

Complexity Theory of Polynomial-Time Problems

Lecture 1: Introduction, Easy Examples

Karl Bringmann and Sebastian Krinninger

Audience

no formal requirements, but:

NP-hardness, satisfiability problem, how to multiply two matrices, dynamic programming, all-pairs-shortest-path problem, Dijkstra's algorithm

... if you (vaguely) remember at least half of these things, then you should be able to follow the course

NP-hardness

suppose we want to solve some problem

fastest algorithm that we can come up with: $O(2^n)$

should we search further for an **efficient** algorithm?

prove NP-hardness!

an efficient algorithm would show P=NP

we may assume that **no efficient algorithm exists**

relax the problem:

max planck institut

approximation algorithms, fixed parameter tractability, average case, heuristics...

What about polynomial time?

suppose we want to solve another problem

we come up with an $O(n^2)$ algorithm \rightarrow **polynomial time** = efficient

big data: input is too large for $O(n^2)$ algorithm

should we search for faster algorithms?

P vs NP is too coarse we need fine-grained complexity to study limits of big data

Conditional Lower Bounds

which barriers prevent subquadratic algorithms?

Hard problems

- **SAT:** given a formula in conj. normal form on *n* variables is it satisfiable? conjecture: no $O(2^{(1-\varepsilon)n})$ algorithm (SETH)
- **OV:** given *n* vectors in $\{0,1\}^d$ (for small *d*) are any two orthogonal? conjecture: no $O(n^{2-\varepsilon})$ algorithm
- **APSP:** given a weighted graph with *n* vertices compute the distance between any pair of vertices conjecture: no $O(n^{3-\varepsilon})$ algorithm
- **3SUM:**given n integersdo any three sum to 0?
 - conjecture: no $O(n^{2-\varepsilon})$ algorithm

max planck institut

Relations = Reductions

transfer hardness of one problem to another one by reductions

t(n) algorithm for Q implies a r(n) + t(s(n)) algorithm for P

max planck institut

if P has no r(n) + t(s(n)) algorithm then Q has no t(n) algorithm

Relations = Reductions

transfer hardness of one problem to another one by reductions

t(n) algorithm for Q implies a $r(n) + \sum_{i=1}^{k} t(s_i(n))$ algorithm for P

longest common subseq.

edit distance, longest palindromic subsequence, Fréchet distance...

 $O(n^2)$

SETH-hard $n^{2-\varepsilon}$

[B.,Künnemann'15, Abboud,Backurs,V-Williams'15]

given two strings x, y of length n, compute the **longest string** z that is a **subsequence** of both x and y

longest common subseq.

edit distance, longest palindromic

subsequence, Fréchet distance...

 $O(n^2)$

SETH-hard $n^{2-\varepsilon}$

[B.,Künnemann'15, Abboud,Backurs,V-Williams'15]

we can stop searching for faster algorithms!

in this sense, conditional lower bounds replace NP-hardness

$O(n^{2-\varepsilon})$ algorithms are unlikely to exist

improvements are at least as hard as a breakthrough for SAT

 $O(n^2)$

longest common subseq.

edit distance, longest palindromic subsequence, Fréchet distance...

bitonic TSP

 $O(n^2)$

longest increasing subsequence, matrix chain multiplication...

SETH-hard $n^{2-\varepsilon}$

[B.,Künnemann'15, Abboud,Backurs,V-Williams'15]

$$O(n \log^4 n)$$

[de Berg,Buchin,Jansen,Woeginger'16]

given *n* points in the plane, compute a **minimum tour connecting all points** among all tours consisting of **two x-monotone parts**

 $O(n^2)$

longest common subseq.

edit distance, longest palindromic subsequence, Fréchet distance...

bitonic TSP

 $0(n^2)$

SETH-hard $n^{2-\varepsilon}$

[B.,Künnemann'15, Abboud,Backurs,V-Williams'15]

 $O(n \log^4 n)$

[de Berg, Buchin, Jansen, Woeginger'16]

longest increasing subsequence, matrix chain multiplication...

maximum submatrix

minimum weight triangle, graph centrality measures...

 $0(n^3)$

APSP-hard $n^{3-\varepsilon}$

[Backurs, Dikkala, Tzamos'16]

given matrix A over \mathbb{Z} , **choose a submatrix** (consisting of consecutive rows and columns of A) **maximizing the sum of all entries**

 $O(n^2)$

 $O(n^2)$

 $O(n^{3})$

 $O(n^2)$

longest common subseq.

edit distance, longest palindromic subsequence, Fréchet distance...

bitonic TSP

longest increasing subsequence, matrix chain multiplication...

maximum submatrix

minimum weight triangle, graph centrality measures...

colinearity

motion planning, polygon containment...

given n points in the plane, are any three of them on a line?

SETH-hard $n^{2-\varepsilon}$

[B.,Künnemann'15, Abboud,Backurs,V-Williams'15]

 $O(n \log^4 n)$

[de Berg, Buchin, Jansen, Woeginger'16]

APSP-hard $n^{3-\varepsilon}$

[Backurs, Dikkala, Tzamos'16]

3SUM-hard $n^{2-\varepsilon}$ [Gajentaan,Overmars'95]

longest common subseq.

edit distance, longest palindromic subsequence, Fréchet distance...

bitonic TSP

longest increasing subsequence, matrix chain multiplication...

maximum submatrix

minimum weight triangle, graph centrality measures...

colinearity

motion planning, polygon containment...

$0(n^2)$

 $O(n^2)$

 $O(n^{3})$

 $O(n^2)$

SETH-hard $n^{2-\varepsilon}$

[B.,Künnemann'15, Abboud,Backurs,V-Williams'15]

 $O(n \log^4 n)$

[de Berg, Buchin, Jansen, Woeginger'16]

APSP-hard $n^{3-\varepsilon}$

[Backurs, Dikkala, Tzamos'16]

3SUM-hard $n^{2-\varepsilon}$ [Gajentaan,Overmars'95]

Open:optimal binary search tree $O(n^2)$ knapsack O(nW)

many more...

Complexity Inside P

Machine Model

complexity theory is (to some extent) independent of the machine model – but only up to polynomial factors

we have to fix a machine model!

Turing Machine:

any (single-tape) Turing machine takes time $\Omega(n^2)$ for recognizing **palindromes**

abbcaacbba

this does not apply to real computers!

Machine Model

Random Access Machine (RAM):

More Discussion

What about unconditional lower bounds?

no tools available beyond $\Omega(n \log n)$

What if the hypotheses are wrong?

NP-hardness was in the same situation 40 years ago

relations between problems will stay

suggests ways to attack a problem + which problems to attack

Conditional Lower Bounds ...

... allow to classify polynomial time problems

... are an analogue of NP-hardness

yield good reasons to stop searching for faster algorithms should belong to the basic toolbox of theoretical computer scientists

... allow to search for new algorithms with better focus

improve SAT before longest common subsequence... non-matching lower bounds suggest better algorithms

... motivate new algorithms

relax the problem and study approximation algorithms, parameterized running time, ...

Content of the Course

we study **core problems** SAT, OV, APSP, 3SUM, and others **conditional lower bounds**: from each of these hypotheses **algorithms**: learn fastest known algorithms for core problems

fine-grained complexity is a young field of research

we will see many open problems & possibilities for BA/MA-theses

II. An Example for OV-hardness

Orthogonal Vectors Hypothesis

Input:Sets
$$A, B \subseteq \{0,1\}^d$$
 of size n Task:Decide whether there are
 $a \in A, b \in B$ such that $a \perp b$ $\Leftrightarrow \sum_{i=1}^d a_i \cdot b_i = 0$ \Leftrightarrow for all $1 \le i \le d$: $a_i = 0$ or $b_i = 0$

$$A = \{(1,1,1), (1,1,0), \\ (1,0,1), (0,0,1)\}$$
$$B = \{(0,1,0), (0,1,1), \\ (1,0,1), (1,1,1)\}$$

trivial $O(n^2 d)$ algorithm

best known algorithm: $O(n^{2-1/O(\log c)})$ where $d = c \log n$ [Lecture 03]

OV-Hypothesis: no $O(n^{2-\varepsilon} \operatorname{poly}(d))$ algorithm for any $\varepsilon > 0$

"OV has no $O(n^{2-\varepsilon})$ algorithm, even if d = polylog n"

Graph Diameter Problem

- *Input:* An unweighted graph G = (V, E)
- Task:Compute the largest distancebetween any pair of vertices

 $= \max_{u,v\in V} d_G(u,v)$

diameter 2

Easy algorithm:

Single-source-shortest-paths:

Dijkstra's algorithm: $O(m + n \log n)$

All-pairs-shortest-paths:

Dijkstra from every node: $O(n(m + n \log n)) \le O(n m \log n)$

from this information we can compute the diameter in time $O(n^2)$

OV-Hardness Result

Thm: Diameter has no $O((nm)^{1-\varepsilon})$ algorithm unless the OV-Hypothesis fails.

Proof: can assume: every vector has at least one ,1'

 $d(a, b) = 2 \Leftrightarrow$ *a*, *b* not orthogonal

diameter = 3 ⇔ there exists an orthogonal pair

Remark: Even deciding whether the diameter is ≤ 2 or ≥ 3 has no $O((nm)^{1-\varepsilon})$ algorithm unless OVH fails.

There is no $({}^{3}/_{2} - \varepsilon)$ -approximation for the diameter in time $O((nm)^{1-\varepsilon})$ unless OVH fails.

III. Another Example for OV-hardness

NFA Acceptance Problem

nondeterministic finite automaton Gaccepts input string s if there is a walk in G from starting state to some accepting state, labelled with s

string: 01011010

dynamic programming algorithm in time O(|s||G|):

 $T[i] \coloneqq set of states reachable via walks labelled with s[1..i]$

 $T[0] \coloneqq \{\text{starting state}\}$ $T[i] \coloneqq \{v \mid \exists u \in T[i-1] \text{ and } \exists \text{ transition } u \to v \text{ labelled } s[i]\}$

OV-Hardness Result

 $O(n^{2-\varepsilon} \operatorname{poly}(d))$ algorithm $\leftarrow O((|s| |G|)^{1-\varepsilon})$ algorithm

Thm:	NFA acceptance has no $O((s G)^{1-\varepsilon})$	[Impagliazzo]
	algorithm unless OVH fails.	

Proof:

fix some $a \in A$: in string s: 0011 \uparrow $= a_1 a_2 \dots a_d$

in NFA G:

Proof:

fix some $a \in A$: in string s: $\begin{array}{c} 0011\\ \uparrow\\ = a_1a_2 \dots a_d \end{array}$

in NFA G:

fix some $a \in A$:

in string *s*:

0011

fix some $b \in B$:

in NFA G:

string s = \$1100\$0110\$... \$0011\$ $(for all <math>a \in A$) ✓ equivalent to OV instance
✓ size |s| = |G| = 0(dn)

VI. Four Russians

Method of Four Russians

Arlazarov, Dinic, Kronrod, and Faradzev 1970

Algorithm for Boolean matrix multiplication

Not all of them were Russian...

Better name: Four Soviets??

Boolean Matrix Multiplication

Input: Boolean (0/1) matrices *A* and *B*

Output: $A \times B$ where + is OR and * is AND

Naïve Algorithm

Running time:

• time O(n) per inner product

• #inner products:
$$n^2$$

• $\Rightarrow O(n^3)$ total time

$$C[i,j] = \bigvee_{1 \le k \le n} A[i,k] \land B[k,j]$$

Is there a k such that A[i, k] = 1 and B[k, j] = 1?

Main Idea

Divide A into blocks of size $t \times t$

We use $t = 0.5 \log n$

Number of blocks: $\left(\frac{n}{t}\right)^2 = \frac{n^2}{\log^2 n}$

- 1. Preprocess blocks and construct lookup table
- 2. Speed up naïve algorithm using lookup table

Preprocessing a Block X

1. For every *t*-dimensional vector *v*: precompute product $X \cdot v$

2. Store results in lookup table: \Rightarrow retrieve $X \cdot v$ in time O(t)

t-dimensional vectors: $2^t = 2^{0.5 \log n} = n^{0.5}$

Total time:
$$\left(\frac{n}{t}\right)^2 \times 2^t \times t^2 = n^2 2^t = n^{2.5} = 0 \left(\frac{n^3}{\log n}\right)$$

#blocks #vectors inner product

Multiplying with Lookup Table

Summary

Key property: small number of possible cell entries

Main idea: speedup from lookup tables after preprocessing

Discussion:

- In preprocessing: need to prepare for **all** *t*-dimensional input vectors
- Counter-intuitive at first ?
 Only *some* of the *t*-dimensional vectors might really appear in *B*
- # different *t*-dimensional vectors in general: $2^t = n^{0.5}$
- # t-dimensional vectors per block in matrix multiplication: n
- \Rightarrow Reusability outweighs preprocessing cost
- → Four Russians in some sense a charging trick: Charge running time to the *t*-dim. vectors instead of the columns

Beyond Four Russians

Very general technique:

- Matrix problems, dynamic programming problems (e.g. LCS)
- "Shaving off" logarithmic factors popular for certain problems
- \Rightarrow Race to fastest algorithm

Example: All-pairs shortest paths (APSP)

Floyd-Warshall: $O(n^3)$

The Polynomial Method

- Ideas from circuit complexity
- We will teach it in May

Transitive Closure Problem

TC matrix

Thm: BMM in time $O(T(n)) \Leftrightarrow TC$ in time O(T(n))

Naïve Algorithm: $O(n^3)$ by breadth-first search from each node

Reduction: From TC (T'(n)) to BMM (T(n))

- A: adjacency matrix of G A[i,j] = 1 if and only if G has edge (i,j)*i* identity matrix
- *I*: identity matrix

Fact: $(A \lor I)^k[i, j] = 1$ if and only if \exists path from *i* to *j* of length at most *k*

Fact: $TC = (A \lor I)^n$

Repeated squaring:

$$M^{2} = M \times M$$
$$M^{4} = M^{2} \times M^{2}$$
$$M^{8} = M^{4} \times M^{4}$$

...

Lem: TC can be computed using $\log n$ Boolean matrix multiplications

Drawback of Reduction

Lem: *TC* can be computed with $\log n$ Boolean matrix multiplications

$$T'(n) = T(n) \times \log n = \frac{n^3}{\log n} \times \log n = n^3$$

Log-factor improvement of Four Russians is gone!

Goal: Better reduction with T'(n) = O(T(n))

Reducing Problem to DAG

- 1. Compute strongly connected components (SCCs)
 - i and j in same component iff i can reach j and j can reach i

 $O(n^2)$

- Suffices to solve problem on graph of SCCs
- Graph of SCCs is directed acyclic graph (DAG)
- 2. Compute topological order \prec on DAG: edge (i, j) in DAG $\Rightarrow i \prec j$

Recursive Transitive Closure

Input: DAG G with n nodes in topological order

X: First n/2 edges in topological order *Y*: Last n/2 edges in topological order *M*: Adjacency matrix of edges between *X* and *Y*

Summary

BMM and TC have same asymptotic time complexity

Same status:

- All-pairs shortest paths (APSP) and
- Min-plus matrix multiplication

