Lecture 3: Boundary-Separator-Expanding Hierarchies

Thatchaphol Saranurak
U of Michigan

August 18, 2025 ADFOCS

Recap key concepts

Expander Decomposition

Boundary-linked version

Repeated Expander Decomposition

3

Separator-expanding (SE) Hierarchy

Boundary-separator-expanding (BSE) Hierarchy

Edge Sparsifier

Vertex Sparsifier

Connectivity Oracle under Failures

Tree Flow Sparsifiers

Flow Shortcuts

Fast Flow / Cut Algorithms

Part 1 Tree Cut/Flow Sparsifiers

Tree Cut Sparsifier

Def: A tree cut sparsifier T of G with quality g:

- 1. A capacitated tree where leaf set = V(G)
- 2. For any $X, Y \subset V$ mincut_G $(A, B) \leq \min_{T} (A, B) \leq q \min_{G} (A, B)$

• Related: a Gomory-Hu tree exactly preserves n^2 pair-wise mincuts of G.

Tree Flow Sparsifier

Def: A tree cut sparsifier T of G with quality g:

- 1. A capacitated tree where leaf set = V(G)
- 2. For any $X, Y \subset V$ mincut_G $(A, B) \leq \min_{T}(A, B) \leq q$ mincut_G(A, B)

Def: A tree flow sparsifier T of G with quality q:

- 2. For any \deg_G -respecting demand D
 - If D is routable in $G \Rightarrow D$ is routable in T
 - If D is routable in $T \Rightarrow D$ is routable in G with congestion q

Again, they are the same objects (up to $\log n$ factor). Tree flow sparsifiers are stronger.

Today's goal

Every graph admits a tree cut sparsifier with quality $O(\log^2 n)$ and depth $O(\log n)$

State of the art

- **Upper bound:** quality $O(\log n \log \log n)$ and depth $O(\log n)$ [Räcke, Shah'14]
- **Lower bound**: quality $\Omega(\log n)$ even on a grid graph.

Plan

- 1. Applications of tree cut/flow sparsifiers
- 2. Boundary-separator-expanding (BSE) hierarchies
- 3. Construct (1) using (2)
- 4. Constructions of BSE hierarchies
 - Simple construction (implemented in dynamic/distributed models)
 - Better construction (generalized to directed/length-constrained expansion)

Part 2 Applications of Tree Cut Sparsifiers

Approximate Minimum Cut

Given a tree cut sparsifier T of G with quality q and depth d.

For any (s, t), we can q-approx. (s, t)-mincut in O(d) time.

- Algo: return the minimum capacity c^* in (s, t)-path in T
- Analysis:
 - $c^* = \operatorname{mincut}_T(s, t)$
 - $\operatorname{mincut}_{G}(s,t) \leq \operatorname{mincut}_{T}(s,t) \leq q \operatorname{mincut}_{G}(s,t)$

Vertex Sparsifiers

Recall Lecture 1: Given G = (V, E) and terminal set $U \subseteq V$.

There is a graph H s.t.

- for all $X, Y \subseteq U$, $\operatorname{mincut}_G(X, Y) \leq \operatorname{mincut}_H(X, Y) \leq 4 \log n \cdot \operatorname{mincut}_G(X, Y)$
- $|E(H)| = O(\deg_G(U))$

Weak if U contains high degree vertices

Vertex Sparsifiers

Will show: Given G = (V, E) and terminal set $U \subseteq V$.

There is a graph H s.t.

- for all $X, Y \subseteq U$, $\operatorname{mincut}_G(X, Y) \leq \operatorname{mincut}_H(X, Y) \leq O(\log^2 n) \cdot \operatorname{mincut}_G(X, Y)$
- $|E(H)| = O(|U| \log n)$

Vertex Sparsifiers from Tree Cut Sparsifiers

Given a tree cut sparsifier T of G with quality $q = O(\log^2 n)$ and depth $d = O(\log n)$.

 $T_U \leftarrow \text{union of root-to-leaf paths in } T \text{ for all } v \in U$

- $|E(T_U)| = O(|U| \log n)$
- Thm: for all $X, Y \subseteq U$, mincut_G $(X, Y) \le \text{mincut}_{T_U}(X, Y) \le O(\log^2 n) \cdot \text{mincut}_{G}(X, Y)$
- Proof:
 - $\operatorname{mincut}_{T_U}(X,Y) = \operatorname{mincut}_T(X,Y)$ for $X,Y \subseteq U$
 - $\operatorname{mincut}_T(X,Y) \approx_q \operatorname{mincut}_G(X,Y)$

Vertex Sparsifiers

Will show: Given G = (V, E) and terminal set $U \subseteq V$.

There is a graph H s.t.

- for all $X, Y \subseteq U$, $\operatorname{mincut}_G(X, Y) \leq \operatorname{mincut}_H(X, Y) \leq O(\log^2 n) \cdot \operatorname{mincut}_G(X, Y)$
- $|E(H)| = O(|U| \log n)$

Part 3

Boundary-Separator-Expanding Hierarchies

Hierarchy

- A hierarchy \mathcal{H} of G = (V, E) is a laminar family of induced graphs:
 - root = G
 - leaf = a vertex
 - non-leaf = G[S] for some S

- For each cluster $H \in \mathcal{H}$,
 - Separator of S is sep(S) := edges crossing children of S
 - Boundary of S is $\partial(S) := E(S, V S)$

BSE Hierarchy

Def: a ϕ -boundary-separator-expanding (ϕ -BSE) hierarchy of G is

- a hierarchy \mathcal{H} s.t. for every cluster $H \in \mathcal{H}$,
- $\partial H \cup \text{sep}(H)$ is ϕ -expanding in H.

BSE Hierarchy: Partition View

Def: a ϕ -boundary-separator-expanding (ϕ -BSE) hierarchy of G is

- a partition E_0 , ..., E_ℓ of E(G) s.t.
- $E_{\geq i}$ is ϕ -expanding in $G E_{>i}$

Part 4

BSE hierarchy → Tree flow sparsifier

BSE hierarchy → Tree flow sparsifier

- \mathcal{H} : ϕ -BS-expanding hierarchy with ℓ levels.
- T: tree corresponding to \mathcal{H}
 - cluster $S \leftrightarrow \text{tree node } u_S$
 - $\operatorname{cap}_T(u_S, \operatorname{parent}(u_S)) = |\partial_G(S)|$

Thm: [Räcke'02]

T is tree flow sparsifier of G with quality ℓ/ϕ .

Remain to prove: For any \deg_G -respecting demand D

- 1. If D is routable in $G \Rightarrow D$ is routable in T
- 2. If D is routable in $T \Rightarrow D$ is routable in G with congestion $q = \ell/\phi$

Routable in $G \Rightarrow$ Routable in T

- Let D be a \deg_G -respecting demand routable in G with congestion 1
- Goal: Construct F_T routing D in T with congestion 1
- $F_T \leftarrow$ the unique way to route D in T.
- For each tree edge $e = (u_H, parent(u_H))$
 - $F_T(e) = \text{total demand of } D \text{ out of } H$
 - $cap_T(e) = |\partial H|$
 - $F_T(e) \le \operatorname{cap}_T(e)$
 - As D is routable in G with congestion 1
- So, $cong(F_T) \le 1$

total flow (e) = 4 < cap(e)

Did not need that ${\mathcal H}$ is a ϕ -BSE hierarchy in this argument

Routable in $T \Rightarrow$ Routable in G with congestion ℓ/ϕ

- ullet Let D be a \deg_G -respecting demand routable in T with congestion 1
- Goal: Construct F_G routing D in G with congestion ℓ/ϕ

Bottom-up Strategy:

- For each cluster $H \in \mathcal{H}$, define F_H inside H
 - F_H "finishes" routing demand in D between children of H.
 - F_H routes demand out of H to boundary ∂H ("forward" to parent cluster)
 - F_H has congestion $1/\phi$
- $F_G \leftarrow$ concatenate F_H overall clusters H
 - F_G successfully routes D
 - F_G has congestion ℓ/ϕ

Requirement of F_H on cluster H

• Let H_1, \dots, H_S be children of cluster H

• Pre-condition:

• Demand out of H_i has been routed uniformly to ∂H_i

Post-condition:

- Demand between children of H is successfully routed.
- Demand out of H is routed uniformly to ∂H

Requirement of F_H on cluster H (with pictures)

Demand

D(a,b) = 2D(a,c) = 1 where $c \notin H$

Pre-condition:

demand out of H_i is on ∂H_i uniformly

- F_H routes demand between children
- F_H routes demand out of H to ∂H uniformly

So, Post-condition:

demand out of H is on ∂H uniformly

BSE \rightarrow Existence of F_H with low congestion

Demand

$$D(a,b) = 2$$

 $D(a,c) = 1$ where $c \notin H$

Pre-condition:

demand out of H_i is on ∂H_i uniformly

- F_H routes demand between children
- F_H routes demand out of H to ∂H uniformly

So, Post-condition:

demand out of H is on ∂H uniformly

To satisfy **Post-condition** given **Pre-condition**, this induces a demand D_H respecting $\partial H \cup \operatorname{sep}(H)$. $\partial H \cup \operatorname{sep}(H)$ is ϕ -expanding in $H \Rightarrow \exists F_H$ routing D_H in H with congestion $1/\phi$

Routable in $T \Rightarrow \text{Routable in } G$ with congestion ℓ/ϕ

- Let D be a \deg_G -respecting demand routable in T with congestion 1
- Goal: Construct F_G routing D in G with congestion ℓ/ϕ

Bottom-up Strategy:

- For each cluster $H \in \mathcal{H}$, define F_H inside H
 - F_H "finishes" routing demand in D between children of H.
 - F_H routes demand out of H to boundary ∂H ("forward" to parent cluster)
 - F_H has congestion $1/\phi$

- F_G —concatenate F_H overall clusters H
 - F_G route all demand pairs in D
 - F_G has congestion ℓ/ϕ

BSE hierarchy → Tree flow sparsifier

- \mathcal{H} : ϕ -BS-expanding hierarchy with ℓ levels.
- T: tree corresponding to \mathcal{H}
 - cluster $S \leftrightarrow$ tree node u_S
 - $\operatorname{cap}_T(u_S, \operatorname{parent}(u_S)) = |\partial_G(S)|$

Thm: [Räcke'02]

T is tree flow sparsifier of G with quality ℓ/ϕ .

Part 5 Simple Bottom-Up Construction of BSE hierarchies

Based on [Goranci Raecke S Tan'21]

BSE Hierarchy

Def: a ϕ -boundary-separator-expanding (ϕ -BSE) hierarchy of G is

- a hierarchy \mathcal{H} s.t. for every cluster $H \in \mathcal{H}$,
- $\partial H \cup \text{sep}(H)$ is ϕ -expanding in H.

Our Goal

Let G be a graph.

Theorem: \exists a $(1/n^{o(1)})$ -BSE hierarchy of G with $\sqrt{\log n}$ levels.

Corr: \exists a tree flow sparsifier of G with quality $n^{o(1)}$

Recall: boundary-linked ϕ -expander decomposition

Theorem: Given G = (V, E), $A, \phi \le 1/4 \log n$, there exists $C \subseteq E$

- $|C| \le (2\phi \log n) \cdot |A|$
- $A + \deg_C$ is ϕ -expanding in G C

Recall: β -boundary-linked ϕ -expander decomposition

Theorem: Given G = (V, E), $A, \beta \leq 1/4\phi \log n$, there exists $C \subseteq E$

- $|C| \le (2\phi \log n) \cdot |A|$
- $A + \beta \deg_C$ is ϕ -expanding in G C

A is not expanding in G

Think:

$$\phi = 1/(\log n)^{\Theta(\sqrt{\log n})}$$
 and $\beta = 1/4\phi \log n$.

- $A \cap U$ is ϕ -expanding in G[U].
- $\frac{\partial U}{\partial U}$ is $(\frac{\phi}{\beta} = \frac{1}{4 \log n})$ -expanding in G[U]
- The boundary is much more expanding

Construction: Contract and Recurse

- Init: $G_0 \leftarrow G$, $\phi = 1/(\log n)^{\Theta(\sqrt{\log n})}$, $\beta = 1/4\phi \log n$.
- For $i \geq 1$
 - $C_i \leftarrow \beta$ -boundary-linked ϕ -ED of G_{i-1}
 - $G_i \leftarrow \text{contract components of } G_{i-1} C_i$ (remove self loops)
 - if $E(G_i) = \emptyset$, break
- Return $\mathcal{H} \leftarrow \{\text{super-nodes in all } G_i\}$

Illustration

Illustration

Illustration

Illustration

Contracted Cluster H' vs. Cluster H

- Let H' be a component in $G_i C_{i+1}$.
- **Key:** $\beta(\partial H') + E(H')$ is ϕ -expanding in H'
 - C_{i+1} is a β -boundary-linked ϕ -ED of G_i

- H: uncontract supernodes of H'
 - $\partial H = \partial H'$
 - sep(H) = E(H')
- H is a **level-**i cluster of \mathcal{H} (component of $G C_{i+1}$).

Construction: Contract and Recurse

- Init: $G_0 \leftarrow G$, $\phi = 1/(\log n)^{\Theta(\sqrt{\log n})}$, $\beta = 1/4\phi \log n$.
- For $i \geq 1$
 - $C_i \leftarrow \beta$ -boundary-linked ϕ -ED of G_{i-1}
 - $G_i \leftarrow \text{contract components of } G_{i-1} C_i \text{ (remove self loops)}$
 - if $E(G_i) = \emptyset$, break
- Return $\mathcal{H} \leftarrow \{\text{super-nodes in all } G_i\}$

Analysis

- There are $\ell = \sqrt{\log n}$ levels as $|C_i| \le (2\phi \log n)^i m$.
- To show: boundary and separator of cluster ${\cal H}$ are expanding in ${\cal H}$

Analysis plan

Let H be a **level-**i cluster (component of $G - C_{i+1}$).

Step 1: ∂H is $\frac{1}{(4 \log n)^i}$ expanding in H

Step 2: $\partial H \cup \operatorname{sep}(H)$ is $\frac{\phi}{(4 \log n)^i}$ expanding in H

So,
$$\mathcal{H}$$
 is $\left(\frac{\phi}{(4\log n)^{\ell}} = \frac{1}{(\log n)^{O(\sqrt{\log n})}}\right)$ -BSE hierarchy of G .

Boundary is Expanding

 $D: \partial H$ -respecting demand

Task: route *D* in *H* with congestion $(4 \log n)^{i+1}$

- 1. Route D in contracted H' $\exists F'$ routing D in H with congestion $4 \log n$
 - $\beta(\partial H')$ is ϕ -expanding in H'
 - $\partial H'$ is $(\phi/\beta = 1/4 \log n)$ -expanding in H'
 - D respects $\partial H = \partial H'$
- 2. Route inside supernode of H'

Boundary is Expanding

 $D: \partial H$ -respecting demand

Task: route *D* in *H* with congestion $(4 \log n)^{i+1}$

- 1. Route D in contracted H' $\exists F'$ routing D in H with congestion $4 \log n$
- 2. Route inside supernode of H'
 - H_v : a level-(i-1) child of H
 - ∂H_v -respecting demand is routable in H_v with cong $(4\log n)^i$ (by induction)
 - "To connect F' inside H_v " induces a $(4 \log n) \partial H_v$ -respecting demand D_v
 - D_v is routable with congestion $(4 \log n)^{i+1}$

Analysis plan

Let H be a **level-**i cluster (component of $G - C_{i+1}$).

✓ Step 1: ∂H is $\frac{1}{(4 \log n)^i}$ expanding in H

Step 2: $\partial H \cup \operatorname{sep}(H)$ is $\frac{\phi}{(4 \log n)^i}$ expanding in H

So,
$$\mathcal{H}$$
 is $\left(\frac{\phi}{(4\log n)^{\ell}} = \frac{1}{(\log n)^{O(\sqrt{\log n})}}\right)$ -BSE hierarchy of G .

Boundary and Separator are Expanding

 $D: \partial H \cup \operatorname{sep}(H)$ -respecting demand

Task: route *D* in *H* with congestion $(4 \log n)^i / \phi$

- 1. Route D in contracted H' $\exists F' \text{ routing } D \text{ in } H \text{ with congestion } \frac{1/\phi}{\phi}$
 - $\partial H' \cup E(H')$ is ϕ -expanding in H'
 - D respects $\partial H \cup \text{sep}(H) = \partial H' \cup E(H')$
- 2. Route inside supernode of H'

E(H)

H6

Boundary and Separator are Expanding

 $D: \partial H \cup \operatorname{sep}(H)$ -respecting demand

Task: route *D* in *H* with congestion $(4 \log n)^{i} / \phi$

- 1. Route D in contracted H' $\exists F'$ routing D in H with congestion $1/\phi$
- 2. Route inside supernode of H'
 - H_v : a level-(i-1) child of H
 - ∂H_v -respecting demand is routable in H_v with cong $(4\log n)^i$ (by induction)
 - "To connect F' inside H_v " induces a $(1/\phi)\partial H_v$ -respecting demand D_v
 - D_v is routable with congestion $(4 \log n)^i / \phi$

E(H)

H6

Analysis plan

Let H be a **level-**i cluster (component of $G - C_{i+1}$).

- ✓ Step 1: ∂H is $\frac{1}{(4 \log n)^i}$ expanding in H
- ✓ **Step 2**: $\partial H \cup \operatorname{sep}(H)$ is $\frac{\phi}{(4 \log n)^i}$ expanding in H
- \checkmark So, \mathcal{H} is $\left(\frac{\phi}{(4\log n)^{\ell}} = \frac{1}{(\log n)^{O(\sqrt{\log n})}}\right)$ -BSE hierarchy of G.

Summary

Let G be a graph.

Theorem: \exists a $(1/n^{o(1)})$ -BSE hierarchy of G with $\sqrt{\log n}$ levels.

Corr: \exists a tree flow sparsifier of G with quality $n^{o(1)}$

Simplicity of this construction leads to

- Dynamic construction [GRST'21]

 ⇒ dynamic max flow [GRST'21], dynamic mincut [JST'24, EHL'25], static exact max flow [BCKLMPS'24]
- Distributed construction [HRG'22] ⇒ Universally Optimal Distributed Algorithms

Part 6 Construction of BSE Hierarchies via Dynamic Expander Decomposition

Based on [Haeupler Long Röyskö S'26]

Next Goal

Let G be a graph.

Theorem: \exists a $(\frac{1}{16 \log m})$ -BSE hierarchy of G with $\log m$ levels.

Corr: \exists a tree cut sparsifier of G with quality $O(\log^2 n)$

*Do not get tree flow sparsifier. The argument only bounds cut expansion in the BSE hierarchy

Recall: BSE Hierarchy: Partition View

Def: a ϕ -boundary-separator-expanding (ϕ -BSE) hierarchy of G is

- a partition E_0 , ..., E_ℓ of E(G) s.t.
- $E_{\geq i}$ is ϕ -expanding in $G E_{>i}$

Ingredient: Dynamic Expander Decomposition

- **Fixed** graph G = (V, E) and ϕ
- Objects that only grows
 - $D \subseteq E$: set of edge deletions
 - A: a node weighting

Thm: DynED(G, ϕ, A, D) maintains an incremental set $C \supseteq D$

- A is ϕ -expander in G C
- $|C| |D| \le \phi |A| \log n$

Note: Even when A and D grow, C might not grow

BSE Hierarchy Construction

Thm: DynED (G, ϕ, A, D) maintains $C \supseteq D$

- A is ϕ -expander in $G-\mathcal{C}$
- $|C| |D| \le \phi |A| \log n$

- Init:
 - $C_0 \leftarrow E$, $C_i \leftarrow \emptyset$ for $i \ge 1$

•
$$\phi = \frac{1}{16 \log n}$$
 and $\ell = \frac{\log m}{\log(1/4 \log n)}$

- For $0 \le i \le \ell$, maintain until there is no update $C_{i+1} \leftarrow \operatorname{DynED}(G, \phi, A_i \coloneqq \deg_{C_i}, D_i \coloneqq C_{i+2})$
- Return $E_i = C_i C_{i+1}$ for all $i \leq \ell$.

Let's first understand what's going on

$$C_{i+1} \leftarrow \text{DynED}_i := \text{DynED}(G, \phi, A_i := \deg_{C_i}, D_i := C_{i+2})$$

Not trivial! This is not quite bottom-up nor top-down.

Interaction with level i-1

$$C_{i+1} \leftarrow \text{DynED}_i \coloneqq \text{DynED}(G, \phi, A_i \coloneqq \deg_{C_i}, D_i \coloneqq C_{i+2})$$

Not trivial! This is not quite bottom-up nor top-down.

Interaction with level i-1

$$C_{i+1} \leftarrow \text{DynED}_i := \text{DynED}(G, \phi, A_i := \deg_{C_i}, D_i := C_{i+2})$$

Not trivial! This is not quite bottom-up nor top-down.

Interaction with level i + 1

$$C_{i+1} \leftarrow \text{DynED}_i \coloneqq \text{DynED}(G, \phi, A_i \coloneqq \deg_{C_i}, D_i \coloneqq C_{i+2})$$

Not trivial! This is not quite bottom-up nor top-down.

Interaction with level i + 1

$$C_{i+1} \leftarrow \text{DynED}_i := \text{DynED}(G, \phi, A_i := \deg_{C_i}, D_i := C_{i+2})$$

But $|C_i|$ get smaller and smaller

- Homework: $|C_i| \le (4\phi \log n)^i m$ by non-trivial induction.
- So, $C_{\ell+1=O(\log m)} = \emptyset$.

BSE Hierarchy Construction

Thm: DynED (G, ϕ, A, D) maintains $C \supseteq D$

- A is ϕ -expander in G C
- $|C| |D| \le \phi |A| \log n$

- Init:
 - $C_0 \leftarrow E$, $C_i \leftarrow \emptyset$ for $i \ge 1$
 - $\phi = \frac{1}{16 \log n}$ and $\ell = \frac{\log m}{\log(1/4 \log n)}$

Correct assuming $C_{\ell+1} = \emptyset$.

 $C_{i+1} \supseteq C_{i+2}$ for all *i*. (They are nested).

$$C_i = E_{\geq i}$$
.

 C_i is expanding in $G - C_{i+1}$

 $\Rightarrow E_{\geq i}$ is expanding in $G - E_{>i}$.

• For $0 \le i \le \ell$, maintain *until there is no update*

$$C_{i+1} \leftarrow \text{DynED}(G, \phi, A_i := \deg_{C_i}, D_i := C_{i+2})$$

• Return $E_i = C_i - C_{i+1}$ for all $i \leq \ell$.

How did we use $C_{\ell+1} = \emptyset$?

Otherwise, E_ℓ is not expanding in G

Conclude

Let G be a graph.

Theorem: \exists a $(\frac{1}{16 \log m})$ -BSE hierarchy of G with $\log m$ levels.

Corr: \exists a tree cut sparsifier of G with quality $O(\log^2 n)$ *Do not get tree flow sparsifier. The argument only bounds cut expansion in the BSE hierarchy

Remark

- Previous $\tilde{\Omega}(1)$ -BSE hierarchy only work with edge-expansion in undirected graphs. [R'02,BKR'03,HHR'02'RS'14,RST'14]
- Our construction generalizes to other expansions.
 - Combinatorial max flow [BBST'24]: directed expansion
 - Fault-tolerant distance oracle [HLRS'26]: length-constrained expansion
- Open: Explore power of BSE-hierarchy for other expansion notions

Summary

Summary

- Tree flow sparsifiers and applications
- BSE hierarchy → Tree flow sparsifiers
- Constructions of BSE hierarchies
 - 1. Based on Boundary-linked ED: Contract and Recurse
 - Implemented in dynamic/distributed models
 - Quality $n^{o(1)}$

2. Based on Dynamic ED

- Generalized to directed/length-constrained expansion
- Quality $\log^2 n$