Lecture 6: Testing Sparse images

Themis Gouleakis

May 18, 2021
Models of testing graph properties

Dense graph model

- **Adjacency predicate**: $g : \binom{V}{2} \rightarrow \{0, 1\}
 - $g(\{u, v\}) = [\{u, v\} \in E]$ (truth value)

- **Alternatively**: $g : V \times V \rightarrow \{0, 1\}
 - $g(u, v) = [\{u, v\} \in E]$ (truth value)

- **Distance**: $\delta(G, G') = \delta(g, g') = \frac{|\{u,v\}:g(u,v) \neq g'(u,v)|}{|V|^2}$
 - $\delta_{\Pi}(G) = \min_{G' \in \Pi, \pi} \left\{ \frac{|\{u,v\}:g(u,v) \neq g'(\pi(u),\pi(v))|}{|V|^2} \right\}$
Models of testing graph properties

Bounded degree graph model

- **Incidence function**: $g : g : V \times [d] \rightarrow V \cup \{\perp\}$
 - $g(\{u, i\}) = v$, where v is the i-th neighbor of u.
 - $g(\{u, i\}) = \perp$ if $d(u) < i$.

- **Distance**: G is ϵ-far from a graph property Π if for any permutation π over V, the following holds:

$$\sum_{u \in V} |\{v : \exists i \ g(u, i) = v\} \Delta \{v : \exists i \ g'(\pi(u), i) = \pi(v)\}| > \epsilon dN,$$

where $N = |V|$.
Models of testing graph properties

General graph model

- Both representations and types of queries used.
- **Distance**: \(\delta(G, G') = \frac{|E \Delta E'|}{\max\{|E|, |E'|\}} \)
- More general than the other models.
- Not as easy to use.

Which model to use?

- Depends on the graphs contained in \(\Pi \) and the type of queries used.
Definitions

Images:
- An image will be represented by a 0/1-valued $n \times n$ matrix M.
 - Dense if it contains $\Omega(n^2)$ 1-entries/pixels.

Access models:
- Dense image model: (analog to dense graph model)
 - Query access to entries
- Sparse image model: (analog to sparse graph model)
 - Query access to entries
 - Sample access to 1-entries

Distance:
- Dense image model: $\delta(M, M') = \frac{d_H(M, M')}{n^2}$
- Sparse image model: $\delta(M, M') = \frac{d_H(M, M')}{w(M)}$
where $w(M)$ is the number of 1-pixels in M
Example properties

- Connectivity: Graph of M is connected
- Line imprint: \exists a line segment such that $M(i, j) = 1$ iff the line intersects the pixel.
- Convexity: Similar for a convex shape
- Monotonicity: $\forall (i_1, j_1)$ and (i_2, j_2) 1-pixels it holds: $i_1 < i_2 \Rightarrow j_1 \leq j_2$. }

A B C D E
VC dimension and ε-nets

Definition (ε-nets)

Let X be a set, μ a probability measure on X, \mathcal{F} be a system of μ-measurable subsets of X and $\varepsilon > 0$. A subset $N \subseteq X$ is called an ε-net for (X, \mathcal{F}) with respect to μ if $N \cap S \neq \emptyset$ for all $S \in \mathcal{F}$ with $\mu(S) \geq \varepsilon$.

In our case (ε-net on the differences of images):

- $X = \mathbb{R}^d$
- $\{M_1, \ldots, M_k\}$ is a set of images.
 - $\mathcal{F} = \{M_i \Delta M_j\}_{i \neq j \leq k}$
- If $\Pr_{(i,j) \sim \mu}[M_1(i, j) \neq M_2(i, j)] > \varepsilon$, then the ε-net N contains at least one pixel on which M_1, M_2 differ.
Definition (VC-dimension)

Let \mathcal{F} be a set system on X. We say that $A \subseteq X$ is shattered by \mathcal{F} if each of the subsets of A can be obtained as the intersection of some $S \in \mathcal{F}$ with A. We call VC-dimension of a set system \mathcal{F} (denoted by $\text{dim}(\mathcal{F})$) the supremum of the sizes of all shattered subsets of \mathcal{F}.

Example 1: Halfspaces in \mathbb{R}^2: VC dimension = 3

Example 2: Convex sets in \mathbb{R}^2: VC dimension = ∞
Theorem (\(\epsilon\)-net theorem)

Let \(C\) be a class of images with VC dimension \(d\). There exists a constant \(c_1\) such that for any distribution \(D\) the following holds: If \(N\) consists of \(c_1 \frac{d \log(1/\epsilon)}{\epsilon}\) pixels drawn according to \(D\), then it is an \(\epsilon\)-net for \(C\) with high constant probability.

Corollary

Let \(w = w(M)\) denote the number of 1-pixels of an image \(M\). Then, there exists a property tester for membership in \(C\), that given \(w(M)\) has sample complexity \(O(d \log(1/\epsilon)/\epsilon)\).

Proof:
Testing Line imprints

Definition

The **imprint** of a line segment in \mathbb{R}^2 is the set of pixels it intersects.

Definition

The **sleeve** defined by 2 pixels p_1, p_2 is the union of all line imprints of line segments that start in p_1 and end in p_2.
Property tester

1. Take a sample S_1 of size $m_1 = \Theta(1/\epsilon)$ uniformly from the 1-pixels of M and find 2 pixels p_1, p_2 with maximum distance between them.

2. Take another sample S_2 of size $m_2 = \Theta(1/\epsilon)$ 1-pixels of M — we distinguish this from S_1 for analysis purposes.

3. Let P be the sleeve of p_1, p_2. Query M on a set Q of size $m_3 = \Theta\left(\frac{\log(1/\epsilon)}{\epsilon}\right)$ pixels of P. If there exists a line imprint that is consistent with the 1-pixels is $S_1 \cup S_2$ and the queries in Q, then ACCEPT. Otherwise REJECT.
Theorem

The above property tester is an one-sided error tester for the property of being a line imprint. with sample and query complexity of $O\left(\frac{\log(1/\epsilon)}{\epsilon}\right)$ and running time of $O(1/\epsilon)$.

Proof: