

```
\phi \min\{\deg(s), \deg(t)\} \le \lambda_{s,t} \le \min\{\deg(s), \deg(t)\}
```

- $\lambda_{s,t} \leq \min\{\deg(s), \deg(t)\}$ as $\{s\}$ and $\{t\}$ are (s,t)-cuts
- $\lambda_{s,t} \ge \phi \min\{\deg(s), \deg(t)\}$
 - Demand D where $D(s,t) = \min\{\deg(s), \deg(t)\}$
 - D respects $\deg_G \Rightarrow D$ is routable with congestion $1/\phi$.
 - $\Rightarrow \exists (s \to t)$ flow of size $\phi D(s, t)$ with congestion 1

Part 4 Expander Decomposition

Motivation

G might not be an expander, but...

We can make G a ϕ -expander after removing $\approx \phi$ fraction of edges

ϕ -expander decomposition of G

Theorem: Given $G = (V, E), \phi$, there exists $C \subseteq E$

- $|C| \le (\phi \log n) \cdot m$
- \deg_G is ϕ -expanding in G-C. So, G-C is a ϕ -expander

G is not expanden

C "decompose" graph G so that for each component U in G-C, G[U] is an expander

ϕ -expander decomposition of A in G

Theorem: Given $G = (V, E), A, \phi$, there exists $C \subseteq E$

- $|C| \le (\phi \log n) \cdot |A|$
- A is ϕ -expanding in G C

Algorithm

- *C* ← Ø
- While A is not ϕ -expanding in G C
 - So, $\exists \phi$ -sparse cut (S, U S) in component U of G C $|E(S, U - S)| < \phi \min\{A(S), A(U - S)\}$
 - $C \leftarrow C \cup E(S, U S)$
- Return C

Analysis: After terminated

- A is ϕ -expanding in G C (A $\cap U$ is expanding in $G[U] \forall U$)
- Remain to bound |C|

Bound |C|

Plan:

- Initially, each A-vertex has $(\phi A(v) \log n)$
- Pay \$1 per edge in C without debt
- $\Rightarrow |C| \leq \phi |A| \log n$

When $C \leftarrow C \cup E(S, U - S)$, each A-vertex in the smaller side pays $\phi A(v)$

- Total Budget: $\phi \min\{A(S), A(U-S)\}$
- Total Cost: \$E(S, U S)
- Cost \leq Budget as S is ϕ -sparse $(E(S, U S) \leq \phi \min\{A(S), A(U S)\})$

Each vertex has $\geq \$0$ at all time

• A vertex is put to the smaller side $\leq \log n$ times

ϕ -expander decomposition of A in G

Theorem: Given $G = (V, E), A, \phi$, there exists $C \subseteq E$

- $|C| \le (\phi \log n) \cdot |A|$
- A is ϕ -expanding in G C

Will call C an ϕ -ED of A in G

ϕ -expander decomposition of G

Theorem: Given $G = (V, E), \phi$, there exists $C \subseteq E$

- $|C| \le (\phi \log n) \cdot m$
- \deg_G is ϕ -expanding in G C.

Will call C an ϕ -ED of G

Idea:

Compute an expander decomposition \mathcal{C} of \mathcal{G} .

Then, recurse on the graph induced by C.

Theorem: Given G = (V, E), can partition E

- Each part induces a $(\frac{1}{4\log n})$ -expander
- Each vertex is in $\leq \log n$ expanders

Theorem: Given G = (V, E), can partition E

- Each part induces a $(\frac{1}{4\log})$ -expander
- Each vertex is in $\leq \log n$ expanders

Part 6

Application of Expander Decomposition: Edge Sparsifier

Edge Sparsifiers for Cuts

Input: graph G = (V, E)

Output: weighted graph H = (V, E')

• H has $\tilde{O}(n)$ weighted edges

• $w_G(S, V - S) \approx_{1+\epsilon} w_H(S, V - S) \forall S \subset V$

Sparsifier of ϕ -Expanders: Degree-Sampling

Linear-Time Algo: for each e = (u, v)

- Put edge e into H with prob $p_e = \min\{1, \frac{100 \log n}{\epsilon^2 \phi \min\{\deg_G u, \deg_G v\}}\}$
- Set weight of e to $1/p_e$

Correctness:

- $|E(H)| = \tilde{O}(n/\epsilon^2 \phi)$
 - Assign each edge to the lower degree endpoint.
 - Each vertex u is assigned $\leq \deg u$ edges, each of which is sampled with rate $\approx 1/\deg u$
- $(1 + \epsilon)$ -approximation
 - This works as long as $p_{(u,v)} = \min\{1, \frac{100 \log n}{\epsilon^2 \lambda_{u,v}}\}$ [Fung Hariharan Harvey Panirahi]
 - We knew $\lambda_{u,v} \ge \phi \min\{\deg_G u, \deg_G v\}$ on ϕ -expander

Sparsifier on General Graphs

Algo:

- 1. $\{X_i\}_i \leftarrow \text{repeated } (1/4\log n)\text{-expander decomposition of } G$
- 2. For each expander X_i , $\tilde{X}_i \leftarrow \text{degree-sampling}(X_i)$

3. Return
$$H = \bigcup_i \tilde{X}_i$$

Size: $|E(H)| = \tilde{O}(n/\epsilon^2)$

Approximation: union of sparsifiers is a sparsifier of the union

- Let $G=G_1\cup G_2$. Let \tilde{G}_1 , \tilde{G}_2 be α -sparsifier of G_1 , G_2 .
- Then, $\tilde{G}=\tilde{G}_1\cup \tilde{G}_2$ is lpha-sparsifier of G

Sparsifier on General Graphs

Algo:

- 1. $\{X_i\}_i \leftarrow \text{repeated } (1/4\log n) \text{-expander decomposition of } G$
- 2. For each expander X_i , $\tilde{X}_i \leftarrow \text{degree-sampling}(X_i)$
- 3. Return $H = \bigcup_i \tilde{X}_i$

Comment on this approach:

- First construction of "spectral sparsifiers" by [Spielman-Teng'04]
- Dynamic algorithm \Rightarrow ℓ_2 -IPM for max flow in $\tilde{O}(m+n^{1.5})$ time

Part 7

Boundary-Linked Expander Decomposition

Recall: ϕ -expander decomposition of A in G

Theorem: Given $G = (V, E), A, \phi$, there exists $C \subseteq E$

- $|C| \le (\phi \log n) \cdot |A|$
- A is ϕ -expanding in G C

Will call ${\it C}$ an ${\it \phi}{\text{-ED}}$ of ${\it A}$ in ${\it G}$

Boundary-linked ϕ -expander decomposition of A in G

Theorem: Given G = (V, E), $A, \phi \leq 1/4 \log n$, there exists $C \subseteq E$

- $|C| \le (2\phi \log n) \cdot |A|$
- $A + \deg_{\mathcal{C}}$ is ϕ -expanding in $G \mathcal{C}$

for each component U in G - C, $A \cap U + \partial_G U$ is expanding in G[U]

Algorithm

- *C* ← Ø
- While $A' = A + \deg_{C}$ is not ϕ -expanding in G C
 - So, $\exists \phi$ -sparse cut (S, U S) in component U of G C $|E(S, U S)| < \phi \min\{A'(S), A'(U S)\}$
 - $C \leftarrow C \cup E(S, U S)$
- Return C

Analysis: After terminated

- A' is ϕ -expanding in G C ($A' \cap U$ is expanding in $G[U] \forall U$)
- Remain to bound |C|

Bound |C|: Plan

- Initially, each A-vertex has $(2\phi A(v) \log n)$
- Without debt
 - Pay \$1 per edge in $C \Rightarrow |C| \leq \frac{2\phi}{A} |A| \log n$
 - Maintain Invariant "Each A'-vertex v has $(2\phi A'(v) \log |U_v|)$ "
 - U_v is the component in G-C containing v"

Bound |C|: Payment scheme

When $C \leftarrow C \cup E(S, U - S)$, each A'-vertex in the smaller side pays $2\phi A'(v)$

- Total Budget: $\$2\phi \min\{A'(S), A'(U-S)\}\$
- Total Cost: \$2E(S, U S)
 - E(S, U S) for new edges in C
 - $\$2\phi|A'_{new}|\log U$ to maintain invariant
 - $|A'_{new}| = 2|E(S, U S)|$ as edges has two endpoints
 - $\phi \leq 1/4 \log n$
 - So, $2\phi |A'_{new}| \log U \le E(S, U S)$

• Cost \leq Budget as S is ϕ -sparse $(E(S, U - S) \leq \phi \min\{A'(S), A'(U - S)\})$

Observe: Invariant is maintained

Boundary-linked ϕ -expander decomposition of A in G

Theorem: Given G = (V, E), $A, \phi \leq 1/4 \log n$, there exists $C \subseteq E$

- $|C| \le (2\phi \log n) \cdot |A|$
- $A + \deg_C$ is ϕ -expanding in G C

Part 8

Application of Boundary-Linked Expander Decomposition:

Vertex Sparsifiers

Vertex Sparsifiers: Informal

Given a huge graph G and a node weighting A.

Informal Goal:

- Compress G to size $\approx |A|$
- Preserve routability of all A-respecting demands

Vertex Sparsifiers

Given a huge graph G and a node weighting A.

Goal: find H s.t. for every A-respecting demand D

- D is routable in $G \Rightarrow D$ is routable in H
- D is routable in $H \Rightarrow D$ is routable in G with congestion $q = 4 \log n$
- $\bullet |E(H)| = O(|A|)$

Exercise: Preserve mincuts between *all subsets*. for any $U \subseteq V$,

- For all $X, Y \subseteq U$, $\operatorname{mincut}_G(X, Y) \leq \operatorname{mincut}_H(X, Y) \leq q \cdot \operatorname{mincut}_G(X, Y)$
- $|E(H)| = O(\deg_G(U)\log^2 n)$

Theorem: Given G, A, $\phi \leq 1/4 \log n$, there is $C \subseteq E$

- $|C| \leq (2\phi \log n) \cdot |A|$
- $A + \deg_C$ is ϕ -expanding in G C

- 1. Find C where $A + \deg_C$ is $(\phi = 1/4 \log n)$ -expanding in G C
- 2. For each A-vertex v, add edge (v, v') with capacity $A(v) \stackrel{\text{Think:}}{\swarrow} v'$ represents v.
- 3. $H \leftarrow$ contract each component of G C

Size: $|E(H)| \le |A| + |C| = O(|A|)$.

Next: show that H preserves routability

Routable in $G \Rightarrow$ Routable in H

- Let *D* be an *A*-respecting demand.
- Suppose F_G routes D in G with congestion 1
- Goal: Construct F_H routing D in H with congestion 1

Routable in $H \Rightarrow$ Routable in G with low congestion

- Let *D* be an *A*-respecting demand.
- Suppose F_H routes D in H with congestion 1
- Goal: Construct F_G routing D in G with congestion $q=4\log n$

For each component U in G - C

- F_H induces demand D_U
- D_U respects $(A + \deg_C) \cap U$
 - which is $(1/4 \log n)$ -expanding in G[U]
- D_U is routable in G[U] with congestion $4 \log n$

 $F_G \leftarrow \text{concatenate flow in } G \text{ on each } U$

Vertex Sparsifiers

Given a huge graph G and a node weighting A.

Goal: find H s.t. for every A-respecting demand D

- D is routable in $G \Rightarrow D$ is routable in H
- D is routable in $H \Rightarrow D$ is routable in G with congestion $q = 4 \log n$
- $\bullet |E(H)| = O(|A|)$

Summary

What we learned

- Flow expansion ≈ Cut-expansion
- Easy algorithms on expanders
 - Approx max flow from degree
- Expander decomposition
 - Repeated expander decomposition
 - Application: edge sparsifiers for cuts
 - Boundary-linked expander decomposition
 - Application: vertex sparsifiers for flow

Boundary-linked ϕ -expander decomposition of A in G

Theorem: Given G = (V, E), $A, \phi \leq 1/4 \log n$, there exists $C \subseteq E$

- $|C| \le (2\phi \log n) \cdot |A|$
- $A + \deg_C$ is ϕ -expanding in G C

Theorem: Given G = (V, E), can partition E

- Each part induces a $(\frac{1}{4 \log n})$ -expander
- Each vertex is in $\leq \log n$ expanders

