

Lecture 6:Testing Sparse images

Themis Gouleakis

May 18, 2021

Models of testing graph properties

Dense graph model

- Adjacency predicate: $g : \binom{V}{2} \rightarrow \{0, 1\}$ - $g(\{u, v\}) = [\{u, v\} \in E]$ (truth value)
- Alternatively: $g: V \times V \rightarrow \{0, 1\}$

 $- g(u, v) = [\{u, v\} \in E]$ (truth value)

• Distance: $\delta(G, G') = \delta(g, g') = \frac{|\{u, v\}: g(u, v) \neq g'(u, v)|}{|V|^2}$ - $\delta_{\Pi}(G) = \min_{G' \in \Pi, \pi} \left\{ \frac{|\{u, v\}: g(u, v) \neq g'(\pi(u), \pi(v))|}{|V|^2} \right\}$

Models of testing graph properties

Bounded degree graph model

- Incidence function: $g: g: V \times [d] \rightarrow V \cup \{\bot\}$
 - $-g(\lbrace u,i\rbrace) = v$, where v is the *i*-th neighbor of u.

$$- g(\{u,i\}) = \perp \text{ if } d(u) < i.$$

Distance: *G* is ϵ - far from a graph property Π if for any permutation π over *V*, the following holds:

$$\sum_{u\in V} \left| \{v: \exists i \ g(u,i)=v\} \triangle \{v: \exists i \ g'(\pi(u),i)=\pi(v)\} \right| \ > \ \epsilon dN \,,$$

where N = |V|.

Models of testing graph properties

General graph model

- Both representations and types of queries used.
- Distance: $\delta(G, G') = \frac{|E \Delta E'|}{\max\{|E|, |E'|\}}$
- More general that the other models.
- Not as easy to use.

Which model to use?

 Depends on the graphs contained in Π and the type of queries used.

Definitions

Images:

- An image will be represented by a 0/1-valued $n \times n$ matrix M.
 - Dense if it contains $\Omega(n^2)$ 1-entries/pixels.

Access models:

- Dense image model: (analog to dense graph model)
 - Query access to entries
- Sparse image model: (analog to sparse graph model)
 - Query access to entries
 - Sample access to 1-entries

lanck institut

Distance:

- Dense image model: $\delta(M, M') = \frac{d_H(M, M')}{n^2}$
- Sparse image model: $\delta(M, M') = \frac{d_H(M, M')}{w(M)}$ where w(M) is the number of 1-pixels in M

Example properties

- Connectivity: Graph of *M* is connected
- Line imprint: ∃ a line segment such that M(i, j) = 1 iff the line intersects the pixel.
- Convexity: Similar for a convex shape
- Monotonicity: \forall (i_1, j_1) and (i_2, j_2) 1-pixels it holds: $i_1 < i_2 \Rightarrow j_1 \le j_2$.

VC dimension and $\epsilon\text{-nets}$

Definition (ϵ -nets)

Let *X* be a set, μ a probability measure on *X*, \mathcal{F} be a system of μ -measurable subsets of *X* and $\epsilon > 0$. A subset $N \subseteq X$ is called an ϵ -net for (X, \mathcal{F}) with respect to μ if $N \cap S \neq \emptyset$ for all $S \in \mathcal{F}$ with $\mu(S) \ge \epsilon$.

In our case (ϵ -net on the differences of images):

- $X = \mathbb{R}^d$
- { M_1, \ldots, M_k } is a set of images. - $\mathcal{F} = \{M_i \Delta M_j\}_{i \neq j \leq k}$
- If Pr_{(i,j)∼μ}[M₁(i,j) ≠ M₂(i,j)] > ε, then the ε-net N contains at least one pixel on which M₁, M₂ differ.

Definition (VC-dimension)

Let \mathcal{F} be a set system on X We say that $A \subseteq X$ is shattered by \mathcal{F} if each of the subsets of A can be obtained as the intersection of some $S \in \mathcal{F}$ with A. We call VC-dimension of a set system $\mathcal{F}(\text{denoted by } dim(\mathcal{F}))$ the supremum of the sizes of all shattered subsets of \mathcal{F} .

Example 1: Halfspaces in \mathbb{R}^2 : VC dimension = 3

Example 2: Convex sets in \mathbb{R}^2 : VC dimension = ∞

Theorem (ϵ -net theorem)

Let C be a class of images with VC dimension d. There exists a constant c_1 such that for any distribution D the following holds: If N consists of $c_1 \frac{d \log(1/\epsilon)}{\epsilon}$ pixels drawn according to D, then it is an ϵ -net for C with high constant probability.

Corollary

Let w = w(M) denote the number of 1-pixels of an image M. Then, there exists a property tester for membership in C, that given w(M) has sample complexity $O(d \log(1/\epsilon)/\epsilon)$.

Proof:

Testing Line imprints

Definition

The imprint of a line segment in \mathbb{R}^2 is the set of pixels it intersects.

Definition

The sleeve defined by 2 pixels p_1 , p_2 is the union of all line imprints of line segments that start in p_1 and end in p_2 .

Property tester

- 1. Take a sample S_1 of size $m_1 = \Theta(1/\epsilon)$ uniformly from the 1-pixels of M and find 2 pixels p_1, p_2 with maximum distance between them.
- 2. Take another sample S_2 of size $m_2 = \Theta(1/\epsilon)$ 1-pixels of M we distinguish this from S_1 for analysis purposes.
- 3. Let *P* be the sleeve of p_1, p_2 . Query *M* on a set *Q* of size $m_3 = \Theta(\frac{\log(1/\epsilon)}{\epsilon})$ pixels of *P*. If there exists a line imprint that is consistent with the 1-pixels is $S_1 \cup S_2$ and the queries in *Q*, then ACCEPT. Otherwise REJECT.

Theorem

The above property tester is an one-sided error tester for the property of being a line imprint. with sample and query complexity of $O(\frac{\log(1/\epsilon)}{\epsilon})$ and running time of $O(1/\epsilon)$.

Proof:

