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Part 1
Tree Cut/Flow Sparsifiers



Tree Cut Sparsifier

Def: A tree cut sparsifier T of G with quality g:
1. Acapacitated tree where leaf set = V(G)
2. ForanyX,Y cV
mincut; (4, B) < mincut; (4, B) £ g mincut; (4, B)

A single tree that approximates all 2" cuts of G!
 Related: a Gomory-Hu tree exactly preserves n? pair-wise mincuts of G.



Tree Flow Sparsifier

Def: A tree cut sparsifier T of G with quality g:

1. A capacitated tree where leaf set = V(G) G

2. ForanyX,Y cV
mincut; (4, B) < mincut;(4,B) < g mincut; (4, B)

Def: A tree flow sparsifier T of ¢ with quality g:

2. Foranydeg.-respectingdemand D
* If D isroutablein G = D isroutableinT
* If D isroutableinT = D is routable in G with congestion g

Again, they are the same objects (up to log n factor).
Tree flow sparsifiers are stronger.




Today’s goal

Every graph admits a tree cut sparsifier
with quality O(log® n) and depth 0 (logn)

State of the art
* Upper bound: quality O(lognloglogn) and depth O(logn) [Racke, Shah’14]
* Lower bound: quality 2(logn) even on a grid graph.



Plan

> wbh -

Applications of tree cut/flow sparsifiers
Boundary-separator-expanding (BSE) hierarchies
Construct (1) using (2)

Constructions of BSE hierarchies
* Simple construction (implemented in dynamic/distributed models)
» Better construction (generalized to directed/length-constrained expansion)



Part 2
Applications of
Tree Cut Sparsifiers



Approximate Minimum Cut

Given a tree cut sparsifier T of G with quality g and depth d.

For any (s, t), we can g-approx. (s,t)-mincutin O(d) time.
* Algo: return the minimum capacity c*in (s,t)-pathin T
* Analysis:

« ¢* = mincuty (s, t) AT
* mincut;(s,t) < mincuty(s,t) < g mincut;(s,t)




Vertex Sparsifiers
Recall Lecture 1: Given G = (V,E) and terminalsetU € V.

Thereis a graph H s.t.
e forallX,Y € U,

mincut;(X,Y) < mincuty(X,Y) < 4logn - mincut;(X,Y)
* |[E(H)| = 0(degs(U))

Weak if U contains
high degree vertices




Vertex Sparsifiers

Will show: Given ¢ = (V,E) and terminalsetU € V.

Thereis a graph H s.t.

e forallX,Y € U,
mincut; (X,Y) < mincuty(X,Y) < 0(log?n) - mincut; (X,Y)

* |[E(H)| = 0(|U|logn)



Vertex Sparsifiers from Tree Cut Sparsifiers
Given a tree cut sparsifier T of G with quality g = 0(log? n) and depth d = 0(logn).

Ty, <= union of root-to-leaf paths in T forallv € U
* |[E(Ty)| = 0(|U]logn)

 Thm:forallX,Y € U,
mincutg (X, Y) < mincutr, (X,Y) < 0(log®n) - mincutg (X,Y)

* Proof: \T
* mincutr,(X,Y) = mincuty(X,Y) forX,Y € U

 mincutr(X,Y) =, mincut;(X,Y)



Vertex Sparsifiers

Will show: Given ¢ = (V,E) and terminalsetU € V.

Thereis a graph H s.t.

e forallX,Y € U,
mincut; (X,Y) < mincuty(X,Y) < 0(log?n) - mincut; (X,Y)

* |[E(H)| = 0(|U[logn)




Part 3

Boundary-Separator-Expanding Hierarchies



Hierarchy

* Ahierarchy H of G = (V, E) is a laminar family of induced graphs:
e root=G
* leaf = avertex
* non-leaf=G|[S] forsome S

 For each cluster H € H,
« Separator of S is sep(S) := edges crossing children of S
* BoundaryofSis d(S) :=E(S,V —25)




BSE Hierarchy

Def: a ¢-boundary-separator-expanding (¢-BSE) hierarchy of G is
* a hierarchy H s.t. foreverycluster H € H,
* 0H U sep(H) is ¢p-expanding in H.
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BSE Hierarchy: Partition View

Def: a ¢-boundary-separator-expanding (¢-BSE) hierarchy of G is
 a partition Ey, ..., E, of E(G) s.t.
* E;is ¢p-expandingin G — Es;
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Part 4

BSE hierarchy — Tree flow sparsifier



BSE hierarchy — Tree flow sparsifier

* H': ¢p-BS-expanding hierarchy with £ levels.

* T': tree corresponding to H
* clusterS < tree node ug

. CapT(uS: parent(ug)) = [95(S)|

Thm: [Riacke'02]

T is tree flow sparsifier of G with quality £/¢.
N TT—

Remain to prove: For any deg.-respecting demand D
1. IfDisroutablein G = D isroutableinT
2. If DisroutableinT = D isroutable in G with congestionq = ¥/¢




Routable in G = Routablein T

* Let D be a deg,-respecting demand routable in G with congestion 1
e Goal: Construct FT rOUting D in T win congestion 1

* Fr «the uniquewaytoroute DinT. tatel How Brer =4 s capee)
» For each tree edge e = (uy, parent(uy)) ’( ~
* Fr(e) =totaldemand of D out of H 4 4\ N
- capy(e) = |0H]| y SN
* Fr(e) < capr(e) e ) %
* As D isroutable in G with congestion 1 ’4
3

/3 o
R :,

A\
* So, cong(Fr) <1 —- 6
WBSE hierarchy in this argument ] .2/“\‘




Routable in T" = Routable in G with congestion £/¢

* Let D be a deg;-respecting demand routable in T with congestion 1
* Goal: Construct F; routing D in G with congestion €/¢

Bottom-up Strategy:

* Foreach cluster H € H, define Fy inside H
* Fy “finishes” routing demand in D between children of H.
» Fy routes demand out of H to boundary dH (“forward” to parent cluster)
* Fy has congestion 1/¢

* F, «concatenate Fy overall clusters H
* F; successfully routes D
* F; has congestion ¢/¢



Requirement of F; on cluster H

* Let Hy, ..., Hg be children of cluster H

* Pre-condition:
* Demand out of H; has been routed uniformly to 0H;

* Post-condition:
* Demand between children of H is successfully routed.

 Demand out of H is routed uniformly to 0H



Requirement of I; on cluster H (with pictures)

* Fy routes demand between children
demand out of H, is on 3H; uniformly * Fy routes demand out of H to dH uniformly

D(a,c) = 1wherec ¢ H So, Post-condition:
demand out of H is on dH uniformly

Demand Pre-condition:



BSE — Existence of I with low congestion

* Fy routes demand between children
demand out of H, is on 3H; uniformly * Fy routes demand out of H to dH uniformly

D(a,c) = 1wherec ¢ H So, Post-condition:
demand out of H is on dH uniformly

Demand Pre-condition:

To satisfy Post-condition given Pre-condition,
this induces a demand Dy respecting dH U sep(H).
0H U sep(H) is ¢p-expanding in H = 3Fy routing Dy in H with congestion 1/¢




Routable in T" = Routable in G with congestion £/¢

* Let D be a deg;-respecting demand routable in T with congestion 1
* Goal: Construct F; routing D in G with congestion €/¢

Bottom-up Strategy:
v ° Foreach cluster H € H, define Fy inside H

* Fy “finishes” routing demand in D between children of H.
» Fy routes demand out of H to boundary dH (“forward” to parent cluster)
* Fy has congestion 1/¢

v~ ° [ <concatenate Fy overall clusters H
* F; route alldemand pairsin D
* F; has congestion ¢/¢



BSE hierarchy — Tree flow sparsifier

* H': ¢p-BS-expanding hierarchy with £ levels.

* T': tree corresponding to H
* clusterS < tree node ug

. CapT(uS: parent(ug)) = [95(S)|

Thm: [Racke'02]
T is tree flow sparsifier of G with quality £/¢.



Part5
Simple Bottom-Up
Construction of BSE hierarchies

Based on [Goranci Raecke S Tan’21]



BSE Hierarchy

Def: a ¢-boundary-separator-expanding (¢-BSE) hierarchy of G is
* a hierarchy H s.t. foreverycluster H € H,
* 0H U sep(H) is ¢p-expandingin H.
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Our Goal

Let G be a graph.

Theorem: 3 a (1/n°™)-BSE hierarchy of G with /logn levels.

Corr: 3 a tree flow sparsifier of G with quality no)



Recall: boundary-linked ¢p-expander decomposition

Theorem: Given G = (V,E), A, < 1/4logn, thereexistsC C E
* [C] < (2¢logn) - 4]
* A+ deg.is ¢p-expandinginG — C

A \s ot Qx[)omc'i@ i (5

olegc + {'\ (S q)-exﬁaam\\'\j % 6'C



Recall: f-boundary-linked ¢-expander decomposition

Theorem: Given G = (V,E), A, f < 1/4¢logn, thereexistsC C E

* |C] = (2¢logn) - |A]

* A+ fdeg, is ¢p-expandingin G — C

A \s ot Qx[)omc'i@ (o

Bdege + A is p-expanding in 6-C

/ Think: \

¢ = 1/(logn)®Woe™) and g = 1/4¢ logn.

« ANUis¢-expandingin G[U].
1

. . ) L
dU is (B = 410gn) expandingin G[U]

! The boundary is much more expanding/




Construction: Contract and Recurse

* Init: Gy <« G, p = 1/(logn)®Wlos™ 5 — 1/4¢logn.
*Fori =1

* ; « [-boundary-linked ¢-ED of G;_4

¢ Gi < contract components of Gi—l — Ci (remove self loops)

« if E(G;) = 0,break
* Return H « {super-nodesin all G;}




[Llustration

Go

mry—linked ¢-ED ]




[llustration

Glz contracting G

mry-linked ¢-ED ]




[llustration

Glz contracting G GZ: contracting G,

v @
v,

=X \2

C,| ~ p2m mry-linked ¢-ED ]




[llustration

Glz contracting G|, GZ: contracting G G3: contracting G,




Contracted Cluster H' vs. Cluster H

* Let H be a componentin G; — C;44. , I/ /
* Key: B(0H') + E(H") is ¢p-expanding in H' T H
* C;,1isa f-boundary-linked ¢-ED of G; \‘?0 E(H) ‘

* H: uncontract supernodes of H'
« 0H = 0H'
* sep(H) = E(H")

 H is a level-i cluster of H (componentof G — C;,4).




Construction: Contract and Recurse

e Init: Gy « G, ¢ = 1/(logn)®We™ B = 1/4¢logn.

*Fori>1
* (; « [-boundary-linked ¢-ED of G;_;
* (; « contract components of G;_; — C; (remove self loops)
« if E(G;) = @,break

* Return H « {super-nodesin all G;}

Analysis
* There are £ = \/logn levels as |C;| < (2¢ logn)'m.
* To show: boundary and separator of cluster H are expanding in H



Analysis plan

Let H be a level-i cluster (componentof G — C;,4).

Step1:0H is

@ log 1) expandingin H

: - ¢ .
Step 2: 0H U sep(H) is dlog ) expandingin H

: ¢ _ 1 ) .
So, H is ((4 og)? (logn)o(\/m)) BSE hierarchy of G.



Boundary is Expanding

D: 0H-respecting demand
Task: route D in H with congestion (4 logn)‘*!

1. Route D in contracted H’
JF' routing D in H with congestion 4 logn
« B(0H') is ¢p-expanding in H'
« dH'is (¢p/B = 1/4logn)-expanding in H'
* D respects 0H = 0H'

2. Route inside supernode of H'




Boundary is Expanding ‘ }__./

D: 0H-respecting demand
Task: route D in H with congestion (4logn)!*!
1. Route D in contracted H'

JF' routing D in H with congestion 4 logn

2. Route inside supernode of H'
« H,:alevel-(i — 1) child of H z
 0H,-respecting demand is routable in H, with cong (4logn)® ( bylnductlon)
* “To connect F' inside H,” induces a (4 logn)dH,-respecting demand D,,

* D, is routable with congestion (4 logn)*?




Analysis plan

Let H be a level-i cluster (componentof G — C;,4).

v~ Step 1: 0H is

expanding in H

¢
(4logn)t

(4 log n)t
Step 2: 0H U sep(H) is

expanding in H

: ¢ _ 1 ) .
So, H is ((4 og)? (logn)o(\/m)) BSE hierarchy of G.



cong .l

Boundary and Separator are Expanding ___./
D: 0H U sep(H)-respecting demand L(HL.V
Task: route D in H with congestion (4 log n)i/qb

1. Route D in contracted H'
3F' routing D in H with congestion 1/¢
« JH' U E(H") is ¢p-expanding in H'
* D respects 0H U sep(H) = 0H' UE(H")

2. Route inside supernode of H'




cong .l

Boundary and Separator are Expanding {_‘/

D: 0H U sep(H)-respecting demand
Task: route D in H with congestion (4logn)'/¢

EgHja Y

1. Route D in contracted H' 5y | ./
JF' routing D in H with congestion 1/¢ | Cu}sﬂr’t”) =

2. Route inside supernode of H' ﬁﬁ@

« H,:alevel-(i — 1) child of H

« 0H,-respecting demand is routable in H, with cong (4logn)® (by induction)
* “To connect F' inside H,” induces a (1/¢)6H -respecting demand D,,

* D, is routable with congestion (4 logn)!/¢




Analysis plan

Let H be a level-i cluster (componentof G — C;,4).

v~ Step 1: 0H is

expanding in H

¢
(4logn)t

(4 log n)t
\/Step 2: 0H U sep(H) is

expanding in H

: ¢ _ 1 ) .
v~ So, H is ((4 og)? (logn)o(\/m)) BSE hierarchy of G.



Summary

Let G be a graph.

Theorem: 3 a (1/n°(")-BSE hierarchy of G with \/logn levels.
Corr: 3 a tree flow sparsifier of ¢ with quality no)

v

Simplicity of this construction leads to

* Dynamic construction [GRST’21]
= dynamic max flow [GRsT’21], dynamic mincut [JsT24, EHL’25], static exact max flow [BCKLMPS’24]

* Distributed construction [HRG’22]
= Universally Optimal Distributed Algorithms



Part 6
Construction of BSE Hierarchies via
Dynamic Expander Decomposition

Based on [Haeupler Long Roysko S’26]



Next Goal

Let G be a graph.

1
(0

Theorem: 3 a (161 )-BSE hierarchy of G with log m levels.

Corr: 3 a tree cut sparsifier of G with quality 0(log2n)

*Do not get tree flow sparsifier. The argument only bounds cut expansion in the BSE hierarchy



Recall: BSE Hierarchy: Partition View

Def: a ¢-boundary-separator-expanding (¢-BSE) hierarchy of G is
 a partition Ey, ..., E, of E(G) s.t.
* E.;is ¢p-expandingin G — Es;
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Ingredient: Dynamic Expander Decomposition

* Fixed graph ¢ = (V,E) and ¢

* Objects that only grows
* D C E: set of edge deletions
* A: anode weighting

Thm: DynED(G, ¢, A, D) maintains an incrementalset C 2 D
* Ais ¢p-expanderinG — C
* |Cl =D < ¢|A|logn

Note: Even when A and D grow, C might not grow



 Ais¢-expanderinG — C

BSE Hierarchy Construction { €1~ IDI < $l4]log

Thm: DynED(G, ¢, A, D) maintains C 2 D J

* Init:
e Cy < E,Ci<=Qfori=>1
. _ 1 _ logm
(]5 - 16logn and £ = log(1/4log )

 For0 < i < ¥, maintain until there is no update
Ci+1 < DynED(G, ¢, 4; = degc,, D; = Ci42)

* ReturnE; = C; — C;,4 foralli < 4.

[ Let’s first understand what’s going on J




Cit+1 < DynED; == DynED(G, ¢, 4; == degc,, D; = Ci42)
Bidirectional interactions between levels

Not trivial! This is not quite bottom-up nor top-down.
C it

When C; ., grows, ‘
Di—l = Ci+1 atleveli — 1 ‘
grows too G

{ Interaction with leveli — 1 J




Cit+1 < DynED; == DynED(G, ¢, 4; == degc,, D; = Ci42)
Bidirectional interactions between levels

Not trivial! This is not quite bottom-up nor top-down.

C it
When C; ., grows,
D;_1 = C;yq atleveli — 1
grows too

After D;_, grows,
C; < DynED;_;at leveli — 1 grows too
Aj = degc, grows
This might cause C;, 1 to grow again

{ Interaction with leveli — 1 }




Cit+1 < DynED; == DynED(G, ¢, 4; == degc,, D; = Ci42)
Bidirectional interactions between levels

Not trivial! This is not quite bottom-up nor top-down.

Ajyq =degc,,  atleveli+ 1grows

When C;, 1 grows,
C;+, might grow

{ Interaction with leveli + 1 }




Cit+1 < DynED; == DynED(G, ¢, 4; == degc,, D; = Ci42)
Bidirectional interactions between levels

Not trivial! This is not quite bottom-up nor top-down.

C It ( After C;,, grows,
D; = Cj4, grows

Ciy1 2 D; must grow again

Ajyq =degc,,  atleveli+ 1grows

When C;, 1 grows,
C;+, might grow

{ Interaction with leveli + 1 }




Cit+1 < DynED; == DynED(G, ¢, 4; == degc,, D; = Ci42)
But |C;| get smaller and smaller

« Homework: |C;| < (4¢ logn)'m by non-trivial induction.

* S0, Coy1=0(logm) = D.



Thm: DynED(G, ¢, A, D) maintains C 2 D
 Ais¢-expanderinG — C

BSE Hierarchy Construction |- ici- i< ¢laiogn

e |nit: /Correct assuming C,, 1 = Q. N
. C CE.C —dfori>1 Civq 2 C;,, foralli. (They are nested).
0 = = C; = Es;.
.« A 1 _ logm L =t o
¢ = 16logn and £ = Tog(1/4 Tog ) Ciis e>.<pand|ng |.n G.— Cii1q
ngmc} — E5;. )

* For0 < i < ¥, maintain until there is no update
Ci+1 < DynED(G, ¢, 4; = degc,, D; = Ci42)

* ReturnE; = C; — C;,4 foralli < 4.

HowdidweuseC,,{ =0 ?
Otherwise, E, is not expanding in G




v

Conclude

Let G be a graph.

Theorem: 3J a ( )-BSE hierarchy of ¢ with log m levels.

Corr: 3 atree cut sparS|f|er of G with quality O(log?n

*Do not get tree flow sparsifier. The argument only bounds cut expansion in the BSE hierarchy

Remark

* Previous ((1)-BSE hierarchy only work with edge-expansion in undirected graphs.
[R’02,BKR’03,HHR’02’RS’14,RST’14]

* Our construction generalizes to other expansions.
* Combinatorial max flow [BBST’24]: directed expansion
* Fault-tolerant distance oracle [HLRS’26]: length-constrained expansion

* Open: Explore power of BSE-hierarchy for other expansion notions



Summary



Summary

* Tree flow sparsifiers and applications
* BSE hierarchy — Tree flow sparsifiers

* Constructions of BSE hierarchies
1. Based on Boundary-linked ED: Contract and Recurse

* Implemented in dynamic/distributed models
« Quality n°®
2. Based on Dynamic ED

* Generalized to directed/length-constrained expansion
* Qualitylog?n



