
Lecture 1:
Expander Decomposition

Thatchaphol Saranurak
U of Michigan

August 18, 2025
ADFOCS

Part 0
Setting expectation

Expanders in TCS:

There are 2 main different regimes of expanders in TCS

1. Tailor-made expanders
• Strong expansion
• Non-trivial to even construct explicitly.

2. Expanders in the wild
• Weaker expansion
• Can find everywhere

Tailor-made expanders

• Goal: Explicit construction of extremely strong expanders
• Key objects:

• Ramanujan expanders
• Lossless expanders, monotone expanders, more
• High dimensional expanders

• Main applications:
• Coding theory
• Pseudo-randomness (extractors, condensers, dispersers)
• PCP construction
• Sampling algorithms

Expanders in the wild

• Goal: Find and use expanding subsets in an arbitrary graph
• Key objects:

• Expander Decomposition
• Expander Hierarchies

• Main applications:
• Graph theory (grid minor theorem, edge disjoint paths)
• Graph algorithms (max flow, mincut, sparsifiers, oblivious routing)
• Dynamic / Fault-tolerant data structures (connectivity, distance)

This series is about expanders in this regime

Topics for 5 lectures

Lecture 1 Expander decomposition
Lecture 2,3 Two types of expanding hierarchies
Lecture 4,5 Overview of whole area

Expectation

You will learn:
• Intuition of the structure of expander decomposition/hierarchy

• Unified view ⇒ you can navigate the literature much easier

• Algorithms and data structures based on them

Omit:
• Fast algorithms for computing expander decomposition/hierarchy
• See my videos on Expanders and Fast Graph Algorithms

Part 1
Basic Definitions

Flow and Demands

• In this talk, graph 𝐺 = 𝑉, 𝐸 is always undirected

• (Multi-commodity) flow 𝐹
• assigns flow value 𝐹(𝑃) on path 𝑃
• Congestion:

• congி 𝑒 = 𝐹(𝑒)/cap(𝑒)

• cong 𝐹 = max
௘

congி(𝑒)

• Flow 𝐹 routes demand 𝐷 if
• 𝐷 𝑎, 𝑏 = Σ ௔,௕ ି୮ୟ ௉𝐹(𝑃) for all (𝑎, 𝑏)
• Think of 𝐷 as a capacitated graph

• Demand 𝐷 is routable with congestion 𝜿 if
• ∃𝐹 routing 𝐷 with cong 𝐹 = 𝜅
• Say “𝐷 is routable” if 𝜅 ≤ 1

Example:
• cong 𝐹 = 1.5
• 𝐹 routes 𝐷 such that

𝐷 𝑎, 𝑏 = 1.5, 𝐷 𝑥, 𝑦 = 1

Node-Weighting

• Demand 𝐷 is 𝑨-respecting if
• deg஽ 𝑣 ≔ Σ(௩,௪)𝐷(𝑣) ≤ 𝐴(𝑣) for all 𝑣

• We call 𝐴 a node-weighting
• 𝐴 ≔ Σ௩𝐴(𝑣)

• 𝐴 𝑆 ≔ Σ௩∈ௌ𝐴(𝑣)

• 𝐴 ∩ 𝑆 is such that (𝐴 ∩ 𝑆) 𝑣 = ቊ
𝐴 𝑣 if 𝑣 ∈ 𝑆
0 if 𝑣 ∉ 𝑆

• Key examples:
• 𝐴 = 1ௌ for S ⊆ 𝑉

• 𝐴 = degீ

• 𝐴 = degி for 𝐹 ⊆ 𝐸

Part 2
Expansion

Two equivalent ways to think about expansion

Flow and Cut Expansions: Informal

• 𝐴 is flow-expanding in 𝑮 if
• can route flow between 𝐴 with low congestion

• 𝐴 is cut-expanding in 𝑮 if
• No bottleneck cut preventing routing flow between 𝐴 with low congestion

Flow and Cut Expansions: Formal

• 𝐴 is 𝝓-flow-expanding in 𝑮 if
• Every 𝐴-respecting demand is routable in 𝐺 with congestion 1/𝜙

• ⟺ Every (𝜙 ⋅ 𝐴)-respecting demand is routable in 𝐺

• 𝐴 is 𝝓-cut-expanding in 𝐺 if
• For every set 𝑆 ⊂ 𝑉, cap 𝑆, 𝑉\S ≥ 𝜙 min 𝐴 𝑆 , 𝐴 𝑉\S

• 𝑆 is a 𝜙-sparse cut w.r.t. 𝐴 if cap 𝑆, 𝑉\S < 𝜙 min 𝐴 𝑆 , 𝐴 𝑉\S

• 𝐴 is not 𝝓-cut-expanding ⟺ no 𝜙-sparse cut w.r.t. 𝐴

Flow and Cut Expansions: Equivalence

Fact:
if 𝐴 is 𝜙-flow-expanding in 𝐺 ⇒ 𝐴 is 𝜙-cut-expanding in 𝐺
• Proof: suppose not. ∃𝑆 where cap 𝑆, 𝑉\S < 𝜙 min 𝐴 𝑆 , 𝐴 𝑉\S .
• Then, ∃(𝜙𝐴)-respecting demand require congestion > 1.

[Leighton Rao’88]:
if 𝐴 is 𝜙-cut-expanding in 𝐺 ⇒ 𝐴 is థ

୪୭୥ ௡
-flow-expanding in 𝐺

“Expanding”

• Think: flow-expanding ≈ cut-expanding
• Will say “expanding” for both

• Ignore the log 𝑛 factor loss

• When we say “expanding” without 𝜙, think of 𝜙 ≥ 1/polylog(𝑛)

Expanders and Expanding Edge Sets

Def: 𝐺 is a 𝜙-expander ⟺ degீ is 𝜙-expanding in 𝐺
• Intuition: “reasonable” demand is routable with congestion 1/𝜙

• “Reasonable” demand = degீ-respecting demand.
• To route with congestion 1, we must respect the vertex degree.

Def: 𝐹 ⊆ 𝐸 is 𝜙-expanding in 𝐺 ⟺ degி is 𝜙-expanding in 𝐺

When 𝐺 has many connected components

Suppose 𝐺 has many connected components.
Def: 𝐴 is 𝜙-expanding in 𝐺 ⟺

for each component 𝑈 in 𝐺, 𝐴 ∩ 𝑈 is 𝜙-expanding in 𝐺

Def: 𝐺 is 𝜙-expander ⟺
every component of 𝐺 is 𝜙-expander

𝑨-scaled cliqued 𝑲𝑨

Quiz: which one is an expander?

Clique Single vertex Star Hypercube

Dumbbell Path

Disjoint cliques Empty graphs

cap 𝑢, 𝑣 =
஺ ௨ ஺ ௩

஺(௏)

deg௄ಲ
= 𝐴

Quiz: which set is expanding?

Quiz

Suppose 𝐴 is 𝜙-expanding in 𝐺.

Are these true?
• 𝐴 is 𝜙-expanding in 𝐺ᇱ ⊇ 𝐺.
• For any 𝐴ᇱ ≤ 𝐴, 𝐴′ is 𝜙-expanding in 𝐺.
• 2𝐴 is 𝜙/2-expanding in 𝐺.

Part 3
Algorithms on Expanders

Expanders are Algorithmic Friendly

Problems usually become easy on expanders
You will see many examples in this series.

Example: Approx Max Flow on Expanders

On 𝜙-expander, can 𝜙-approximate (𝑠, 𝑡)-maxflow 𝜆௦,௧ in 𝑂 1 time.

𝜙 min{deg 𝑠 , deg(𝑡)} ≤ 𝜆௦,௧ ≤ min{deg 𝑠 , deg(𝑡)}

• 𝜆௦,௧ ≤ min{deg 𝑠 , deg(𝑡)} as {𝑠} and {𝑡} are (𝑠, 𝑡)-cuts

• 𝜆௦,௧ ≥ 𝜙min{deg 𝑠 , deg(𝑡)}
• Demand 𝐷 where 𝐷 𝑠, 𝑡 = min{deg 𝑠 , deg(𝑡)}

• 𝐷 respects degீ ⇒ 𝐷 is routable with congestion 1/𝜙.
• ⇒ ∃ (𝑠 → 𝑡) flow of size 𝜙𝐷 𝑠, 𝑡 with congestion 1

Part 4
Expander Decomposition

Motivation

𝐺 might not be an expander, but…
We can make 𝐺 a 𝜙-expander after removing ≈ 𝜙 fraction of edges

𝜙-expander decomposition of 𝐺

Theorem: Given 𝐺 = 𝑉, 𝐸 , 𝜙, there exists 𝐶 ⊆ 𝐸

• 𝐶 ≤ (𝜙 log 𝑛) ⋅ 𝑚

• degீ is 𝜙-expanding in 𝐺 − 𝐶.

𝐶 “decompose” graph 𝐺 so that
for each component 𝑈 in 𝐺 − 𝐶,

𝐺[𝑈] is an expander

So, 𝐺 − 𝐶 is a 𝜙-expander

𝜙-expander decomposition of 𝐴 in 𝐺

Theorem: Given 𝐺 = 𝑉, 𝐸 , 𝐴, 𝜙, there exists 𝐶 ⊆ 𝐸

• 𝐶 ≤ (𝜙 log 𝑛) ⋅ |𝐴|

• 𝐴 is 𝜙-expanding in 𝐺 − 𝐶

𝐶 “decompose” graph 𝐺 so that
for each component 𝑈 in 𝐺 − 𝐶,

𝐴 ∩ 𝑈 is expanding in 𝐺[𝑈]

Algorithm

• 𝐶 ← ∅

• While 𝐴 is not 𝜙-expanding in 𝐺 − 𝐶
• So, ∃ 𝜙-sparse cut 𝑆, 𝑈 − 𝑆 in component 𝑈 of 𝐺 − 𝐶

𝐸 𝑆, 𝑈 − 𝑆 < 𝜙 min{𝐴 𝑆 , 𝐴 𝑈 − 𝑆 }
• 𝐶 ← 𝐶 ∪ 𝐸(𝑆, 𝑈 − 𝑆)

• Return 𝐶

Analysis: After terminated
• 𝐴 is 𝜙-expanding in 𝐺 − 𝐶 (𝐴 ∩ 𝑈 is expanding in 𝐺 𝑈 ∀𝑈)

• Remain to bound |𝐶|

Bound |𝐶|

Plan:
• Initially, each 𝐴-vertex has $(𝜙𝐴 𝑣 log 𝑛)

• Pay $1 per edge in 𝐶 without debt
• ⇒ 𝐶 ≤ 𝜙 𝐴 log 𝑛

When 𝐶 ← 𝐶 ∪ 𝐸(𝑆, 𝑈 − 𝑆), each 𝐴-vertex in the smaller side pays $𝜙𝐴 𝑣

• Total Budget: $𝜙 min 𝐴 𝑆 , 𝐴 𝑈 − 𝑆

• Total Cost: $𝐸(𝑆, 𝑈 − 𝑆)

• Cost ≤ Budget as 𝑆 is 𝜙-sparse (𝐸 𝑆, 𝑈 − 𝑆 ≤ 𝜙 min 𝐴 𝑆 , 𝐴 𝑈 − 𝑆)

Each vertex has ≥ $0 at all time
• A vertex is put to the smaller side ≤ log 𝑛 times

𝜙-expander decomposition of 𝐴 in 𝐺

Theorem: Given 𝐺 = 𝑉, 𝐸 , 𝐴, 𝜙, there exists 𝐶 ⊆ 𝐸

• 𝐶 ≤ (𝜙 log 𝑛) ⋅ |𝐴|

• 𝐴 is 𝜙-expanding in 𝐺 − 𝐶

Will call 𝐶 an 𝝓-ED of 𝐴 in 𝐺

𝜙-expander decomposition of 𝐺

Theorem: Given 𝐺 = 𝑉, 𝐸 , 𝜙, there exists 𝐶 ⊆ 𝐸

• 𝐶 ≤ (𝜙 log 𝑛) ⋅ 𝑚

• degீ is 𝜙-expanding in 𝐺 − 𝐶.

Will call 𝐶 an 𝝓-ED of 𝐺

Part 5
Repeated Expander Decomposition

Repeated Expander Decomposition

Idea:
Compute an expander decomposition 𝐶 of 𝐺.

Then, recurse on the graph induced by 𝐶.

Repeated Expander Decomposition

Theorem: Given 𝐺 = (𝑉, 𝐸), can partition 𝐸

• Each part induces a (ଵ

ସ୪୭୥ ௡
)-expander

• Each vertex is in ≤ log 𝑛 expanders

Repeated Expander Decomposition

(
𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander

|𝑪𝟏| ≤
𝒎

𝟐

𝐶ଵ is 𝟏/𝟒𝐥𝐨𝐠𝒏-ED of 𝐺

Repeated Expander Decomposition

≤
𝒎

𝟐
 edges

Expander decomposition

Graph induced by 𝐶ଵ

(
𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander

Repeated Expander Decomposition

|𝑪𝟐| ≤
𝒎

𝟒

(
𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander(

𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander

𝐶ଶ is 𝟏/𝟒𝐥𝐨𝐠𝒏-ED of 𝐺

Repeated Expander Decomposition

≤
𝒎

𝟒
 edges

(
𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander(

𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander

Repeated Expander Decomposition

(
𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander

𝐺ଵ
𝐺ଶ

𝐺ଷ 𝐺୪୭୥ ௡

(
𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander(

𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander

Repeated Expander Decomposition

(
𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander

𝐺ଵ
𝐺ଶ

𝐺ଷ 𝐺୪୭୥ ௡

(
𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander(

𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander

Theorem: Given 𝐺 = (𝑉, 𝐸), can partition 𝐸

• Each part induces a (ଵ

ସ୪୭୥
)-expander

• Each vertex is in ≤ log 𝑛 expanders

Part 6
Application of Expander Decomposition:

Edge Sparsifier

Edge Sparsifiers for Cuts

Input: graph 𝐺 = (𝑉, 𝐸)

Output: weighted graph 𝐻 = (𝑉, 𝐸ᇱ)

• 𝐻 has 𝑂෨(𝑛) weighted edges
• 𝑤ீ 𝑆, 𝑉 − 𝑆 ≈ଵାఢ 𝑤ு 𝑆, 𝑉 − 𝑆 ∀𝑆 ⊂ 𝑉

Sparsifier of 𝜙-Expanders: Degree-Sampling

Linear-Time Algo: for each 𝑒 = (𝑢, 𝑣)

• Put edge 𝑒 into 𝐻 with prob 𝑝௘ = min{1,
ଵ଴଴ ୪୭୥ ௡

ఢమథ୫୧୬ ୢୣ୥ృ ௨,ୢୣ୥ృ ௩
}

• Set weight of 𝑒 to 1/𝑝௘

Correctness:
• 𝐸 𝐻 = 𝑂෨(𝑛/𝜖ଶ𝜙)

• Assign each edge to the lower degree endpoint.
• Each vertex 𝑢 is assigned ≤ deg 𝑢 edges, each of which is sampled with rate ≈ 1/ deg 𝑢

• (1 + 𝜖)-approximation
• This works as long as 𝑝(௨,௩) = min{1,

ଵ଴଴ ୪୭୥ ௡

ఢమఒೠ,ೡ
} [Fung Hariharan Harvey Panirahi]

• We knew 𝜆௨,௩ ≥ 𝜙min degୋ 𝑢 , degୋ 𝑣 on 𝜙-expander

Sparsifier on General Graphs

Algo:
1. 𝑋௜ ௜ ← repeated (1/ 4log 𝑛)-expander decomposition of 𝐺
2. For each expander 𝑋௜, 𝑋෨௜ ←degree-sampling(𝑋௜)

3. Return 𝐻 =∪௜ 𝑋෨௜

Size: 𝐸 𝐻 = 𝑂෨(𝑛/𝜖ଶ)

Approximation: union of sparsifiers is a sparsifier of the union
• Let 𝐺 = 𝐺ଵ ∪ 𝐺ଶ. Let 𝐺෨ଵ, 𝐺෨ଶ be 𝛼-sparsifier of 𝐺ଵ, 𝐺ଶ.
• Then, 𝐺෨ = 𝐺෨ଵ ∪ 𝐺෨ଶ is 𝛼-sparsifier of 𝐺

Sparsifier on General Graphs

Algo:
1. 𝑋௜ ௜ ← repeated (1/ 4log 𝑛)-expander decomposition of 𝐺
2. For each expander 𝑋௜, 𝑋෨௜ ←degree-sampling(𝑋௜)

3. Return 𝐻 =∪௜ 𝑋෨௜

Comment on this approach:
• First construction of “spectral sparsifiers” by [Spielman-Teng’04]
• Dynamic algorithm ⇒ ℓଶ-IPM for max flow in 𝑂෨(𝑚 + 𝑛ଵ.ହ) time

Part 7
Boundary-Linked Expander Decomposition

Recall: 𝜙-expander decomposition of 𝐴 in 𝐺

Theorem: Given 𝐺 = 𝑉, 𝐸 , 𝐴, 𝜙, there exists 𝐶 ⊆ 𝐸

• 𝐶 ≤ (𝜙 log 𝑛) ⋅ |𝐴|

• 𝐴 is 𝜙-expanding in 𝐺 − 𝐶

Will call 𝐶 an 𝝓-ED of 𝐴 in 𝐺

Boundary-linked 𝜙-expander decomposition of 𝐴 in 𝐺

Theorem: Given 𝐺 = (𝑉, 𝐸), 𝐴, 𝜙 ≤ 1/4 log 𝑛, there exists 𝐶 ⊆ 𝐸

• 𝐶 ≤ (2𝜙 log 𝑛) ⋅ |𝐴|

• 𝐴 + deg஼ is 𝜙-expanding in 𝐺 − 𝐶

for each component 𝑈 in 𝐺 − 𝐶,
𝐴 ∩ 𝑈 + 𝜕ீ𝑈 is expanding in 𝐺[𝑈]

Algorithm

• 𝐶 ← ∅

• While 𝐴ᇱ = 𝐴 + deg஼ is not 𝜙-expanding in 𝐺 − 𝐶
• So, ∃ 𝜙-sparse cut 𝑆, 𝑈 − 𝑆 in component 𝑈 of 𝐺 − 𝐶

𝐸 𝑆, 𝑈 − 𝑆 < 𝜙 min{𝐴′ 𝑆 , 𝐴′ 𝑈 − 𝑆 }
• 𝐶 ← 𝐶 ∪ 𝐸(𝑆, 𝑈 − 𝑆)

• Return 𝐶

Analysis: After terminated
• 𝐴′ is 𝜙-expanding in 𝐺 − 𝐶 (𝐴′ ∩ 𝑈 is expanding in 𝐺 𝑈 ∀𝑈)

• Remain to bound |𝐶|

Bound |𝐶|: Plan

• Initially, each 𝐴-vertex has $(2𝜙𝐴 𝑣 log 𝑛)

• Without debt
• Pay $1 per edge in 𝐶 ⇒ 𝐶 ≤ 2𝜙 𝐴 log 𝑛

• Maintain Invariant “Each 𝑨′-vertex 𝒗 has $(𝟐𝝓𝑨′ 𝒗 𝐥𝐨𝐠 |𝑼𝒗|)”
• 𝑈௩ is the component in 𝐺 − 𝐶 containing 𝑣”

Bound |𝐶|: Payment scheme

When 𝐶 ← 𝐶 ∪ 𝐸(𝑆, 𝑈 − 𝑆), each 𝐴′-vertex in the smaller side pays $2𝜙𝐴′ 𝑣

• Total Budget: $2𝜙 min 𝐴′ 𝑆 , 𝐴′ 𝑈 − 𝑆

• Total Cost: $2𝐸(𝑆, 𝑈 − 𝑆)
• $𝐸(𝑆, 𝑈 − 𝑆) for new edges in 𝐶
• $2𝜙 𝐴௡௘௪

ᇱ log 𝑈 to maintain invariant
• 𝐴௡௘௪

ᇱ = 2|𝐸 𝑆, 𝑈 − 𝑆 | as edges has two endpoints
• 𝜙 ≤ 1/4 log 𝑛

• So, $2𝜙 𝐴௡௘௪
ᇱ log 𝑈 ≤ $𝐸(𝑆, 𝑈 − 𝑆)

• Cost ≤ Budget as 𝑆 is 𝜙-sparse (𝐸 𝑆, 𝑈 − 𝑆 ≤ 𝜙 min 𝐴′ 𝑆 , 𝐴′ 𝑈 − 𝑆)

Observe: Invariant is maintained

Boundary-linked 𝜙-expander decomposition of 𝐴 in 𝐺

Theorem: Given 𝐺 = (𝑉, 𝐸), 𝐴, 𝜙 ≤ 1/4 log 𝑛, there exists 𝐶 ⊆ 𝐸

• 𝐶 ≤ (2𝜙 log 𝑛) ⋅ |𝐴|

• 𝐴 + deg஼ is 𝜙-expanding in 𝐺 − 𝐶

Part 8
Application of Boundary-Linked Expander Decomposition:

Vertex Sparsifiers

Vertex Sparsifiers: Informal

Given a huge graph 𝐺 and a node weighting 𝐴.

Informal Goal:
• Compress 𝐺 to size ≈ |𝐴|

• Preserve routability of all 𝐴-respecting demands

Vertex Sparsifiers

Given a huge graph 𝐺 and a node weighting 𝐴.

Goal: find 𝐻 s.t. for every 𝐴-respecting demand 𝐷
• 𝐷 is routable in 𝐺 ⇒ 𝐷 is routable in 𝐻
• 𝐷 is routable in 𝐻 ⇒ 𝐷 is routable in 𝐺 with congestion 𝑞 = 4 log 𝑛

• |𝐸(𝐻)| = 𝑂(𝐴)
Exercise: Preserve mincuts between all subsets.
for any 𝑈 ⊆ 𝑉,
• For all 𝑋, 𝑌 ⊆ 𝑈,

mincutீ 𝑋, 𝑌 ≤ mincutு 𝑋, 𝑌 ≤ 𝑞 ⋅ mincutீ 𝑋, 𝑌

• 𝐸 𝐻 = 𝑂 degீ(𝑈) logଶ 𝑛

Construction [Chuzhoy’12]

1. Find 𝐶 where 𝐴 + deg஼ is (𝜙 = 1/4 log 𝑛)-expanding in 𝐺 − 𝐶

2. For each 𝐴-vertex 𝑣, add edge 𝑣, 𝑣ᇱ with capacity 𝐴(𝑣).
3. 𝐻 ← contract each component of 𝐺 − 𝐶

Size: 𝐸 𝐻 ≤ 𝐴 + 𝐶 = 𝑂 𝐴 .
Next: show that 𝐻 preserves routability

Theorem: Given 𝐺, 𝐴, 𝜙 ≤ 1/4 log 𝑛, there is 𝐶 ⊆ 𝐸
• 𝐶 ≤ (2𝜙 log 𝑛) ⋅ |𝐴|
• 𝐴 + deg஼ is 𝜙-expanding in 𝐺 − 𝐶

Think:
𝑣′ represents 𝑣.

Routable in 𝐺 ⇒ Routable in 𝐻

• Let 𝐷 be an 𝐴-respecting demand.
• Suppose 𝐹 routes 𝐷 in 𝐺 with congestion 1

• Goal: Construct 𝐹ு routing 𝐷 in 𝐻 with congestion 1

𝐷 respects 𝐴
⇒ Dummy edges 𝑣, 𝑣ᇱ

have congestion ≤ 1

Contraction never
increases congestion.

Routable in 𝐻 ⇒ Routable in 𝐺 with low congestion

• Let 𝐷 be an 𝐴-respecting demand.
• Suppose 𝐹ு routes 𝐷 in 𝐻 with congestion 1

• Goal: Construct 𝐹 routing 𝐷 in 𝐺 with congestion 𝑞 = 4 log 𝑛

For each component 𝑈 in 𝐺 − 𝐶

• 𝐹ு induces demand 𝐷௎

• 𝐷௎ respects 𝐴 + deg஼ ∩ 𝑈
• which is (1/4 log 𝑛)-expanding in 𝐺[𝑈]

• 𝐷௎ is routable in 𝐺[𝑈] with congestion 4 log 𝑛

𝐹 ← concatenate flow in 𝐺 on each 𝑈

Vertex Sparsifiers

Given a huge graph 𝐺 and a node weighting 𝐴.

Goal: find 𝐻 s.t. for every 𝐴-respecting demand 𝐷
• 𝐷 is routable in 𝐺 ⇒ 𝐷 is routable in 𝐻
• 𝐷 is routable in 𝐻 ⇒ 𝐷 is routable in 𝐺 with congestion 𝑞 = 4 log 𝑛

• |𝐸(𝐻)| = 𝑂(𝐴)

Summary

What we learned

• Flow expansion ≈ Cut-expansion

• Easy algorithms on expanders
• Approx max flow from degree

• Expander decomposition
• Repeated expander decomposition

• Application: edge sparsifiers for cuts
• Boundary-linked expander decomposition

• Application: vertex sparsifiers for flow

Boundary-linked 𝜙-expander decomposition of 𝐴 in 𝐺

Theorem: Given 𝐺 = (𝑉, 𝐸), 𝐴, 𝜙 ≤ 1/4 log 𝑛, there exists 𝐶 ⊆ 𝐸

• 𝐶 ≤ (2𝜙 log 𝑛) ⋅ |𝐴|

• 𝐴 + deg஼ is 𝜙-expanding in 𝐺 − 𝐶

Repeated Expander Decomposition

(
𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander

𝐺ଵ
𝐺ଶ

𝐺ଷ 𝐺୪୭୥ ௡

(
𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander(

𝟏

𝟒𝐥𝐨𝐠𝒏
)-expander

Theorem: Given 𝐺 = (𝑉, 𝐸), can partition 𝐸

• Each part induces a (ଵ

ସ୪୭୥ ௡
)-expander

• Each vertex is in ≤ log 𝑛 expanders

