
Lecture 5
Overview of the Area

Thatchaphol Saranurak
U of Michigan

August 18, 2025
ADFOCS

Plan

1. History of expander decomposition and hierarchies
2. Recent developments in the last 10 years
3. Other central concepts in the area

Part 1
Early History

1980-2000: before first appearance

Areas that motivates expander decomposition and hierarchies

1. Approximate Sparsest Cuts and Multi Cuts
• Flow/cut characterization [Leighton Rao 88]
• Metric embedding [Linial Longdon Rabinonich 95]

2. Spectral graph theory
• Eigenvalue characterization: Cheeger’s Inequality [Alon Milman 85]
• Random-walk characterization: [Sinclair Jerrum 89]

3. Graph minor theory
• Disjoint path problem [Graph Minor XIII, Robertson Seymour 95]

4. Distributed algorithms
• Low diameter decomposition [Awerbuch Peleg 90] [Linial Saks 93]

2000-2005: first appearance

• 1998 Goldreich Ron: (Implicit) expander decomposition
• For property testing

• 2000 Kannan Vempala Vetta: Define expander decomposition

• 2002 Räcke: Tree flow sparsifier (also called Räcke tree)
• via Boundary-separator-expanding hierarchy [Räcke 02; Bienkowski Korzeniowski Räcke 03]

• Build a complicated version [Harrelson Hildrum Rao 03; Räcke Shah 14]

• Applications:
• Oblivious routing, Online multicut
• Minimum bisection, Min max partition

• Open problem: is optimal quality 𝑞 = Θ(log 𝑛)?
• Tree flow sparsifiers: 𝑂(logଶ 𝑛 log log 𝑛), Ω log 𝑛
• Tree cut sparsifiers: 𝑂(log 𝑛 log log 𝑛) existential, 𝑂(logଵ.ହ 𝑛 log log 𝑛) poly-time, Ω log 𝑛

2000-2005: first appearance

• 2004 − 2006 Chekuri Khanna Shepherd (4 papers):

Expander decomposition for any node weighting
• Applications:

• disjoint paths, all-or-nothing flow
• polynomial grid minor theorem [Chekuri Chuzhoy’14]

• Generalization: vertex expansion and directed expansion [Chekuri Ene’13 and ’15]

• 2007 Patraşcu Thorup: Separator-expanding hierarchy
• Connectivity oracles under edge faults

Before 2005

Expander decomposition, SE hierarchy, BSE hierarchy
already appeared in literature.

It was unclear why they are useful for very fast algorithms yet.

But these concepts were not formalized in a unified way.

Relationship between Räcke’s and PT’s hierarchies were not
explicit documented anywhere… until 2025.

Central Concepts
• Cut-matching Game

Recap key concepts
Expander Decomposition

Boundary-linked version

Dynamic version

Expanding Balanced Separator

Repeated Expander Decomposition

Separator-expanding (SE) Hierarchy

Boundary-separator-expanding (BSE) Hierarchy

Cut
Matching

Game

Cut-Matching Game

A process for building an expander
from few adversarial matchings

Cut-Matching Game

Init: an empty 𝑛-vertex graph 𝑋ଵ = (𝑈, ∅)

Round 𝑖:
• You choose a bisection (𝐴௜, 𝐵௜) where |𝐴௜| = |𝐵௜|

• An adversary chooses a perfect matching 𝑀௜ between 𝐴௜ and 𝐵௜

• 𝑋௜ାଵ ← 𝑋௜ ∪ 𝑀௜

Goal:
Choose (𝐴௜, 𝐵௜) cleverly,

so that after a few rounds
𝑋 must be a (connected)

expander

Cut-Matching Game

Init: an empty 𝑛-vertex graph 𝑋ଵ = (𝑈, ∅)

Round 𝑖:
• You choose a bisection (𝐴௜, 𝐵௜) where |𝐴௜| = |𝐵௜|

• An adversary chooses a perfect matching 𝑀௜ between 𝐴௜ and 𝐵௜

• 𝑋௜ାଵ ← 𝑋௜ ∪ 𝑀௜

Theorem (KKOV’07): ∃ deterministic strategy such that, after 𝑅 = 𝑂(log 𝑛) rounds,
1௎ is (1/10)-expanding in 𝑋ோ.
(So 𝑋ோ is a Ω(1/𝑅)-expander.)

Strategy: for each round 𝑖,

• 𝑆௜, 𝑉 − 𝑆௜ ← most balanced cut s.t. 𝐸 𝑆௜, 𝑉 − 𝑆௜ <
ଵ

ଵ଴
min 𝑆௜ , 𝑉 − 𝑆௜ .

• Choose any 𝐴௜ where 𝑆௜ ⊆ 𝐴௜.

[KKOV]: Slow, “Chicken & Egg”
[KRV, OSVV]: Fast, Randomized

Approx Expansion via Cut-Matching Game

Assume: ∃cut strategy s.t. 1௎ is 𝜙-expanding in 𝑋ோ after 𝑅 rounds.

Theorem: For any 𝐺 and 𝑈 ⊆ 𝑉, can guarantee either
• 1௎ is 𝜙/𝑅-expanding in 𝐺
• 1௎ is not 1-expanding in 𝐺
Using 𝑅 maxflow calls, plus time to run the cut strategy.

⇒ can O(
ோ

థ
)-approximate how much 1௎ is expanding in 𝐺.

This extends to any node weighing 𝐴.

Approx Expansion via Cut-Matching Game

Assume: ∃cut strategy s.t. 1௎ is 𝜙-expanding in 𝑋ோ after 𝑅 rounds.

Algo:
• Init cut-matching game on 𝑋ଵ = (𝑈, ∅).
• In round 𝑖 ≤ 𝑅

• 𝐴௜, 𝐵௜ ← cut chosen by the cut player
• 𝐹௜ ← (integral) max flow between 1஺೔

and 1஻೔

• If val 𝐹௜ < |𝐴௜|, report: 1௎ is not 1-expanding in 𝐺
• If val 𝐹௜ = |𝐴௜|

• 𝑀௜ ← perfect (𝐴௜, 𝐵௜)-matching routed by 𝐹௜

• 𝑋௜ାଵ ← 𝑋௜ ∪ 𝑀௜

• Report: 1௎ is 𝜙/𝑅-expanding in 𝐺
𝐷: any 1௎-respecting demand.
• 𝐷 is routable in 𝑋ோ with cong 1/𝜙 (by cut player)

• 𝑋ோ is routable in 𝐺 with cong 𝑅 (by 𝐹ଵ, … , 𝐹ோ)

⇒ 𝐷 is routable in 𝐺 with cong 𝑅/𝜙

Central Concepts
• Probabilistic Tree Flow Sparsifiers (and 𝑗-Trees)

Recall: Tree Flow Sparsifiers

Def: A tree flow sparsifier 𝑇 of 𝐺 with quality 𝑞:
1. A capacitated tree spanning 𝑉(𝐺)

2. For any degீ-respecting demand 𝐷
• If 𝐷 is routable in 𝐺 ⇒ 𝐷 is routable in 𝑇
• If 𝐷 is routable in 𝑇 ⇒ 𝐷 is routable in 𝐺 with congestion 𝑞

Probabilistic Tree Flow Sparsifiers

Def: A probabilistic tree flow sparsifier 𝒯 of 𝐺 with quality 𝑞:
1. Distribution 𝒯 over capacitated trees spanning 𝑉(𝐺)

2. For any degீ-respecting demand 𝐷
• If 𝐷 is routable in 𝐺 ⇒ 𝐷 is routable in each 𝑇 ∈ 𝒯
• If 𝐷 is routable in 𝔼்∈𝒯[𝑇] ⇒ 𝐷 is routable in 𝐺 with congestion 𝑞

[Räcke’08]: 𝒯 with optimal quality Θ(log 𝑛) in poly time
• Better than the single tree version.
• But fail in applications, e.g., min-max partition
• Also called “Räcke trees”. Do not get confused.

Probabilistic Almost-Tree Flow Sparsifiers

Def: A 𝑗-tree = tree + graphs on 𝑗 vertices. (Think: 𝑗 is small. This is almost a tree)

Def: A probabilistic 𝑗-tree flow sparsifier 𝒯 of 𝐺 with quality 𝑞:
1. Distribution 𝒯 over 𝑗-trees spanning 𝑉(𝐺)

2. For any degீ-respecting demand 𝐷
• If 𝐷 is routable in 𝐺 ⇒ 𝐷 is routable in each 𝑇 ∈ 𝒯
• If 𝐷 is routable in 𝔼்∈𝒯[𝑇] ⇒ 𝐷 is routable in 𝐺 with congestion 𝑞

[Madry’10]: 𝒯 over 𝑛௢(ଵ)-tree with quality 𝑛௢(ଵ) in 𝑚ଵା௢(ଵ) time
• The construction is not based on expanders

Part 2
History: 2005-2015

2005-2015: impact to fast algorithms

• 2004 Spielman Teng:
(Weak) expander decomposition in 𝑶෩(𝒎/𝝓𝑶(𝟏)) time

• Approx expansion of 𝐺 in near-linear time
• Application: Laplacian solver in near-linear time (impactful!)

• 2006 Khandekar, Rao, and Vazirani:
Cut matching game

• Approx expansion of any 𝐴 in approx max flow time
• More versions [Orecchia Schulman Vazirani Vishnoi’08] [Khandekar Khot Orecchia Vishnoi’07]

• 2008 Räcke: probabilistic tree flow sparsifiers poly time

2005-2015: impact to fast algorithms

• 2010 Madry: probabilistic almost-tree flow sparsifiers 𝑚ଵା௢(ଵ) time

• 2013 Sherman and KLOS: Approximate max flow 𝑚ଵା௢(ଵ) time
• Reduce to probabilistic almost-tree flow sparsifiers.

• 2014 Räcke Shah Täubig: Tree flow sparsifiers 𝑚ଵା௢(ଵ) time
• Reduce to approximate max flow

• 2016 Peng: Approximate max flow 𝑂෨(𝑚) time
• Resolve “chicken and egg”

2005-2015: impact to fast algorithms

10 years after [Spielman Teng],
it was clear that expanders are very powerful for fast algorithms.

Part 3
Survey: 2015 - Now

Two dimensions of development

Expander-based techniques hugely extend in 2 dimensions

1. Across models of computation
2. Across notions of expansion

Part 3.1
Development across
models of computation

Models of Computation

Static Dynamic Distributed

Models of Computation

Static Dynamic Distributed

Static Core Objects: Faster

• 2004 Spielman Teng: (Weak) expander decomposition 𝑂෨(𝑚/𝜙ை(ଵ)) time

• 2017-Now: Expander decomposition
• 2017 Nanongkai S Wulff-Nilsen: 𝑚ଵା௢(ଵ) time
• 2019 S Wang: 𝑂(𝑚 logସ 𝑛 /𝜙) time, simple
• 2023 Li Nanongkai Panigrahi S: 𝑂෨(𝑚)

• All these are randomized

Static Core Objects: Deterministic

• 2020 CGLNPS: Deterministic expander decomposition 𝑚ଵା௢(ଵ) time
• Deterministic cut-matching game 𝑚ଵା௢(ଵ) time
• Applications:

• Deterministic Laplacian solvers, sparsifiers,
• many deterministic dynamic algos

• Open: Deterministic expander decomposition 𝑂෨(𝑚/𝜙ை(ଵ)) time
• Important! will speed up and simplify MANY algorithms.

Applications in Static Setting

Previous:
• Approximate max flow 𝑂෨(𝑚) time

New applications:
• Deterministic global mincut 𝑂෨(𝑚) time [KT’15, LP’20, Li’21, HLRW’25]

• Use (or try to bypass) deterministic expander decomposition
• Connectivity labeling scheme under edge faults [LPS’25]

• Parallel approximate max flow and Gomory Hu trees [LNPS’21] [AKLPWWZ’24]

• Also, exact max fow but that is through the dynamic version. Will talk more about this.

Models of Computation

Static Dynamic Distributed

Dynamic Graph Problems

• Input: a graph 𝐺
• Then: a sequence of updates (edge insertions/deletions)

• Task:
• Maintain objects (e.g. minimum spanning tree of 𝐺), or
• Support queries (e.g. can query if 𝑢 and 𝑣 are connected in 𝐺)

• Goal: Fast update time (time to process each update)
• Ideally, polylog(𝑛) time

Dynamic Core Objects

• 2007: Exploit expanders for handling only one batch of updates
• [Patrascu Thorup]’s connectivity oracles
• But the dynamic setting has an online sequence of updates

• 2017 Nanongkai S Wulff-Nilsen: Dynamic Expanders Decomposition

• 2021 Goranci Räcke S Tan: Dynamic Tree Flow Sparsifiers
• Dynamic BSE-hierarchy

• Last few years: Many uses of expanders in dynamic graphs
[SW’19] [CK’19] [CGLNPS’20] [BGS’20] [GRST’21] [CS’21] [BGS’21] [JS’21] [BKMNSS’22] [BBGNSSS’22] [LS’22]
[GHNSTW'23] [JST’24] [EHL’25] [HLS’25] [CP’25]

Applications in Dynamic Setting

• Fastest dynamic algorithms for
• Minimum spanning tree [NSW’17]

• 𝑘-edge connectivity [Jin Sun’21]

• 𝑛௢(ଵ)-approx max flow [GRST’21]

• Exact/approx minimum cut [GHNSTW’23,JST’24,EHL’25]

• Fastest deterministic dynamic algorithms for
• Decremental Reachability [BGS’20]

• Decremental Shortest path [CK’19, CS’21, BGS’21]

• Spanners [CKLPPS’22, CP’25]

• Distance oracle [HLS’25]

• Everything relied on Expander Pruning

Central Concepts
• Expander Pruning

Intuition: Expanders are Robust under updates.

Sparse cut!

Non-expanders

𝐶ଵ 𝐶ଶ

Big change!

No sparse cut!
Expanders

Very small change!

𝐶ଵ
𝐶ଶ

Delete Delete

Expander Pruning [NSW’17] [SW’19] [MPS’25]

𝑮𝟎: expander 𝑮𝟏 = 𝑮𝟎 − 𝒆𝟏 𝑮𝟐 = 𝑮𝟏 + 𝒆𝟐 𝑮𝒊 = 𝑮𝒊ି𝟏 − 𝒆𝒊 𝑮𝒌 = 𝑮𝒌ି𝟏 − 𝒆𝒌

𝑷𝟏
𝑷𝒊 𝑷𝒌

Alg. maintains a vertex set 𝑷 such that:
1. 𝑷 grows very slowly: deg 𝑷𝒊 ≤ 𝒊 ⋅ 𝐩𝐨𝐥𝐲𝐥𝐨𝐠(𝐧)
2. Update 𝑷𝒊ି𝟏 to 𝑷𝒊 in 𝐩𝐨𝐥𝐲𝐥𝐨𝐠(𝐧) time

𝐺௜ 𝑉 − 𝑷𝒊 remains an expander

𝑷𝟐

where 𝒌 ≤ 𝒎/𝒏𝒐(𝟏)

𝑮𝟎: expander 𝑮𝟏 = 𝑮𝟎 − 𝒆𝟏 𝑮𝟐 = 𝑮𝟏 + 𝒆𝟐 𝑮𝒊 = 𝑮𝒊ି𝟏 − 𝒆𝒊 𝑮𝒌 = 𝑮𝒌ି𝟏 − 𝒆𝒌

𝑷𝟏
𝑷𝒊 𝑷𝒌

𝐺௜ 𝑉 − 𝑷𝒊 remains an expander

𝑷𝟐

Each update can only cause “small problem”.
The remaining part is still an expander.

Expander Pruning [NSW’17] [SW’19]

More Applications:
Dynamic Expanders for Exact Max Flow
All modern max flow algorithms exploit dynamic algo for expanders
Exact max flow:
• BLNPSSSW’20, BLLSSSW’21 𝑂෨(𝑚 + 𝑛ଵ.ହ) time

• dynamic spectral sparsifiers (via dynamic ED)

• CHKLPPS’22, CKLMP’24 𝑚ଵା௢(ଵ) time
• dynamic spanners (via dynamic ED)

• BCKLMPS’24: 𝑚ଵା௢(ଵ) time (simplest)
• Its only core component: dynamic tree flow sparsifiers

Open:
Dynamic tree flow sparsifiers with quality polylog(𝑛) in polylog(𝑛) update time

⇒ 𝑂෨(𝑚)-time max flow!

Models of Computation

Static Dynamic Distributed

1

2

4

3

• Local communication:
A node can send a message to each of its neighbors
in each round

• Bounded Bandwidth:
Each message has size 𝑂(log 𝑛)-bit

Goal:
• Compute something about the underlying network
• Minimize the number of rounds

Distributed Model: CONGEST

1

2

4

3

• All-to-all communication:
A node can send a message to everyone
in each round

• Bounded Bandwidth:
Each message has size 𝑂(log 𝑛)-bit

Goal:
• Compute something about the underlying network
• Minimize the number of rounds

Distributed Model: CONGESTED CLIQUE
Stronger model than CONGEST

Triangle Listing:
𝑂(𝑛ଷ/ସ)[IG’17]

𝑘-Clique Listing:

𝑂(𝑛ଶି஀(
భ

ೖ
))[EFF+’19] (detection only)

Triangle Listing:
Θ(𝑛ଵ/ଷ)

[DLP’12, IG’17, PRS’18]

𝑘-Clique Listing:
Θ(𝑛ଵିଶ/௞)

[DLP’12, FGKO’18]

CONGESTED CLIQUECONGEST

Without Expander Decomposition

CONGESTED CLIQUECONGEST

Triangle Listing:
𝑂(𝑛ଵ/ଶ)[CPZ’19],

Θ(𝑛ଵ/ଷ) [CS’19 ’20]

𝑘-Clique Listing:
𝑂(𝑛ଵିଶ/(௞ାଶ))[CGL’19]

Θ(𝑛ଵିଶ/௞)[CCGL’21] [CLV’22]

Using Expander Decomposition
and Expander Routing

Triangle Listing:
Θ(𝑛ଵ/ଷ)

[DLP’12, IG’17, PRS’18]

𝑘-Clique Listing:
Θ(𝑛ଵିଶ/௞)

[DLP’12, FGKO’18]

Will define soon!

Bypassing Locality

Expander Decomposition & Routing
can transfer strong results

from CONGESTED CLIQUE (without locality constraint)

to CONGEST (with locality constraint)

CONGESTED CLIQUE modelCONGEST model

Central Concepts
• Expander Routing

Expander Routing with quality 𝑞

• Input: Ω෩(1)-expander 𝐺
• Query:

• Given, a degீ-respecting demand 𝐷,
• Find a flow 𝐹 routing 𝐷

• (Short): Each flow path has length 𝑞
• (Low congestion): cong 𝐹 ≤ 𝑞 Each edge appears in 𝑞 paths

• Think 𝑞 = 𝑛௢(ଵ)

Survey: Distributed Expander-based Algorithms

• Expander Routing
• Known: quality 𝑞 = 𝑛௢(ଵ) in 𝑚ଵା௢(ଵ) time (even 𝑛௢(ଵ) rounds in CONGEST)

[Ghaffari Kuhn Su’17] [Ghaffari Li’18] [Chang S’20] [Chuzhoy S’21] [Chang Huang Su’24]

• Open: quality 𝑞 = polylog(𝑛) in 𝑂෨(𝑚) time (or 𝑂෨(1) rounds in CONGEST)
• Very important!
• Bottleneck for so MANY problems (static, dynamic, distributed)

• Distributed Expander Decomposition
• Randomized: 𝑂෨ 1/poly 𝜙 rounds [Chang Pettie Zhang'19] [Chang S'19] [Chen Meierhans Probst S’25]

• Deterministic: 𝑛௢(ଵ) rounds for 𝜙 ≥ 1/𝑛௢(ଵ)
[Chang S’20]

Why Expander Routing is Useful in CONGEST?

A node 𝑢 can exchange degீ(𝑢) messages
with any set of nodes

in 𝑞 = 𝒏𝒐(𝟏) rounds in an expander

Expanders allow all-to-all communication
like in CONGESTED CLIQUE

(but with small overhead and at most degீ(𝑢) messages). Local communication
𝑢 can exchange degீ(𝑢)
messages with only
neighbors in 1 round

Part 3.2
Development across
notions of expansion

Notions of Expansion

Vertex
Expansion

Directed
Expansion

Length-Constrained
Expansion

Unbreakability Hybrid
Expansion

Promising Research Directions

• Applications of expander hierarchies for other notions of expansion

• SE hierarchy
• It admits 𝑚ଵା௢(ଵ)-time algorithms for many notions of expansion
• This notion is not well-known.
• More applications for other notions of expansion?

• BSE hierarchy
• Previous algorithms only works for edge-capacitated undirected graphs
• Our construction works on many notions of expansion
• More applications for other notions of expansion?

Notions of Expansion

Vertex
Expansion

Directed
Expansion

Length-Constrained
Expansion

Unbreakability Hybrid
Expansion

Using Vertex Expander Decomp/Hierarchies

Using Expander Decomposition
• Deterministic vertex connectivity [SY'22] [JNSY'25]

Using Expander hierarchies
• Connectivity oracles under vertex faults [LS’22] [LY’24]

• Connectivity labeling scheme under vertex faults [LPS’25]

Vertex Expansion

• Vertex congestion:
• vcongி 𝑣 = 𝐹(𝑒)/cap(𝑣)

• vcong 𝐹 = max
௩

vcongி(𝑣)

• 𝐴 is 𝜙-vertex-expanding in 𝐺 if
• Flow view: every 𝐴-respecting demand is routable with v-congestion 1/𝜙
• Cut view: for every vertex cut (𝐿, 𝑆, 𝑅) (i.e. 𝐿 ⊎ 𝑆 ⊎ 𝑅 = 𝑉 and 𝐸 𝐿, 𝑅 = ∅)

cap 𝑆 ≥ 𝜙 min{𝐴 𝐿 ∪ 𝑆 , 𝐴(𝑅 ∪ 𝑆)}

• 𝐺 is a 𝜙-vertex-expander if 1௏ is 𝜙-vertex-expanding in 𝐺

vcong 𝐹 = 2.5

Quiz: which ones are vertex expanders?

1. Cliques
2. Hypercubes
3. Stars
4. Paths

Vertex Expander Decomposition

• 𝝓-Expander decomposition of 𝐺: there is 𝐶 ⊆ 𝑉 where
• Each component of 𝐺 − 𝐶 is a 𝜙-v-expander
• 𝐶 ≤ 𝜙𝑛 log 𝑛

Vertex Expander Hierarchy

• Separator-expanding hierarchy: ∃ partition 𝑉଴, … , 𝑉ℓୀை(୪୭୥ ௡) of 𝑉
• 1௏೔

is ¼-v-expanding in 𝐺 − 𝑉வ௜ for each 𝑖.

Not clear how to define
boundary-separator-expanding hierarchy

Notions of Expansion

Vertex
Expansion

Directed
Expansion

Length-Constrained
Expansion

Unbreakability Hybrid
Expansion

Using Directed Expander Decomp/Hierarchies

Using Expander Decomposition
• Decremental single-source reachability [BGS’20]

Using Expander Hierarchies
• Combinatorial max flow [BBST’24, BBLST’25]

• Approach: just augmenting path
• Technical part: (100+ pages) 25 pages
• Use basic tools (Dijkstra, SCC, etc.) except expander decomposition

• Fault-tolerant strong-connectivity preservers [HSW’25]

Directed Expansion

• 𝐴 is 𝜙-expanding in directed graph 𝐺 if
• Flow view: every 𝐴-respecting (symmetric) demand is routable with cong 1/𝜙
• Cut view: for every cut (𝑆, 𝑉 − 𝑆)

cap 𝑆, 𝑉 − 𝑆) ≥ 𝜙 min{𝐴 𝑆 , 𝐴(𝑉 − 𝑆)}

• 𝐺 is a 𝜙-expander if degீ is 𝜙-expanding in 𝐺
• degீ counts both in and out degree.

Exactly same notation as in the undirected case.

Directed Expander Decomposition

• 𝝓-Expander decomposition of 𝐺: there is 𝐶 ⊆ 𝐸 where
• Each strong component of 𝐺 − 𝐶 is a 𝜙-expander
• 𝐶 ≤ 𝜙𝑚 log 𝑛

Directed Expander Hierarchies

• Separator-expanding hierarchy: ∃ partition 𝐸଴, … , 𝐸ℓୀை(୪୭୥) of 𝑉
• 𝐸௜ is ¼-expanding in 𝐺 − 𝐸வ௜ for each 𝑖.

• BSE hierarchy: ∃ partition 𝐸଴, … , 𝐸ℓୀை(୪୭୥ ௡) of 𝑉
• 𝐸ஹ௜ is Ω 1/ log 𝑛 -expanding in 𝐺 − 𝐸வ௜ for each 𝑖.

Notions of Expansion

Vertex
Expansion

Directed
Expansion

Length-Constrained
Expansion

Unbreakability Hybrid
Expansion

Flow Problems
encompass many problems on graphs

Distance
(ℓଵ)

Shortest paths
Transshipments

Steiner trees
LOCAL model

Distance & Congestion
(ℓଵ & ℓஶ)

Min cost flow
Min-cost multi-commodity flow

Network design (e.g. 𝑘-ECSS)
CONGEST model

Congestion
(ℓஶ)

Max flow
Multi-commodity flow

Tree packing
CONGESTED CLIQUE model

Graph Decomposition
key algorithmic technique

Low diameter
decomposition
since 1980, 100s of papers

Expander
decomposition
since 2000, 100s of papers

Length-Constrained
Expander decomp

since 2020

Using Length-Constrained Expander Decomp/Hierarchies

• Universally optimal distributed algorithms [HRG’22]

Using flow shortcut (see Exercise 2) via expander hierarchies
• Dynamic distance oracle [HLS’24]

• First deterministic: 𝑂ఢ(1)-approx in 𝑛ఢ update time

• 𝑶𝝐(𝟏)-approx Multi-commodity flow in 𝑚ଵାఢ time [HHLRS’24]

• Parallel (𝟏 + 𝝐)-approx min-cost flow in 𝑚ଵା௢(ଵ) time [HJLSW’25]

• Fault-tolerant distance oracles/labeling schemes [HLRS’26]

• Approachable open problems: fault-tolerant roundtrip spanners

Flow and Embedding

• Graphs are
• undirected, with edge-lengths, unit-capacity (for simplicity)

• (Multi-commodity) flow 𝐹
• Congestion: cong 𝐹 = max

௘
𝐹(𝑒)

• Length: len 𝐹 = max total length in flow paths

5

1

2 2

2

1

1

Example:
• cong 𝐹 = 1.5
• len 𝐹 = 7

Length-Constrained Demands

Demand 𝐷 is 𝒉-LC if,
for each 𝐷 𝑎, 𝑏 > 0, distீ 𝑎, 𝑏 ≤ ℎ

Length-Constrained Demands are Easier

𝐺 is a path and 𝐴 = 1௏(ீ)

• 𝐴 is not routable with congestion < 𝑛/2

• 𝐴 is 4-LC routable with length 4 and congestion 4

LC-Expanders: Flow-based Definitions

Recall: 𝐺 is 𝜙-expander ⇔

degீ is routable with congestion 1/𝜙

𝐺 is (ℎ, 𝑠)-LC 𝜙-expander ⇔
degீ is ℎ-LC routable with length ℎ𝑠 and
congestion 1/𝜙

𝐴 is (ℎ, 𝑠)-LC 𝜙-expanding ⇔
𝐴 is ℎ-LC routable with length ℎ𝑠
and congestion 1/𝜙

Quiz:
Let ℎ, 𝑠 = 𝑂 1 and 𝜙 = Ω(1)
Which is not (𝒉, 𝒔)-LC 𝝓-expander ?

Expander Decomposition

Theorem: Given 𝐺 = 𝑉, 𝐸 , 𝐴, 𝜙, there exists an ℎ𝑠-LC cut 𝐶 ⊆ 𝐸

• 𝐴 is (ℎ, 𝑠)-LC 𝜙-expanding in 𝐺 − 𝐶.

• 𝐶 ≤ (𝜙𝑛ை ଵ/௦ log 𝑛) ⋅ |𝐴|

LC cut (i.e. length Increase)
• ℎ𝑠-LC cut is

𝐶: 𝐸 → 0,
1

ℎ𝑠
,

2

ℎ𝑠
, … , 1

• Length in 𝐺 − 𝐶

lenீି஼ 𝑒 = lenீ 𝑒 + ℎ𝑠 ⋅ 𝐶(𝑒)

𝐶 does not decompose
graphs into connected
components anymore!
But our notations work!

Notions of Expansion

Vertex
Expansion

Directed
Expansion

Length-Constrained
Expansion

Unbreakability Hybrid
Expansion

Notions of Expansion

Vertex
Expansion

Directed
Expansion

Length-Constrained
Expansion

Unbreakability Hybrid
Expansion

Summary

Recap key concepts
Expander Decomposition

Boundary-linked version

Dynamic version

Expanding Balanced Separator

Repeated Expander Decomposition

Separator-expanding (SE) Hierarchy

Boundary-separator-expanding (BSE) Hierarchy

Cut
Matching

Game

Repeated Expander Decomposition

Separator-expanding (SE) Hierarchy

Boundary-separator-expanding (BSE) Hierarchy

Edge Sparsifier

Vertex Sparsifier

Connectivity/Distance
Oracles and Labeling

Schemes
under Failures

Flow Shortcuts

Tree Flow
Sparsifiers

Fast
Flow / Cut /

Distance
Algorithms

(undirected/directed
edge/vertex capacity)

Expander Decomposition

Boundary-linked version

