
Lecture 3:
Boundary-Separator-Expanding Hierarchies

Thatchaphol Saranurak
U of Michigan

August 18, 2025
ADFOCS

Recap key concepts
Expander Decomposition

Boundary-linked version

Dynamic version

Expanding Balanced Separator

Repeated Expander Decomposition

Separator-expanding (SE) Hierarchy

Boundary-separator-expanding (BSE) Hierarchy

Repeated Expander Decomposition

Separator-expanding (SE) Hierarchy

Boundary-separator-expanding (BSE) Hierarchy

Edge Sparsifier

Vertex Sparsifier

Connectivity Oracle
under Failures

Flow Shortcuts

Tree Flow
Sparsifiers

Fast
Flow / Cut
Algorithms

Expander Decomposition

Boundary-linked version

Part 1
Tree Cut/Flow Sparsifiers

Tree Cut Sparsifier

Def: A tree cut sparsifier 𝑇 of 𝐺 with quality 𝑞:
1. A capacitated tree where leaf set = 𝑉(𝐺)

2. For any 𝑋, 𝑌 ⊂ 𝑉
mincutீ(𝐴, 𝐵) ≤ mincut்(𝐴, 𝐵) ≤ 𝑞 mincutீ(𝐴, 𝐵)

A single tree that approximates all 2௡ cuts of 𝐺!
• Related: a Gomory-Hu tree exactly preserves 𝑛ଶ pair-wise mincuts of 𝐺.

Tree Flow Sparsifier

Def: A tree cut sparsifier 𝑇 of 𝐺 with quality 𝑞:
1. A capacitated tree where leaf set = 𝑉(𝐺)

2. For any 𝑋, 𝑌 ⊂ 𝑉
mincutீ(𝐴, 𝐵) ≤ mincut்(𝐴, 𝐵) ≤ 𝑞 mincutீ(𝐴, 𝐵)

Def: A tree flow sparsifier 𝑇 of 𝐺 with quality 𝑞:
2. For any degீ-respecting demand 𝐷

• If 𝐷 is routable in 𝐺 ⇒ 𝐷 is routable in 𝑇
• If 𝐷 is routable in 𝑇 ⇒ 𝐷 is routable in 𝐺 with congestion 𝑞

Again, they are the same objects (up to log 𝑛 factor).
Tree flow sparsifiers are stronger.

Today’s goal

Every graph admits a tree cut sparsifier
with quality 𝑂(logଶ 𝑛) and depth 𝑂(log 𝑛)

State of the art
• Upper bound: quality 𝑂(log 𝑛 log log 𝑛) and depth 𝑂(log 𝑛) [Räcke, Shah’14]

• Lower bound: quality Ω(log 𝑛) even on a grid graph.

Plan

1. Applications of tree cut/flow sparsifiers
2. Boundary-separator-expanding (BSE) hierarchies
3. Construct (1) using (2)
4. Constructions of BSE hierarchies

• Simple construction (implemented in dynamic/distributed models)

• Better construction (generalized to directed/length-constrained expansion)

Part 2
Applications of

Tree Cut Sparsifiers

Approximate Minimum Cut

Given a tree cut sparsifier 𝑇 of 𝐺 with quality 𝑞 and depth 𝑑.

For any (𝑠, 𝑡), we can 𝑞-approx. (𝑠, 𝑡)-mincut in 𝑂(𝑑) time.
• Algo: return the minimum capacity 𝑐∗ in (𝑠, 𝑡)-path in 𝑇
• Analysis:

• 𝑐∗ = mincut்(𝑠, 𝑡)
• mincutீ(𝑠, 𝑡) ≤ mincut்(𝑠, 𝑡) ≤ 𝑞 mincutீ(𝑠, 𝑡)

Vertex Sparsifiers

Recall Lecture 1: Given 𝐺 = 𝑉, 𝐸 and terminal set 𝑈 ⊆ 𝑉.

There is a graph 𝐻 s.t.
• for all 𝑋, 𝑌 ⊆ 𝑈,

mincutீ 𝑋, 𝑌 ≤ mincutு 𝑋, 𝑌 ≤ 4 log 𝑛 ⋅ mincutீ 𝑋, 𝑌

• 𝐸 𝐻 = 𝑂 degீ(𝑈)

Weak if 𝑈 contains
high degree vertices

Vertex Sparsifiers

Will show: Given 𝐺 = 𝑉, 𝐸 and terminal set 𝑈 ⊆ 𝑉.

There is a graph 𝐻 s.t.
• for all 𝑋, 𝑌 ⊆ 𝑈,

mincutீ 𝑋, 𝑌 ≤ mincutு 𝑋, 𝑌 ≤ 𝑂(logଶ𝑛) ⋅ mincutீ 𝑋, 𝑌

• 𝐸 𝐻 = 𝑂 |𝑈| log 𝑛

Vertex Sparsifiers from Tree Cut Sparsifiers

Given a tree cut sparsifier 𝑇 of 𝐺 with quality 𝑞 = 𝑂(logଶ 𝑛) and depth 𝑑 = 𝑂(log 𝑛).

𝑇௎ ← union of root-to-leaf paths in 𝑇 for all 𝑣 ∈ 𝑈

• 𝐸 𝑇௎ = 𝑂 |𝑈| log 𝑛

• Thm: for all 𝑋, 𝑌 ⊆ 𝑈,
mincutீ 𝑋, 𝑌 ≤ mincut்ೆ

𝑋, 𝑌 ≤ 𝑂(logଶ𝑛) ⋅ mincutீ 𝑋, 𝑌

• Proof:
• mincut்ೆ

𝑋, 𝑌 = mincut் 𝑋, 𝑌 for 𝑋, 𝑌 ⊆ 𝑈

• mincut் 𝑋, 𝑌 ≈௤ mincutீ 𝑋, 𝑌

Vertex Sparsifiers

Will show: Given 𝐺 = 𝑉, 𝐸 and terminal set 𝑈 ⊆ 𝑉.

There is a graph 𝐻 s.t.
• for all 𝑋, 𝑌 ⊆ 𝑈,

mincutீ 𝑋, 𝑌 ≤ mincutு 𝑋, 𝑌 ≤ 𝑂(logଶ𝑛) ⋅ mincutீ 𝑋, 𝑌

• 𝐸 𝐻 = 𝑂 |𝑈| log 𝑛

Part 3
Boundary-Separator-Expanding Hierarchies

Hierarchy

• A hierarchy ℋ of 𝐺 = (𝑉, 𝐸) is a laminar family of induced graphs:
• root = 𝐺
• leaf = a vertex
• non-leaf = 𝐺[𝑆] for some 𝑆

• For each cluster 𝐻 ∈ ℋ,
• Separator of 𝑺 is sep 𝑆 ≔ edges crossing children of 𝑆
• Boundary of 𝑺 is 𝜕 𝑆 ≔ 𝐸(𝑆, 𝑉 − 𝑆)

Def: a 𝜙-boundary-separator-expanding (𝜙-BSE) hierarchy of 𝐺 is
• a hierarchy ℋ s.t. for every cluster 𝐻 ∈ ℋ,
• 𝜕𝐻 ∪ sep(𝐻) is 𝜙-expanding in 𝐻.

BSE Hierarchy

BSE Hierarchy: Partition View

Def: a 𝜙-boundary-separator-expanding (𝜙-BSE) hierarchy of 𝐺 is
• a partition 𝐸଴, … , 𝐸ℓ of 𝐸(𝐺) s.t.
• 𝐸ஹ௜ is 𝜙-expanding in 𝐺 − 𝐸வ௜

Part 4
BSE hierarchy → Tree flow sparsifier

BSE hierarchy → Tree flow sparsifier

• ℋ: 𝜙-BS-expanding hierarchy with ℓ levels.
• 𝑇: tree corresponding to ℋ

• cluster 𝑆 tree node 𝑢ௌ

• cap் 𝑢ௌ, parent 𝑢ௌ = 𝜕ீ 𝑆

Thm: [Räcke’02]

𝑇 is tree flow sparsifier of 𝐺 with quality ℓ/𝜙.

Remain to prove: For any degீ-respecting demand 𝐷
1. If 𝐷 is routable in 𝐺 ⇒ 𝐷 is routable in 𝑇
2. If 𝐷 is routable in 𝑇 ⇒ 𝐷 is routable in 𝐺 with congestion 𝑞 = ℓ/𝜙

Routable in 𝐺 ⇒ Routable in 𝑇

• Let 𝐷 be a degீ-respecting demand routable in 𝐺 with congestion 1

• Goal: Construct 𝐹் routing 𝐷 in 𝑇 with congestion 1

• 𝐹் ← the unique way to route 𝐷 in 𝑇.
• For each tree edge e = 𝑢ு, parent 𝑢ு

• 𝐹் 𝑒 = total demand of 𝐷 out of 𝐻
• cap்(𝑒) = |𝜕𝐻|
• 𝐹் 𝑒 ≤ cap்(𝑒)

• As 𝐷 is routable in 𝐺 with congestion 1

• So, cong 𝐹் ≤ 1

Did not need that ℋ is a 𝜙-BSE hierarchy in this argument

Routable in 𝑇 ⇒ Routable in 𝐺 with congestion ℓ/𝜙

• Let 𝐷 be a degீ-respecting demand routable in 𝑇 with congestion 1

• Goal: Construct 𝐹 routing 𝐷 in 𝐺 with congestion ℓ/𝜙

Bottom-up Strategy:
• For each cluster 𝐻 ∈ ℋ, define 𝐹ு inside 𝑯

• 𝐹ு “finishes” routing demand in 𝐷 between children of 𝐻.
• 𝐹ு routes demand out of 𝐻 to boundary 𝜕𝐻 (“forward” to parent cluster)
• 𝐹ு has congestion 1/𝜙

• 𝐹 ←concatenate 𝐹ு overall clusters 𝐻
• 𝐹 successfully routes 𝐷
• 𝐹 has congestion ℓ/𝜙

Requirement of 𝐹ு on cluster 𝐻

• Let 𝐻ଵ, … , 𝐻௦ be children of cluster 𝐻

• Pre-condition:
• Demand out of 𝐻௜ has been routed uniformly to 𝜕𝐻௜

• Post-condition:
• Demand between children of 𝐻 is successfully routed.
• Demand out of 𝐻 is routed uniformly to 𝜕𝐻

Requirement of 𝐹ு on cluster 𝐻 (with pictures)

Demand
𝐷 𝑎, 𝑏 = 2
𝐷 𝑎, 𝑐 = 1 where 𝑐 ∉ 𝐻

• 𝐹ு routes demand between children
• 𝐹ு routes demand out of 𝐻 to 𝜕𝐻 uniformly
So, Post-condition:
demand out of 𝐻 is on 𝜕𝐻 uniformly

Pre-condition:
demand out of 𝐻௜ is on 𝜕𝐻௜ uniformly

BSE → Existence of 𝐹ு with low congestion

Demand
𝐷 𝑎, 𝑏 = 2
𝐷 𝑎, 𝑐 = 1 where 𝑐 ∉ 𝐻

• 𝐹ு routes demand between children
• 𝐹ு routes demand out of 𝐻 to 𝜕𝐻 uniformly
So, Post-condition:
demand out of 𝐻 is on 𝜕𝐻 uniformly

Pre-condition:
demand out of 𝐻௜ is on 𝜕𝐻௜ uniformly

To satisfy Post-condition given Pre-condition,
this induces a demand 𝐷ு respecting 𝜕𝐻 ∪ sep 𝐻 .

𝜕𝐻 ∪ sep 𝐻 is 𝜙-expanding in 𝐻 ⇒ ∃𝐹ு routing 𝐷ு in 𝐻 with congestion 1/𝜙

Routable in 𝑇 ⇒ Routable in 𝐺 with congestion ℓ/𝜙

• Let 𝐷 be a degீ-respecting demand routable in 𝑇 with congestion 1

• Goal: Construct 𝐹 routing 𝐷 in 𝐺 with congestion ℓ/𝜙

Bottom-up Strategy:
• For each cluster 𝐻 ∈ ℋ, define 𝐹ு inside 𝑯

• 𝐹ு “finishes” routing demand in 𝐷 between children of 𝐻.
• 𝐹ு routes demand out of 𝐻 to boundary 𝜕𝐻 (“forward” to parent cluster)
• 𝐹ு has congestion 1/𝜙

• 𝐹 ←concatenate 𝐹ு overall clusters 𝐻
• 𝐹 route all demand pairs in 𝐷
• 𝐹 has congestion ℓ/𝜙

BSE hierarchy → Tree flow sparsifier

• ℋ: 𝜙-BS-expanding hierarchy with ℓ levels.
• 𝑇: tree corresponding to ℋ

• cluster 𝑆 tree node 𝑢ௌ

• cap் 𝑢ௌ, parent 𝑢ௌ = 𝜕ீ 𝑆

Thm: [Räcke’02]

𝑇 is tree flow sparsifier of 𝐺 with quality ℓ/𝜙.

Part 5
Simple Bottom-Up

Construction of BSE hierarchies
Based on [Goranci Raecke S Tan’21]

BSE Hierarchy

Def: a 𝜙-boundary-separator-expanding (𝜙-BSE) hierarchy of 𝐺 is
• a hierarchy ℋ s.t. for every cluster 𝐻 ∈ ℋ,
• 𝜕𝐻 ∪ sep(𝐻) is 𝜙-expanding in 𝐻.

Our Goal

Let 𝐺 be a graph.

Theorem: ∃ a (1/𝑛௢ ଵ)-BSE hierarchy of 𝐺 with log 𝑛 levels.

Corr: ∃ a tree flow sparsifier of 𝐺 with quality 𝑛௢ ଵ

Recall: boundary-linked 𝜙-expander decomposition

Theorem: Given 𝐺 = (𝑉, 𝐸), 𝐴, 𝜙 ≤ 1/4 log 𝑛, there exists 𝐶 ⊆ 𝐸

• 𝐶 ≤ (2𝜙 log 𝑛) ⋅ |𝐴|

• 𝐴 + deg஼ is 𝜙-expanding in 𝐺 − 𝐶

Recall: 𝛽-boundary-linked 𝜙-expander decomposition

Theorem: Given 𝐺 = (𝑉, 𝐸), 𝐴, 𝛽 ≤ 1/4𝜙 log 𝑛, there exists 𝐶 ⊆ 𝐸

• 𝐶 ≤ (2𝜙 log 𝑛) ⋅ |𝐴|

• 𝐴 + 𝛽deg஼ is 𝜙-expanding in 𝐺 − 𝐶

Think:
𝜙 = 1/(log 𝑛)஀(୪୭୥ ௡) and 𝛽 = 1/4𝜙 log 𝑛.

• 𝐴 ∩ 𝑈 is 𝜙-expanding in 𝐺[𝑈].
• 𝜕𝑈 is (థ

ఉ
=

ଵ

ସ ୪୭୥ ௡
)-expanding in 𝐺[𝑈]

• The boundary is much more expanding

Construction: Contract and Recurse

• Init: 𝐺଴ ← 𝐺, 𝜙 = 1/(log 𝑛)஀(୪୭୥ ௡), 𝛽 = 1/4𝜙 log 𝑛.
• For 𝑖 ≥ 1

• 𝐶௜ ← 𝛽-boundary-linked 𝜙-ED of 𝐺௜ିଵ

• 𝐺௜ ← contract components of 𝐺௜ିଵ − 𝐶௜ (remove self loops)

• if 𝐸(𝐺௜) = ∅, break

• Return ℋ ← {super-nodes in all 𝐺௜}

Illustration

𝐺଴

𝛽-boundary-linked 𝜙-ED

Illustration

𝐺଴ 𝐺ଵ: contracting 𝐺଴

𝛽-boundary-linked 𝜙-ED
|𝐶ଵ| ≈ 𝜙𝑚

Illustration

𝐺଴ 𝐺ଵ: contracting 𝐺଴ 𝐺ଶ: contracting 𝐺ଵ

𝛽-boundary-linked 𝜙-ED|𝐶ଶ| ≈ 𝜙ଶ𝑚

|𝐶ଵ| ≈ 𝜙𝑚

Illustration

𝐺଴ 𝐺ଵ: contracting 𝐺଴ 𝐺ଶ: contracting 𝐺ଵ 𝐺ଷ: contracting 𝐺ଶ

|𝐶ଶ| ≈ 𝜙ଶ𝑚

|𝐶ଵ| ≈ 𝜙𝑚

Contracted Cluster 𝐻′ vs. Cluster 𝐻

• Let 𝐻ᇱ be a component in 𝐺௜ − 𝐶௜ାଵ.
• Key: 𝛽 𝜕𝐻ᇱ + 𝐸(𝐻ᇱ) is 𝜙-expanding in 𝐻′

• 𝐶௜ାଵ is a 𝛽-boundary-linked 𝜙-ED of 𝐺௜

• 𝐻: uncontract supernodes of 𝐻′
• 𝜕𝐻 = 𝜕𝐻′

• sep 𝐻 = 𝐸(𝐻ᇱ)

• 𝐻 is a level-𝒊 cluster of ℋ (component of 𝐺 − 𝐶௜ାଵ).

Construction: Contract and Recurse

• Init: 𝐺଴ ← 𝐺, 𝜙 = 1/(log 𝑛)஀(୪୭୥ ௡), 𝛽 = 1/4𝜙 log 𝑛.
• For 𝑖 ≥ 1

• 𝐶௜ ← 𝛽-boundary-linked 𝜙-ED of 𝐺௜ିଵ

• 𝐺௜ ← contract components of 𝐺௜ିଵ − 𝐶௜ (remove self loops)

• if 𝐸(𝐺௜) = ∅, break

• Return ℋ ← {super-nodes in all 𝐺௜}

Analysis
• There are ℓ = log 𝑛 levels as 𝐶௜ ≤ (2𝜙 log 𝑛)௜𝑚.
• To show: boundary and separator of cluster 𝐻 are expanding in 𝐻

Analysis plan

Let 𝐻 be a level-𝒊 cluster (component of 𝐺 − 𝐶௜ାଵ).

Step 1: 𝜕𝐻 is ଵ

ସ ୪୭୥ ௡ ೔ expanding in 𝐻

Step 2: 𝜕𝐻 ∪ sep(𝐻) is థ

ସ ୪୭୥ ௡ ೔ expanding in 𝐻

So, ℋ is థ

ସ ୪୭୥ ௡ ℓ =
ଵ

(୪୭୥ ௡)ೀ ౢ౥ౝ ೙
-BSE hierarchy of 𝐺.

Boundary is Expanding

𝐷: 𝜕𝐻-respecting demand
Task: route 𝐷 in 𝐻 with congestion 4 log 𝑛 ௜ାଵ

1. Route 𝐷 in contracted 𝐻′

∃𝐹′ routing 𝐷 in 𝐻 with congestion 4 log 𝑛
• 𝛽(𝜕𝐻′) is 𝜙-expanding in 𝐻′

• 𝜕𝐻′is (𝜙/𝛽 = 1/4 log 𝑛)-expanding in 𝐻′

• 𝐷 respects 𝜕𝐻 = 𝜕𝐻′

2. Route inside supernode of 𝐻′

Boundary is Expanding

𝐷: 𝜕𝐻-respecting demand
Task: route 𝐷 in 𝐻 with congestion 4 log 𝑛 ௜ାଵ

1. Route 𝐷 in contracted 𝐻′
∃𝐹′ routing 𝐷 in 𝐻 with congestion 4 log 𝑛

2. Route inside supernode of 𝐻′
• 𝐻௩: a level-(𝑖 − 1) child of 𝐻
• 𝜕𝐻௩-respecting demand is routable in 𝐻௩ with cong 4 log 𝑛 ௜ (by induction)

• “To connect 𝐹′ inside 𝐻௩” induces a 4 log 𝑛 𝜕𝐻௩-respecting demand 𝐷௩

• 𝐷௩ is routable with congestion 4 log 𝑛 ௜ାଵ

Analysis plan

Let 𝐻 be a level-𝒊 cluster (component of 𝐺 − 𝐶௜ାଵ).

Step 1: 𝜕𝐻 is ଵ

ସ ୪୭୥ ௡ ೔ expanding in 𝐻

Step 2: 𝜕𝐻 ∪ sep(𝐻) is థ

ସ ୪୭୥ ௡ ೔ expanding in 𝐻

So, ℋ is థ

ସ ୪୭୥ ௡ ℓ =
ଵ

(୪୭୥ ௡)ೀ ౢ౥ౝ ೙
-BSE hierarchy of 𝐺.

Boundary and Separator are Expanding

𝐷: 𝜕𝐻 ∪ sep(𝐻)-respecting demand
Task: route 𝐷 in 𝐻 with congestion 4 log 𝑛 ௜/𝜙

1. Route 𝐷 in contracted 𝐻′

∃𝐹′ routing 𝐷 in 𝐻 with congestion 1/𝜙
• 𝜕𝐻′ ∪ 𝐸(𝐻ᇱ) is 𝜙-expanding in 𝐻′

• 𝐷 respects 𝜕𝐻 ∪ sep(𝐻) = 𝜕𝐻′ ∪ 𝐸(𝐻ᇱ)

2. Route inside supernode of 𝐻′

Boundary and Separator are Expanding

𝐷: 𝜕𝐻 ∪ sep(𝐻)-respecting demand
Task: route 𝐷 in 𝐻 with congestion 4 log 𝑛 ௜/𝜙

1. Route 𝐷 in contracted 𝐻′
∃𝐹′ routing 𝐷 in 𝐻 with congestion 1/𝜙

2. Route inside supernode of 𝐻′
• 𝐻௩: a level-(𝑖 − 1) child of 𝐻
• 𝜕𝐻௩-respecting demand is routable in 𝐻௩ with cong 4 log 𝑛 ௜ (by induction)

• “To connect 𝐹′ inside 𝐻௩” induces a 1/𝜙 𝜕𝐻௩-respecting demand 𝐷௩

• 𝐷௩ is routable with congestion 4 log 𝑛 ௜/𝜙

Analysis plan

Let 𝐻 be a level-𝒊 cluster (component of 𝐺 − 𝐶௜ାଵ).

Step 1: 𝜕𝐻 is ଵ

ସ ୪୭୥ ௡ ೔ expanding in 𝐻

Step 2: 𝜕𝐻 ∪ sep(𝐻) is థ

ସ ୪୭୥ ௡ ೔ expanding in 𝐻

So, ℋ is థ

ସ ୪୭୥ ௡ ℓ =
ଵ

(୪୭୥ ௡)ೀ ౢ౥ౝ ೙
-BSE hierarchy of 𝐺.

Summary

Let 𝐺 be a graph.

Theorem: ∃ a (1/𝑛௢ ଵ)-BSE hierarchy of 𝐺 with log 𝑛 levels.
Corr: ∃ a tree flow sparsifier of 𝐺 with quality 𝑛௢ ଵ

Simplicity of this construction leads to
• Dynamic construction [GRST’21]

⇒ dynamic max flow [GRST’21], dynamic mincut [JST’24, EHL’25], static exact max flow [BCKLMPS’24]

• Distributed construction [HRG’22]
⇒ Universally Optimal Distributed Algorithms

Part 6
Construction of BSE Hierarchies via
Dynamic Expander Decomposition

Based on [Haeupler Long Röyskö S’26]

Next Goal

Let 𝐺 be a graph.

Theorem: ∃ a (ଵ

ଵ଺ ୪୭
)-BSE hierarchy of 𝐺 with log 𝑚 levels.

Corr: ∃ a tree cut sparsifier of 𝐺 with quality 𝑂 logଶ𝑛
∗Do not get tree flow sparsifier. The argument only bounds cut expansion in the BSE hierarchy

Recall: BSE Hierarchy: Partition View

Def: a 𝜙-boundary-separator-expanding (𝜙-BSE) hierarchy of 𝐺 is
• a partition 𝐸଴, … , 𝐸ℓ of 𝐸(𝐺) s.t.
• 𝐸ஹ௜ is 𝜙-expanding in 𝐺 − 𝐸வ௜

Ingredient: Dynamic Expander Decomposition

• Fixed graph 𝐺 = (𝑉, 𝐸) and 𝜙
• Objects that only grows

• 𝐷 ⊆ 𝐸: set of edge deletions
• 𝐴: a node weighting

Thm: DynED(𝐺, 𝜙, 𝐴, 𝐷) maintains an incremental set 𝐶 ⊇ 𝐷

• 𝐴 is 𝜙-expander in 𝐺 − 𝐶

• 𝐶 − 𝐷 ≤ 𝜙 𝐴 log 𝑛

Note: Even when 𝐴 and 𝐷 grow, 𝐶 might not grow

BSE Hierarchy Construction

• Init:
• 𝐶଴ ← 𝐸, 𝐶௜ ← ∅ for 𝑖 ≥ 1

• 𝜙 =
ଵ

ଵ଺ ୪୭୥ ௡
and ℓ =

୪୭୥ ௠

୪୭୥(ଵ/ସ ୪୭୥)

• For 0 ≤ 𝑖 ≤ ℓ, maintain until there is no update
𝐶௜ାଵ ← DynED(𝐺, 𝜙, 𝐴௜ ≔ deg஼೔

, 𝐷௜ ≔ 𝐶௜ାଶ)

• Return 𝐸௜ = 𝐶௜ − 𝐶௜ାଵ for all 𝑖 ≤ ℓ.

Thm: DynED(𝐺, 𝜙, 𝐴, 𝐷) maintains 𝐶 ⊇ 𝐷
• 𝐴 is 𝜙-expander in 𝐺 − 𝐶
• 𝐶 − 𝐷 ≤ 𝜙 𝐴 log 𝑛

Let’s first understand what’s going on

Bidirectional interactions between levels

Not trivial! This is not quite bottom-up nor top-down.

𝐶௜ାଵ ← DynED௜ ≔ DynED(𝐺, 𝜙, 𝐴௜ ≔ deg஼೔
, 𝐷௜ ≔ 𝐶௜ାଶ)

When 𝐶௜ାଵ grows,
𝐷௜ିଵ ≔ 𝐶௜ାଵ at level 𝑖 − 1

grows too

Interaction with level 𝑖 − 1

Bidirectional interactions between levels

Not trivial! This is not quite bottom-up nor top-down.

𝐶௜ାଵ ← DynED௜ ≔ DynED(𝐺, 𝜙, 𝐴௜ ≔ deg஼೔
, 𝐷௜ ≔ 𝐶௜ାଶ)

When 𝐶௜ାଵ grows,
𝐷௜ିଵ ≔ 𝐶௜ାଵ at level 𝑖 − 1

grows too

After 𝐷௜ିଵ grows,
𝐶௜ ← DynED௜ିଵat level 𝑖 − 1 grows too
𝐴௜ ≔ deg஼೔

grows
This might cause 𝐶௜ାଵ to grow again

Interaction with level 𝑖 − 1

Bidirectional interactions between levels

Not trivial! This is not quite bottom-up nor top-down.

𝐶௜ାଵ ← DynED௜ ≔ DynED(𝐺, 𝜙, 𝐴௜ ≔ deg஼೔
, 𝐷௜ ≔ 𝐶௜ାଶ)

When 𝐶௜ାଵ grows,
𝐴௜ାଵ ≔ deg஼೔శభ

at level 𝑖 + 1 grows
𝐶௜ାଶ might grow

Interaction with level 𝑖 + 1

Bidirectional interactions between levels

Not trivial! This is not quite bottom-up nor top-down.

𝐶௜ାଵ ← DynED௜ ≔ DynED(𝐺, 𝜙, 𝐴௜ ≔ deg஼೔
, 𝐷௜ ≔ 𝐶௜ାଶ)

When 𝐶௜ାଵ grows,
𝐴௜ାଵ ≔ deg஼೔శభ

at level 𝑖 + 1 grows
𝐶௜ାଶ might grow

After 𝐶௜ାଶ grows,
𝐷௜ ≔ 𝐶௜ାଶ grows
𝐶௜ାଵ ⊇ 𝐷௜ must grow again

Interaction with level 𝑖 + 1

But 𝐶௜ get smaller and smaller

• Homework: |𝐶௜| ≤ 4𝜙 log 𝑛 ௜𝑚 by non-trivial induction.
• So, 𝐶ℓାଵୀை(୪୭୥ ௠) = ∅.

𝐶௜ାଵ ← DynED௜ ≔ DynED(𝐺, 𝜙, 𝐴௜ ≔ deg஼೔
, 𝐷௜ ≔ 𝐶௜ାଶ)

BSE Hierarchy Construction

• Init:
• 𝐶଴ ← 𝐸, 𝐶௜ ← ∅ for 𝑖 ≥ 1

• 𝜙 =
ଵ

ଵ଺ ୪୭୥ ௡
and ℓ =

୪୭୥ ௠

୪୭୥(ଵ/ସ ୪୭୥ ௡)

• For 0 ≤ 𝑖 ≤ ℓ, maintain until there is no update
𝐶௜ାଵ ← DynED(𝐺, 𝜙, 𝐴௜ ≔ deg஼೔

, 𝐷௜ ≔ 𝐶௜ାଶ)

• Return 𝐸௜ = 𝐶௜ − 𝐶௜ାଵ for all 𝑖 ≤ ℓ.

Thm: DynED(𝐺, 𝜙, 𝐴, 𝐷) maintains 𝐶 ⊇ 𝐷
• 𝐴 is 𝜙-expander in 𝐺 − 𝐶
• 𝐶 − 𝐷 ≤ 𝜙 𝐴 log 𝑛

Correct assuming 𝑪ℓା𝟏 = ∅.
𝐶௜ାଵ ⊇ 𝐶௜ାଶ for all 𝑖. (They are nested).
𝐶௜ = 𝐸ஹ௜.
𝐶௜ is expanding in 𝐺 − 𝐶௜ାଵ

⇒ 𝐸ஹ௜ is expanding in 𝐺 − 𝐸வ௜.

How did we use 𝑪ℓା𝟏 = ∅ ?
Otherwise, 𝐸ℓ is not expanding in 𝐺

Conclude

Let 𝐺 be a graph.

Theorem: ∃ a (ଵ

ଵ଺ ୪୭
)-BSE hierarchy of 𝐺 with log 𝑚 levels.

Corr: ∃ a tree cut sparsifier of 𝐺 with quality 𝑂 logଶ𝑛
∗Do not get tree flow sparsifier. The argument only bounds cut expansion in the BSE hierarchy

Remark
• Previous Ω෤(1)-BSE hierarchy only work with edge-expansion in undirected graphs.

[R’02,BKR’03,HHR’02’RS’14,RST’14]

• Our construction generalizes to other expansions.
• Combinatorial max flow [BBST’24]: directed expansion
• Fault-tolerant distance oracle [HLRS’26]: length-constrained expansion

• Open: Explore power of BSE-hierarchy for other expansion notions

Summary

Summary

• Tree flow sparsifiers and applications
• BSE hierarchy → Tree flow sparsifiers
• Constructions of BSE hierarchies

1. Based on Boundary-linked ED: Contract and Recurse
• Implemented in dynamic/distributed models
• Quality 𝑛௢(ଵ)

2. Based on Dynamic ED
• Generalized to directed/length-constrained expansion
• Quality logଶ 𝑛

