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Lecture 1: Introduction, Easy Examples



Audience

no formal requirements, but:

NP-hardness, 
satisfiability problem, 
how to multiply two matrices,
dynamic programming, 
all-pairs-shortest-path problem,
Dijkstra‘s algorithm

… if you (vaguely) remember at least half of these things, 
then you should be able to follow the course



NP-hardness

suppose we want to solve some problem

fastest algorithm that we can come up with:  𝑂(2$)

prove NP-hardness!

an efficient algorithm would show P=NP

we may assume that no efficient algorithm exists

relax the problem:

should we search further for an efficient algorithm?

approximation algorithms, 
fixed parameter tractability, 
average case, heuristics…



What about polynomial time?

suppose we want to solve another problem

we come up with an 𝑂(𝑛') algorithm → polynomial time = efficient

P vs NP is too coarse

should we search for faster algorithms?

big data: input is too large for 𝑂(𝑛') algorithm

we need fine-grained complexity
to study limits of big data



Conditional Lower Bounds

which barriers prevent subquadratic algorithms?

consider a well-studied problem 𝑃:

conjecture that it has no 𝑂(𝑛*+,) algorithm for any 𝜀 > 0

best-known running time 𝑂(𝑛*)

⟹
relate another problem 𝑄 to 𝑃 via a reduction

→	conditional lower bound



Hard problems

given 𝑛 integers
do any three sum to 0?
conjecture: no 𝑂(𝑛'+,) algorithm

3SUM:

conjecture: no 𝑂(𝑛3+,) algorithm

given a weighted graph with 𝑛 vertices
compute the distance between any pair of vertices

APSP:

conjecture: no 𝑂(𝑛'+,) algorithm

given 𝑛 vectors in {0,1}8 (for small	𝑑)
are any two orthogonal?

OV:

conjecture: no 𝑂(2 :+, $) algorithm (SETH)

given a formula in conj. normal form on 𝑛 variables
is it satisfiable?

SAT:



Relations = Reductions

transfer hardness of one problem to another one by reductions

problem 𝑸

time
size 𝑠(𝑛)

reduction instance 𝐽

𝐼 is a ‘yes’-instance 𝐽 is a ‘yes’-instance()

problem 𝑷

size 𝑛

instance 𝐼

𝑟(𝑛)

𝑡(𝑛) algorithm for 𝑄 implies a 𝑟 𝑛 + 𝑡(𝑠 𝑛 ) algorithm for 𝑃

if 𝑃 has no 𝑟 𝑛 + 𝑡(𝑠 𝑛 ) algorithm then 𝑄 has no 𝑡(𝑛) algorithm 



Relations = Reductions

transfer hardness of one problem to another one by reductions

problem 𝑸

total time 
𝑟(𝑛)

size 𝑠:(𝑛)

reduction instance 𝐼1

𝑡(𝑛) algorithm for 𝑄 implies a 𝑟 𝑛 +	∑ 𝑡(𝑠D 𝑛 )E
DF: algorithm for 𝑃

problem 𝑷

size 𝑛

instance 𝐼

size 𝑠E(𝑛)
instance 𝐼𝑘

…

…



Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

given two strings 𝑥, 𝑦 of length 𝑛, 
compute the longest string 𝑧 that 
is a subsequence of both 𝑥 and 𝑦

a b b c a d

a c d a a b d



Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

we can stop searching for faster algorithms!
in this sense, conditional lower bounds replace NP-hardness

𝑂(𝑛'+,) algorithms are unlikely to exist

improvements are at least as hard as a breakthrough for SAT



Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,

bitonic TSP 𝑂(𝑛') 𝑂 𝑛	logN𝑛
[de Berg,Buchin,Jansen,Woeginger’16]

longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

longest increasing subsequence, 
matrix chain multiplication...

given 𝑛 points in the plane, 
compute a minimum tour 
connecting all points 
among all tours consisting of 
two x-monotone parts



Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,

bitonic TSP 𝑂(𝑛') 𝑂 𝑛	logN𝑛
[de Berg,Buchin,Jansen,Woeginger’16]

maximum submatrix 𝑂(𝑛3) APSP−hard 𝑛3+,

longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

longest increasing subsequence, 
matrix chain multiplication...

[Backurs,Dikkala,Tzamos’16]minimum weight triangle, 
graph centrality measures...

given matrix 𝐴 over ℤ, choose a submatrix
(consisting of consecutive rows 
and columns of 𝐴) 
maximizing the sum of all entries

-3 2 -2 0
-2 5 7 -2
1 3 -1 1
3 -2 0 0



Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,

bitonic TSP 𝑂(𝑛') 𝑂 𝑛	logN𝑛
[de Berg,Buchin,Jansen,Woeginger’16]

maximum submatrix 𝑂(𝑛3) APSP−hard 𝑛3+,

colinearity 3SUM−hard 𝑛'+,
[Gajentaan,Overmars’95]

longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

longest increasing subsequence, 
matrix chain multiplication...

given 𝑛 points in the plane, 
are any three of them on a line?

[Backurs,Dikkala,Tzamos’16]minimum weight triangle, 
graph centrality measures...

𝑂(𝑛')
motion planning, polygon containment...



Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,

bitonic TSP 𝑂(𝑛') 𝑂 𝑛	logN𝑛
[de Berg,Buchin,Jansen,Woeginger’16]

maximum submatrix 𝑂(𝑛3) APSP−hard 𝑛3+,

colinearity 3SUM−hard 𝑛'+,
[Gajentaan,Overmars’95]

longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

longest increasing subsequence, 
matrix chain multiplication...

[Backurs,Dikkala,Tzamos’16]minimum weight triangle, 
graph centrality measures...

𝑂(𝑛')
motion planning, polygon containment...

Open: optimal binary search tree 𝑂(𝑛')
knapsack 𝑂(𝑛𝑊)
many more...



Complexity Inside P

SAT 2n

EDIT n2

LCS n2

Fréchet n2

diameter n2

OV n2 Colinearity n2

Negative Triangle n3

Radius n3
3SUM-hard

APSP
equivalent

SETH-hard

classification of polynomial time problems

APSP n3

3SUM n2

problem-centric view on complexity theory



Machine Model

any (single-tape) Turing machine takes time Ω(𝑛')
for recognizing palindromes

Turing Machine:

this does not apply to real computers!

complexity theory is (to some extent) independent of the 
machine model – but only up to polynomial factors

we have to fix a machine model!

abbcaacbba



Machine Model

Random Access Machine (RAM):

CPU

101 011 001 111 … 100 101 111

storage:

cell / word 

• memory of O(1) cells
• can perform all reasonable operations 

on two cells in O(1) time        
(arithmetic + logical operations…)

• can read/write any cell in O(1) time

consisting of Θ(log𝑛) bits
the details do not matter!

can recognize palindromes
in time 𝑂(𝑛)



More Discussion

What about unconditional lower bounds?

no tools available beyond Ω(𝑛 log 𝑛)

What if the hypotheses are wrong?

NP-hardness was in the same situation 40 years ago

relations between problems will stay

suggests ways to attack a problem + which problems to attack



Conditional Lower Bounds …

… allow to classify polynomial time problems

… are an analogue of NP-hardness

yield good reasons to stop searching for faster algorithms

should belong to the basic toolbox of theoretical computer scientists

… allow to search for new algorithms with better focus

improve SAT before longest common subsequence…

non-matching lower bounds suggest better algorithms

relax the problem and study approximation algorithms,

… motivate new algorithms

parameterized running time, …



Content of the Course

fine-grained complexity is a young field of research 

we will see many open problems & possibilities for BA/MA-theses

we study core problems SAT, OV, APSP, 3SUM, and others

algorithms: learn fastest known algorithms for core problems

conditional lower bounds: from each of these hypotheses



II. An Example for OV-hardness



Orthogonal Vectors Hypothesis

Sets 𝐴,𝐵 ⊆ 0,1 8 of size 𝑛

Decide whether there are 
𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that 𝑎 ⊥ 𝑏

Input:

Task:

⇔[ 𝑎D \ 𝑏D = 0
8

DF:

𝐴 = { 1,1,1 , 1,1,0 ,
1,0,1 , 0,0,1 }

𝐵 = { 0,1,0 , 0,1,1 ,
1,0,1 , 1,1,1 }

⇔ for	all	1 ≤ 𝑖 ≤ 𝑑:	𝑎D = 0	or	𝑏D = 0

trivial 𝑂(𝑛'𝑑) algorithm

best known algorithm:  𝑂(𝑛'+:/e(fgh *)) where 𝑑 = 𝑐 log𝑛 [Lecture 03]

OV-Hypothesis: no 𝑂(𝑛'+,poly(𝑑)) algorithm for any 𝜀 > 0

„OV has no 𝑂(𝑛'+,) algorithm, even if 𝑑 = polylog	𝑛”



Graph Diameter Problem

An unweighted graph 𝐺 = (𝑉,𝐸)

Compute the largest distance 
between any pair of vertices

Input:

Task:

Single-source-shortest-paths:

Dijkstra’s algorithm:  𝑂 𝑚 + 𝑛 log𝑛

= max
s,t∈u

𝑑v(𝑢, 𝑣) diameter 2

Easy algorithm:

All-pairs-shortest-paths:

Dijkstra from every node: 	𝑂 𝑛 𝑚 + 𝑛 log𝑛 ≤ 𝑂(𝑛	𝑚 log 𝑛)

from this information we can compute the diameter in time 𝑂(𝑛')



OV-Hardness Result

diameter

time 𝑂(𝑑𝑛) 𝑂(𝑛) vertices

reduction
graph G

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑂(𝑑𝑛) edges

𝑂((𝑛𝑚):+,) algorithm𝑂(𝑛'+,poly(𝑑)) algorithm ⟸

Thm: Diameter has no 𝑂((𝑛𝑚):+,) algorithm 
unless the OV-Hypothesis fails.

[Roditty,V-Williams‘13]



Proof

Proof:

1 2 d…

𝑎

i
put edge if 𝑎D = 1

𝑏

put edge if 𝑏D = 1

𝐴 𝐵

𝑎, 𝑏 not orthogonal

diameter = 3 ⇔
there exists an 
orthogonal pair

𝑑 𝑎, 𝑏 = 2 ⇔

diameter

time 𝑂(𝑑𝑛) 𝑂(𝑛) vertices

reduction
graph G

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑂(𝑑𝑛) edges

can assume: every vector has at least one ‚1‘



Proof

Remark: Even deciding whether the diameter is ≤ 2 or ≥ 3 has 
no 𝑂((𝑛𝑚):+,) algorithm unless OVH fails.

There is no (3 '⁄ − 𝜀)-approximation for the diameter in 
time 𝑂((𝑛𝑚):+,) unless OVH fails.

diameter

time 𝑂(𝑑𝑛) 𝑂(𝑛) vertices

reduction
graph G

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑂(𝑑𝑛) edges



III. Another Example for OV-hardness



NFA Acceptance Problem

nondeterministic finite automaton 𝐺
accepts input string 𝑠 if there is a 
walk in 𝐺 from starting state to 
some accepting state, 
labelled with 𝑠

start 1 1

0,1 0,1

string: 01011010

dynamic programming algorithm in time 𝑂( 𝑠 𝐺 ):

𝑇 𝑖 ≔ set	of	states	reachable	via	walks	labelled	with	𝑠[1. . 𝑖]

𝑇 0 ≔ {starting	state}

𝑇 𝑖 ≔ 𝑣	 	∃𝑢 ∈ 𝑇 𝑖 − 1 	and	∃	transition	𝑢 → 𝑣	labelled	𝑠 𝑖 }



OV-Hardness Result

NFA acceptance

time 𝑂(𝑑𝑛) 𝐺 = 𝑂(𝑑𝑛)

reduction
grammar 𝐺, string 𝑠

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑠 = 𝑂(𝑑𝑛)

𝑂(( 𝑠 	|𝐺|):+,) algorithm𝑂(𝑛'+,poly(𝑑)) algorithm ⟸

Thm: NFA acceptance has no 𝑂(( 𝑠 	|𝐺|):+,)
algorithm unless OVH fails.

[Impagliazzo]



Proof

in string 𝑠:
in NFA 𝐺:

0011

= 𝑎:𝑎'…𝑎8

fix some 𝑎 ∈ 𝐴:
fix some 𝑏 ∈ 𝐵:

if 𝑏D = 1 if	𝑏D = 0

0 0 0

1

0

1

Proof:

NFA acceptance

time 𝑂(𝑑𝑛) 𝐺 = 𝑂(𝑑𝑛)

reduction
grammar 𝐺, string 𝑠

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑠 = 𝑂(𝑑𝑛)



Proof

in string 𝑠:
in NFA 𝐺:

0011

= 𝑎:𝑎'…𝑎8

fix some 𝑎 ∈ 𝐴:
fix some 𝑏 ∈ 𝐵:

if 𝑏D = 1 if	𝑏D = 0

0 0 0

1

0

1

Proof:

NFA acceptance

time 𝑂(𝑑𝑛) 𝐺 = 𝑂(𝑑𝑛)

reduction
grammar 𝐺, string 𝑠

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑠 = 𝑂(𝑑𝑛)



Proof

in string 𝑠: in NFA 𝐺:

fix some 𝑎 ∈ 𝐴: fix some 𝑏 ∈ 𝐵:

string 𝒔 = $1100$0110$ …$0011$

0011

(for all 𝑎 ∈ 𝐴)

NFA 𝑮: 0 0 0

1

0

1

00 0

1

0

1

(for all b ∈ 𝐵)
start

0,1, $

…

$

$

0,1, $
$

$

…
0 0 0

1

0

1

✔ equivalent to OV instance
✔ size 𝑠 = 𝐺 = 𝑂(𝑑𝑛)



VI. Four Russians



Method of Four Russians

Algorithm for Boolean matrix multiplication

Arlazarov, Dinic, Kronrod, and Faradzev 1970

Not all of them were Russian…

Better name: Four Soviets??



Boolean Matrix Multiplication

Input: Boolean (0/1) matrices 𝐴 and 𝐵

Output: 𝐴×𝐵 where + is OR and ∗ is AND

× =

𝑛

𝑛

𝐴 𝐵 𝐶



Naïve Algorithm

𝐶 𝑖, 𝑗 = � 𝐴 𝑖, 𝑘 ∧ 𝐵 𝑘, 𝑗
:�E�$

𝐴 𝑖, 1 ∧ 𝐵 1,𝑗

𝐴 𝑖, 𝑘 ∧ 𝐵 𝑘, 𝑗

∨

∨
⋱

⋱

Running time:
• time 𝑂 𝑛 per inner product
• #inner products: 𝑛'
• ⇒ 𝑂 𝑛3 total time

Is there a 𝑘 such that
𝐴 𝑖, 𝑘 = 1 and 𝐵 𝑘, 𝑗 = 1?

𝐴

𝐵

𝐶



Main Idea

Divide 𝐴 into blocks of size 𝑡×𝑡

1. Preprocess blocks and construct lookup table

2. Speed up naïve algorithm using lookup table

We use 𝑡 = 0.5 log𝑛

Number of blocks:
𝑛
𝑡

'
=

𝑛'

log' 𝑛

𝑡

𝑡



Preprocessing a Block 𝑿

1. For every 𝑡-dimensional vector 𝑣: precompute product 𝑋 ⋅ 𝑣

# inner products: 𝑡

⇒ 𝑂 𝑡' time

Total time: $
¢

'
×2¢×𝑡' = 𝑛'2¢ = 𝑛'.£ = O $¥

fgh$

#blocks #vectors inner product

2. Store results in lookup table: ⇒ retrieve 𝑋 ⋅ 𝑣 in time 𝑂(𝑡)

𝑋

𝑣

#	𝑡-dimensional vectors: 2¢ = 2¦.£ fgh$ = 𝑛¦.£



Multiplying with Lookup Table

∨

For each     of output:

∨

∨

∨⋯∨

⋯

$
¢ times

$
¢ times

1

2

𝑂(𝑡)

𝑂(𝑡)

𝑂 𝑛×
𝑛
𝑡
×
𝑛
𝑡
×𝑡 = 𝑂

𝑛3

𝑡
= 𝑂

𝑛3

log𝑛



Summary

Discussion:
• In preprocessing: need to prepare for all 𝑡-dimensional input vectors
• Counter-intuitive at first ‽

Only some of the 𝑡-dimensional vectors might really appear in 𝐵
• # different 𝑡-dimensional vectors in general: 2¢ = 𝑛¦.£

• # 𝑡-dimensional vectors per block in matrix multiplication: 𝑛
• ⇒ Reusability outweighs preprocessing cost
• ⇒ Four Russians in some sense a charging trick:

Charge running time to the 𝑡-dim. vectors instead of the columns

Key property: small number of possible cell entries

Main idea: speedup from lookup tables after preprocessing



Beyond Four Russians

Very general technique:
• Matrix problems, dynamic programming problems (e.g. LCS)
• “Shaving off” logarithmic factors popular for certain problems
• ⇒ Race to fastest algorithm

Example: All-pairs shortest paths (APSP)
Floyd-Warshall: 𝑂(𝑛3)

State of the art: 𝑂 $¥

'¨( ©ª« ¬)

2 fgh$ grows faster 
than log* 𝑛 for any 
constant 𝑐

The Polynomial Method

• Ideas from circuit complexity
• We will teach it in May



Transitive Closure Problem

Directed graph 𝐺, 𝑛 nodes TC matrix

3

4
21

5

6

7
8

9

1 1 1 0 1 1 1 1 1
0 1 1 0 1 1 1 1 1
0 1 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1 1
0 1 1 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1

𝑇𝐶 𝑖, 𝑗 = 1
iff i can reach j

Thm: BMM in time 𝑂(𝑇 𝑛 )⇔ TC in time 𝑂(𝑇 𝑛 )

Naïve Algorithm: 𝑂 𝑛3 by breadth-first search from each node



Reduction: From BMM (𝑻′(𝒏)) to TC (𝑻(𝒏))

×

𝐴 𝐵

j
iedge from 𝑖 to 𝑗

iff A 𝑖, 𝑗 = 1 𝑇𝐶 = 𝐴×𝐵

𝑇± 𝑛 = 𝑇 3𝑛

𝑛

𝑛

2-layered graph:



Reduction: From TC (𝑻′(𝒏)) to BMM (𝑻(𝒏))

Fact: (𝐴 ∨ 𝐼)E 𝑖, 𝑗 = 1 if and only if ∃path from 𝑖 to 𝑗 of length at most 𝑘

𝐴: adjacency matrix of 𝐺
𝐴 𝑖, 𝑗 = 1 if and only if 𝐺 has edge (𝑖, 𝑗)

𝐼: identity matrix

Fact: 𝑇𝐶 = (𝐴 ∨ 𝐼)$

Repeated squaring: 𝑀' = 𝑀×𝑀
𝑀N = 𝑀'×𝑀'

𝑀³ = 𝑀N×𝑀N

								…

Lem: 𝑇𝐶 can be computed using log 𝑛 Boolean matrix multiplications



Drawback of Reduction

Lem: 𝑇𝐶 can be computed with log 𝑛 Boolean matrix multiplications

𝑇± 𝑛 = 𝑇 𝑛 × log𝑛 =
𝑛3

log𝑛 × log𝑛 = 𝑛3

Log-factor improvement of Four Russians is gone!

Goal: Better reduction with 𝑇± 𝑛 = 𝑂(𝑇 𝑛 )



Reducing Problem to DAG

3

4
21

5

6

7
8

9

6

9

7

8

4

1

2 3

5

1. Compute strongly connected components (SCCs)
• 𝑖 and 𝑗 in same component iff 𝑖 can reach 𝑗 and 𝑗 can reach 𝑖
• Suffices to solve problem on graph of SCCs
• Graph of SCCs is directed acyclic graph (DAG)

2. Compute topological order ≺ on DAG:
edge 𝑖, 𝑗 in DAG ⇒ 𝑖 ≺ 𝑗

𝑂(𝑛')

I

II

III IV



Recursive Transitive Closure
Input: DAG 𝐺 with 𝑛 nodes in topological order

𝑋: First 𝑛 2⁄ edges in topological order
𝑌: Last 𝑛 2⁄ edges in topological order
𝑀: Adjacency matrix of edges between 𝑋 and 𝑌

𝑋± 𝑋 𝑌 𝑌±

𝑇𝐶 𝐺 = 𝑇𝐶 𝑋 ×𝑀×𝑇𝐶(𝑌)

𝑇± 𝑛 = 2𝑇± $
' + 𝑂 𝑇 𝑛 = 𝑂(𝑇 𝑛 )

Master Theorem*

* 2𝑇± ¬
¶ ≤ 𝑐𝑇′(𝑛) for some 0 < 𝑐 < 1

RECURSE



Summary

BMM and TC have same asymptotic time complexity

Same status:
• All-pairs shortest paths (APSP) and
• Min-plus matrix multiplication


