Lecture 2: Separator-Expanding Hierarchies

Thatchaphol Saranurak
U of Michigan

August 18, 2025 ADFOCS

Plan

Connectivity Oracles under Edge Faults [Patraşcu Thorup'07]

- 1. Oracle construction on expanders
- 2. Separator-expanding hierarchy
- 3. Oracle construction on general graphs

Connectivity Oracles under Edge Faults

There are 3 phases:

- 1. Preprocess(G) where G = (V, E)
- 2. Update(D) where $D \subset E$ has size |D| = d $\tilde{O}(d)$ time
- 3. Query(s,t) where $s,t \in V$ Return if s and t are connected in G-D $\tilde{O}(1)$ time

Part 1 Warm-Up: Oracle Construction on Expanders where (s, t) are fixed.

Robustness of Expanders

 $G: \phi$ -expander

U: new connected component in G - D (not the unique giant one)

Proof:

• Boundary $E_G(U, V - U)$ are all deleted.

• So
$$|d| \ge |E_G(U, V - U)| \ge \phi \deg_G(U)$$

cannot happen!

Robustness: d deletions in expanders can disconnect $\leq d$ volume

Oracle on ϕ -Expanders. Fixed s, t

- 1. DFS in G D from s. Explore $\leq 2d/\phi$ volume. Either
 - Find the isolated component U_s of s, or
 - Not done exploring. Then, set $U_{\mathcal{S}} \leftarrow$ the unique giant component
- 2. Do the same for t.
- 3. Return "Yes" iff $U_s = U_t$

Correctness: clear

Update time: $O(d/\phi)$ time.

Part 2 Oracle Construction on Expanders

Connectivity Oracles under Edge Faults

There are 3 phases:

- 1. Preprocess(G) where G = (V, E)
- 2. Update(D) where $D \subset E$ has size |D| = d
- 3. Query(s, t) where s, $t \in V$ Return if s and t are connected in G - D

Connectivity Oracles under Edge Faults

- 1. Preprocess(G) where G = (V, E)
- 2. Update(D) where $D \subset E$ has size |D| = d

Then, get representation of connected components of G-D So, can answer any connectivity queries in G-D in $\tilde{O}(1)$ time.

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) = \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) = \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - ullet If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) = \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - ullet If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) = \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \le 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) := \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - ullet If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) = \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) = \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) = \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \le 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) := \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - ullet If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) = \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) = \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - ullet If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

- Init passive region $U_v = \{v\}$ for $v \in V$
- A region U is active if
 - $\deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi} (\operatorname{del}(U) = \deg_D U)$
 - has an unexplored neighbor in G D.
- While there is an active *U*:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $deg(U) > 2del(U)/\phi$, then U becomes passive.
 - ullet If U has no unexplored neighbor, then U is isolated.
- Claim: Components of G D = isolated regions, union of passive regions

Correctness

Claim: all **passive regions** are in the same component of G - D

Proof: Suppose not. $\exists B \subseteq V \text{ where } \deg(B) \leq \deg(V)/2$

- B is a component in G D
- B = union of some passive region.
- $|E(B, V B)| \ge \phi \deg(B)$
 - G is ϕ -expander
- $del(B) < \phi deg(B)/2$
 - B = union of passive comp.
- $\exists e \in E(B, V B) \setminus D$.
- B is **not** a component in G D. Contradiction.

Update Time

Update time: $\tilde{O}(d/\phi)$

- Total volume explored $\leq 4d/\phi$
 - Only explore from active region $U: \deg(U) \leq 2 \frac{\operatorname{del}(U)}{\phi}$
 - $\Sigma_U \operatorname{del}(U) = 2d$
- Data structures for merging regions
 - Union find

Connectivity Oracles under Edge Faults

- 1. Preprocess(G) where G = (V, E)
- 2. Update(D) where $D \subset E$ has size |D| = d

Then, get representation of connected components of G - DCan answer connectivity queries in G - D in $\tilde{O}(1)$ time.

Update time: $\tilde{O}(d/\phi)$ on ϕ -expanders.

What about general graphs?

Plan

Expanding Balanced Separator

Separator-Expanding Hierarchy

Connectivity Oracles on **General Graphs**

Part 2 Expanding Balanced Separator

Expanding Balanced Separator

Theorem: every graph G contains an edge set $F \subseteq E$ such that

- F is 1/4-expanding in G
- each component C in G F has $\leq n/2$ vertices.

Expanding Balanced Separator: Construction

Theorem: every graph G contains an edge set $F \subseteq E$ such that

- F is 1/4-expanding in G
- each component C in G F has $\leq n/2$ vertices.

Algo:

- $F \leftarrow E$
- While F is not 1/4-expanding
 - $\exists S \text{ s.t. } |\partial_G(S)| < 1/4 \min\{\deg_F(S), \deg_F(V S)\}$
 - Assume $|S| \le n/2$ by symmetry
 - $F \leftarrow F \cup \partial_G(S) (F \cap (S \times S))$

Expanding Balanced Separators: Proof

- Invariant: each component U in G F has $\leq n/2$ vertices.
- Once stop $\rightarrow F$ is 1/4-expanding.
- Why stop?
- Claim: |F| strictly decreases after each iteration
 - increase by $\leq |\partial_G S|$
 - decrease by $\geq |F \cap (S \times S)| \geq \frac{\deg_F(S) |\partial_G S|}{2} > 1.5 |\partial_G S|$

Expanding Balanced Separator

Theorem: for every G, \exists edge set $F \subseteq E$ such that

- F is 1/4-expanding in G
- each component U in G F has $\leq n/2$ vertices.

Part 3 Separator-Expanding Hierarchy

Hierarchy

- A hierarchy \mathcal{H} of G = (V, E) is a laminar family of induced graphs:
 - root = G
 - leaf = a vertex
 - non-leaf = G[S] for some S

- For each cluster $H \in \mathcal{H}$,
 - **Separator of** H is sep(H) := edges crossing children of <math>H
 - Boundary of H is $\partial(H) :=$ edges leaving H

Separator-Expanding Hierarchy

Def: a ϕ -separator-expanding (ϕ -SE) hierarchy of G=(V,E) is

- a hierarchy \mathcal{H} of G where, for each cluster $H \in \mathcal{H}$,
- sep(H) is ϕ -expanding in H.

Separator-Expanding Hierarchy: Partition View

Def: a ϕ -separator-expanding (ϕ -SE) hierarchy of G=(V,E) is

- a partition E_0 , ..., E_ℓ of E s.t.
- E_i is ϕ -expanding in $G E_{>i}$

Quiz

In a ϕ -SE hierarchy E_0 , ..., E_ℓ

Def: A level-*i* cluster is a component in $G - E_{>i}$.

Q: A level-0 cluster H a ϕ -expander. Why?

- H only contains edges from E_0 .
- E_0 is expanding in $G E_{>0}$.
- E(H) is ϕ -expanding in H
- \Rightarrow H is a ϕ -expander

Construction

Theorem: for every G, \exists edge set $F \subseteq E$ such that

- F is 1/4-expanding in G
- each component U in G F has $\leq n/2$ vertices.

Thm: Every graph has $\frac{1}{4}$ -SE hierarchy with $\log n$ levels

Algo:

- 1. $E_{\ell} \leftarrow \frac{1}{4}$ -expanding balanced separator.
- 2. Recurse on each component U of $G E_{\ell}$

- [LPS'25] implicit in [R'02]
- Improves [PT'07] $\Omega(1/\log n)$ -SE hierarchy with $\log n$ levels

Summary

Thm: Every graph has $\frac{1}{4}$ -SE hierarchy with $\log n$ levels

Part 4 Oracle Construction on General Graphs

On a level-i cluster $H_{\leq i}$

On a level-i cluster $H_{\leq i}$

- Consider deleted edges in $D \cap H_{\leq i}$.
- **Assume**: components of children clusters of $H_{\leq i}$ are updated.

On a level-i cluster $H_{\leq i}$

• Consider deleted edges in $D \cap H_{\leq i}$.

• **Assume**: components of children clusters of $H_{\leq i}$ are updated.

• Task: update components of $H_{\leq i}$ in $\tilde{O}(|D \cap H_{\leq i}|)$ time.

On a level-i cluster $H_{\leq i}$

- Consider deleted edges in $D \cap H_{\leq i}$.
- **Assume**: components of children clusters of $H_{\leq i}$ are updated.

• Task: update components of $H_{\leq i}$ in $\tilde{O}(|D \cap H_{\leq i}|)$ time.

After updating the top-level cluster G, DONE.

 \Rightarrow Total update time: $\tilde{O}(d) \cdot \ell = \tilde{O}(d)$

Remain to solve the task on each level-i cluster.

- Init passive region = components of all children clusters (contracted to vertices)
- A region U is active if
 - $\deg_i(U) \leq 2\operatorname{del}_{\leq i}(U)/\phi$ $(\deg_i(U) := \deg_{E_i} U, \operatorname{del}_{\leq i}(U) := \deg_{D \cap E_{\leq i}} U)$
 - has an unexplored neighbor in $H_{\leq i} D$.
- While there is an active U:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $\deg_i(U) > 2 \frac{\text{del}_{\leq i}(U)}{\phi}$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.

• Claim: Components of $H_{\leq i} - D$ = isolated regions, union of passive regions

- Init passive region = components of all children clusters (contracted to vertices)
- A region U is active if
 - $\deg_i(U) \leq 2\operatorname{del}_{\leq i}(U)/\phi$ $(\deg_i(U) := \deg_{E_i} U, \operatorname{del}_{\leq i}(U) := \deg_{D \cap E_{\leq i}} U)$
 - has an unexplored neighbor in $H_{\leq i} D$.
- While there is an active U:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $\deg_i(U) > 2 \frac{\mathrm{del}_{< i}(U)}{\phi}$, then *U* becomes passive.
 - If U has no unexplored neighbor, then U is isolated.

• Claim: Components of $H_{\leq i} - D$ = isolated regions, union of passive regions

- Init passive region = components of all children clusters (contracted to vertices)
- A region *U* is active if
 - $\deg_i(U) \leq 2 \operatorname{del}_{\leq i}(U)/\phi \ (\deg_i(U) := \deg_{E_i} U, \operatorname{del}_{\leq i}(U) := \deg_{D \cap E_{\leq i}} U)$
 - has an unexplored neighbor in $H_{\leq i} D$.
- While there is an active U:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $\deg_i(U) > 2 \frac{\mathrm{del}_{< i}(U)}{\phi}$, then *U* becomes passive.
 - If U has no unexplored neighbor, then U is isolated.

- Init passive region = components of all children clusters (contracted to vertices)
- A region *U* is active if
 - $\deg_i(U) \leq 2 \operatorname{del}_{\leq i}(U)/\phi \ (\deg_i(U) := \deg_{E_i} U, \operatorname{del}_{\leq i}(U) := \deg_{D \cap E_{\leq i}} U)$
 - has an unexplored neighbor in $H_{\leq i} D$.
- While there is an active U:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $\deg_i(U) > 2 \frac{\text{del}_{\leq i}(U)}{\phi}$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.

- Init passive region = components of all children clusters (contracted to vertices)
- A region *U* is active if
 - $\deg_i(U) \leq 2 \operatorname{del}_{\leq i}(U)/\phi \ (\deg_i(U) := \deg_{E_i} U, \operatorname{del}_{\leq i}(U) := \deg_{D \cap E_{\leq i}} U)$
 - has an unexplored neighbor in $H_{\leq i} D$.
- While there is an active U:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $\deg_i(U) > 2 \frac{\text{del}_{\leq i}(U)}{\phi}$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.

- Init passive region = components of all children clusters (contracted to vertices)
- A region *U* is active if
 - $\deg_i(U) \leq 2 \operatorname{del}_{\leq i}(U)/\phi \ (\deg_i(U) := \deg_{E_i} U, \operatorname{del}_{\leq i}(U) := \deg_{D \cap E_{\leq i}} U)$
 - has an unexplored neighbor in $H_{\leq i} D$.
- While there is an active U:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $\deg_i(U) > 2 \frac{\text{del}_{\leq i}(U)}{\phi}$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.

- Init passive region = components of all children clusters (contracted to vertices)
- A region *U* is active if
 - $\deg_i(U) \leq 2 \operatorname{del}_{\leq i}(U)/\phi \ (\deg_i(U) := \deg_{E_i} U, \operatorname{del}_{\leq i}(U) := \deg_{D \cap E_{\leq i}} U)$
 - has an unexplored neighbor in $H_{\leq i} D$.
- While there is an active U:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $\deg_i(U) > 2 \frac{\text{del}_{\leq i}(U)}{\phi}$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.

- Init passive region = components of all children clusters (contracted to vertices)
- A region *U* is active if
 - $\deg_i(U) \leq 2 \operatorname{del}_{\leq i}(U)/\phi \ (\deg_i(U) := \deg_{E_i} U, \operatorname{del}_{\leq i}(U) := \deg_{D \cap E_{\leq i}} U)$
 - has an unexplored neighbor in $H_{\leq i} D$.
- While there is an active U:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $\deg_i(U) > 2 \frac{\text{del}_{\leq i}(U)}{\phi}$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.

- Init passive region = components of all children clusters (contracted to vertices)
- A region *U* is active if
 - $\deg_i(U) \leq 2 \operatorname{del}_{\leq i}(U)/\phi \ (\deg_i(U) := \deg_{E_i} U, \operatorname{del}_{\leq i}(U) := \deg_{D \cap E_{\leq i}} U)$
 - has an unexplored neighbor in $H_{\leq i} D$.
- While there is an active U:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $\deg_i(U) > 2 \frac{\text{del}_{\leq i}(U)}{\phi}$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.

- Init passive region = components of all children clusters (contracted to vertices)
- A region *U* is active if
 - $\deg_i(U) \leq 2 \operatorname{del}_{\leq i}(U)/\phi \ (\deg_i(U) \coloneqq \deg_{E_i} U , \operatorname{del}_{\leq i}(U) \coloneqq \deg_{D \cap E_{\leq i}} U)$
 - has an unexplored neighbor in $H_{\leq i} D$.
- While there is an active U:
 - $U \leftarrow U \cup U_v$ where v is an unexplored neighbor of U.
 - If $\deg_i(U) > 2 \frac{\text{del}_{\leq i}(U)}{\phi}$, then U becomes passive.
 - If U has no unexplored neighbor, then U is isolated.

Correctness

Claim: all passive regions are in the same component of $H_{\leq i} - D$

Proof: Suppose not. $\exists B \subseteq H_{\leq i}$ where $\deg_i(B) \leq \deg_i(H_{\leq i})/2$

• B is a component in $H_{\leq i} - D$

• B = union of some passive region.

Correctness

Claim: all passive regions are in the same component of $H_{\leq i} - D$

Proof: Suppose not. $\exists B \subseteq H_{\leq i}$ where $\deg_i(B) \leq \deg_i(H_{\leq i})/2$

- B is a component in $H_{\leq i} D$
- B = union of some passive region.
- $|E_{\leq i}(B, V B)| \geq \phi \deg_i(B)$
 - E_i is ϕ -expanding in $H_{\leq i}$
- $\operatorname{del}_{\leq i}(B) < \phi \operatorname{deg}_i(B)/2$
 - B = union of passive comp.
- $\exists e \in E_{\leq i}(B, V B) \setminus D_{\leq i}$.
 - B is **not** a component in $H_{\leq i} D$. Contradiction.

Update Time on Level-i Cluster $H_{\leq i}$

Let $d' = |D \cap H_{\leq i}|$ be the number of deletions in $H_{\leq i}$.

Update time: $\tilde{O}(d'/\phi)$

- Total level-i volume explored $\leq 4d'/\phi$
 - Only explore from active region $U: \deg_i(U) \leq 2 \operatorname{del}_{\leq i}(U)/\phi$
 - $\Sigma_U \operatorname{del}_{\leq i}(U) = 2d$
- Data structures for merging regions
 - Union find

Connectivity Oracles under Edge Faults

- 1. Preprocess(G) where G = (V, E)
- 2. Update(D) where $D \subset E$ has size |D| = d

Then, get representation of connected components of G - DCan answer connectivity queries in G - D in $\tilde{O}(1)$ time.

Update time: $\tilde{O}(d)$ on any general graph

Summary

Summary

- Robust of expansion:
 - Suppose F is ϕ -expanding in G.
 - After deleting d edges, can disconnect $\approx d/\phi$ F-edges
- Connectivity Oracles under Edge Faults [Patraşcu Thorup'07]
- Separator-Expanding Hierarchy
 - Top-down construction using **Expanding Balanced Separator**
 - A key tool for generalizing algorithms on expanders to general graphs