$\square \square \square$ max planck institut informatik

Complexity Theory of Polynomial-Time Problems

Lecture 1: Introduction, Easy Examples

Karl Bringmann and Sebastian Krinninger

Audience

no formal requirements, but:

NP-hardness, satisfiability problem, how to multiply two matrices, dynamic programming,
all-pairs-shortest-path problem,
Dijkstra‘s algorithm
... if you (vaguely) remember at least half of these things, then you should be able to follow the course

NP-hardness

suppose we want to solve some problem
fastest algorithm that we can come up with: $O\left(2^{n}\right)$
should we search further for an efficient algorithm?

prove NP-hardness!

an efficient algorithm would show $\mathrm{P}=\mathrm{NP}$
we may assume that no efficient algorithm exists
relax the problem: approximation algorithms, fixed parameter tractability, average case, heuristics...

What about polynomial time?

suppose we want to solve another problem
we come up with an $O\left(n^{2}\right)$ algorithm \rightarrow polynomial time $=$ efficient
big data: input is too large for $O\left(n^{2}\right)$ algorithm
should we search for faster algorithms?

> P vs NP is too coarse
> we need fine-grained complexity to study limits of big data

Conditional Lower Bounds

which barriers prevent subquadratic algorithms?
consider a well-studied problem P :
best-known running time $O\left(n^{c}\right)$
conjecture that it has no $O\left(n^{c-\varepsilon}\right)$ algorithm for any $\varepsilon>0$

\Downarrow

relate another problem Q to P via a reduction
\rightarrow conditional lower bound

Hard problems

SAT:
ov:
given n vectors in $\{0,1\}^{d}$ (for small d)
are any two orthogonal?
conjecture: no $O\left(n^{2-\varepsilon}\right)$ algorithm
APSP
given a weighted graph with n vertices
compute the distance between any pair of vertices conjecture: no $O\left(n^{3-\varepsilon}\right)$ algorithm

3SUM: \quad given n integers
do any three sum to 0 ?
conjecture: no $O\left(n^{2-\varepsilon}\right)$ algorithm

Relations $=$ Reductions

transfer hardness of one problem to another one by reductions

I is a 'yes'-instance

problem Q

instance J

J is a 'yes'-instance
$t(n)$ algorithm for Q implies a $r(n)+t(s(n))$ algorithm for P
if P has no $r(n)+t(s(n))$ algorithm then Q has no $t(n)$ algorithm

Relations = Reductions

transfer hardness of one problem to another one by reductions

$t(n)$ algorithm for Q implies a $r(n)+\sum_{i=1}^{k} t\left(s_{i}(n)\right)$ algorithm for P

Showcase Results

longest common subseq.
edit distance, longest palindromic subsequence, Fréchet distance...

$O\left(n^{2}\right)$

SETH-hard $n^{2-\varepsilon}$
[B.,Künnemann'15,
Abboud,Backurs, V-Williams'15]
given two strings x, y of length n, compute the longest string z that is a subsequence of both x and y

Showcase Results

Iongest common subseq．
edit distance，longest palindromic
subsequence，Fréchet distance．．．
$O\left(n^{2}\right)$
we can stop searching for faster algorithms！
in this sense，conditional lower bounds replace NP－hardness

$$
O\left(n^{2-\varepsilon}\right) \text { algorithms are unlikely to exist }
$$

improvements are at least as hard as a breakthrough for SAT

Showcase Results

longest common subseq.
edit distance, longest palindromic subsequence, Fréchet distance...
bitonic TSP
longest increasing subsequence, matrix chain multiplication...
$O\left(n^{2}\right)$
SETH-hard $n^{2-\varepsilon}$
[B.,Künnemann'15,
Abboud,Backurs,V-Williams'15]
$O\left(n \log ^{4} n\right)$
[de Berg,Buchin,Jansen,Woeginger'16]
given n points in the plane, compute a minimum tour connecting all points
among all tours consisting of two x-monotone parts

Showcase Results

longest common subseq. edit distance, longest palindromic subsequence, Fréchet distance...
bitonic TSP
longest increasing subsequence, matrix chain multiplication...
maximum submatrix
minimum weight triangle, graph centrality measures...
$O\left(n^{2}\right)$
SETH-hard $n^{2-\varepsilon}$
[B.,Künnemann'15,
Abboud,Backurs, V-Williams'15]
$O\left(n^{2}\right)$
$O\left(n \log ^{4} n\right)$
[de Berg,Buchin,Jansen,Woeginger'16]
given matrix A over \mathbb{Z}, choose a submatrix
(consisting of consecutive rows
and columns of A)
maximizing the sum of all entries

-3	2	-2	0
-2	5	7	-2
1	3	-1	1
3	-2	0	0

Showcase Results

longest common subseq.
$O\left(n^{2}\right)$
edit distance, longest palindromic subsequence, Fréchet distance...
bitonic TSP
longest increasing subsequence, matrix chain multiplication...
maximum submatrix
minimum weight triangle, graph centrality measures...
colinearity
motion planning, polygon containment...

SETH-hard $n^{2-\varepsilon}$
[B.,Künnemann'15, Abboud,Backurs, V-Williams'15]
[de Berg,Buchin,Jansen,Woeginger'16]
APSP-hard $n^{3-\varepsilon}$
[Backurs,Dikkala,Tzamos'16]

3SUM-hard $n^{2-\varepsilon}$
[Gajentaan,Overmars'95]
given n points in the plane, are any three of them on a line?

Showcase Results

longest common subseq.
$O\left(n^{2}\right)$
edit distance, longest palindromic subsequence, Fréchet distance...
bitonic TSP
longest increasing subsequence, matrix chain multiplication...
maximum submatrix
minimum weight triangle, graph centrality measures...
$O\left(n^{3}\right)$
$O\left(n^{2}\right)$

SETH-hard $n^{2-\varepsilon}$
[B.,Künnemann'15, Abboud,Backurs,V-Williams'15]
$O\left(n \log ^{4} n\right)$
[de Berg,Buchin,Jansen,Woeginger'16]
APSP-hard $n^{3-\varepsilon}$
[Backurs,Dikkala,Tzamos'16]

3SUM-hard $n^{2-\varepsilon}$
[Gajentaan,Overmars'95]

Open: optimal binary search tree $O\left(n^{2}\right)$ knapsack $O(n W)$
many more...

Complexity Inside P

Machine Model

complexity theory is (to some extent) independent of the machine model - but only up to polynomial factors
we have to fix a machine model!

Turing Machine:

any (single-tape) Turing machine takes time $\Omega\left(n^{2}\right)$ for recognizing palindromes
this does not apply to real computers!

Machine Model

Random Access Machine (RAM):

More Discussion

What about unconditional lower bounds?
no tools available beyond $\Omega(n \log n)$

What if the hypotheses are wrong?
NP-hardness was in the same situation 40 years ago
relations between problems will stay
suggests ways to attack a problem + which problems to attack

Conditional Lower Bounds ...

... allow to classify polynomial time problems
... are an analogue of NP-hardness
yield good reasons to stop searching for faster algorithms
should belong to the basic toolbox of theoretical computer scientists
... allow to search for new algorithms with better focus improve SAT before longest common subsequence... non-matching lower bounds suggest better algorithms
... motivate new algorithms
relax the problem and study approximation algorithms, parameterized running time, ...

Content of the Course

we study core problems SAT, OV, APSP, 3SUM, and others
conditional lower bounds: from each of these hypotheses
algorithms: learn fastest known algorithms for core problems
fine-grained complexity is a young field of research
we will see many open problems \& possibilities for BA/MA-theses

II. An Example for OV-hardness

Orthogonal Vectors Hypothesis

Input: Sets $A, B \subseteq\{0,1\}^{d}$ of size n
Task: Decide whether there are $a \in A, b \in B$ such that $a \perp b$

$$
\Leftrightarrow \sum_{i=1}^{d} a_{i} \cdot b_{i}=0
$$

$$
\Leftrightarrow \text { for all } 1 \leq i \leq d: a_{i}=0 \text { or } b_{i}=0
$$

$$
\begin{aligned}
A= & \{(1,1,1),(1,1,0), \\
& (1,0,1),(0,0,1)\} \\
B= & \{(0,1,0),(0,1,1), \\
& (1,0,1),(1,1,1)\}
\end{aligned}
$$

trivial $O\left(n^{2} d\right)$ algorithm
best known algorithm: $O\left(n^{2-1 / O(\log c)}\right)$ where $d=c \log n$ [Lecture 03]

OV-Hypothesis: no $O\left(n^{2-\varepsilon}\right.$ poly $\left.(d)\right)$ algorithm for any $\varepsilon>0$
"OV has no $O\left(n^{2-\varepsilon}\right)$ algorithm, even if $d=$ polylog $n "$

Graph Diameter Problem

Input: An unweighted graph $G=(V, E)$
Task: Compute the largest distance between any pair of vertices

$$
=\max _{u, v \in V} d_{G}(u, v)
$$

diameter 2

Easy algorithm:
Single-source-shortest-paths:
Dijkstra's algorithm: $O(m+n \log n)$
All-pairs-shortest-paths:
Dijkstra from every node: $O(n(m+n \log n)) \leq O(n m \log n)$
from this information we can compute the diameter in time $O\left(n^{2}\right)$

OV-Hardness Result

$O\left(n^{2-\varepsilon} \operatorname{poly}(d)\right)$ algorithm $\Longleftarrow \quad O\left((n m)^{1-\varepsilon}\right)$ algorithm

Thm: Diameter has no $O\left((\mathrm{~nm})^{1-\varepsilon}\right)$ algorithm
[Roditty,V-Williams'13] unless the OV-Hypothesis fails.

Proof

reduction
sets $A, B \subseteq\{0,1\}^{d}$
of size n

diameter

graph G

$O(n)$ vertices
$O(d n)$ edges

Proof: can assume: every vector has at least one ,1‘

$$
\begin{gathered}
d(a, b)=2 \Leftrightarrow \\
a, b \text { not orthogonal }
\end{gathered}
$$

diameter $=3 \Leftrightarrow$ there exists an orthogonal pair

Proof

OV
sets $A, B \subseteq\{0,1\}^{d}$
of size n

diameter

graph G

$O(n)$ vertices
$O(d n)$ edges

Remark: Even deciding whether the diameter is ≤ 2 or ≥ 3 has no $O\left((n m)^{1-\varepsilon}\right)$ algorithm unless OVH fails.

There is no $(3 / 2-\varepsilon)$-approximation for the diameter in time $O\left((n m)^{1-\varepsilon}\right)$ unless OVH fails.

III. Another Example for OV-hardness

NFA Acceptance Problem

nondeterministic finite automaton G accepts input string s if there is a walk in G from starting state to some accepting state, labelled with s

string: 01011010
dynamic programming algorithm in time $O(|s||G|)$:
$T[i]:=$ set of states reachable via walks labelled with $s[1 . . i]$

$$
\begin{aligned}
& T[0]:=\{\text { starting state }\} \\
& T[i]:=\{v \mid \exists u \in T[i-1] \text { and } \exists \text { transition } u \rightarrow v \text { labelled } s[i]\}
\end{aligned}
$$

OV-Hardness Result

$O\left(n^{2-\varepsilon} \operatorname{poly}(d)\right)$ algorithm $\Longleftarrow \quad O\left((|S||G|)^{1-\varepsilon}\right)$ algorithm

Thm: \quad NFA acceptance has no $O\left((|s||G|)^{1-\varepsilon}\right)$
[Impagliazzo] algorithm unless OVH fails.

Proof

OV
 sets $A, B \subseteq\{0,1\}^{d}$
 of size n

Proof:

fix some $a \in A$:
in string s :

$$
\begin{gathered}
\stackrel{0011}{\uparrow}=a_{1} a_{2} \ldots a_{d}
\end{gathered}
$$

fix some $b \in B$:
in NFA G :

if $b_{i}=1$
if $b_{i}=0$

Proof

OV
 sets $A, B \subseteq\{0,1\}^{d}$
 of size n

reduction

time $O(d n)$

NFA acceptance

 grammar G, string $s$$$
\begin{aligned}
& |G|=O(d n) \\
& |s|=O(d n)
\end{aligned}
$$

Proof:

fix some $a \in A$:
in string s :

$$
\begin{gathered}
\stackrel{0011}{\uparrow}=a_{1} a_{2} \ldots a_{d}
\end{gathered}
$$

fix some $b \in B$:
in NFA G :

if $b_{i}=1$
if $b_{i}=0$

Proof

fix some $a \in A$:
in string s :
0011
fix some $b \in B$:
in NFA G :

string $\boldsymbol{s}=\$ 1100 \$ 0110 \$. . . \$ 0011 \$$
(for all $a \in A$)
\checkmark equivalent to OV instance
\checkmark size $|s|=|G|=O(d n)$

NFA G :

VI. Four Russians

Method of Four Russians

Arlazarov, Dinic, Kronrod, and Faradzev 1970

Algorithm for Boolean matrix multiplication

Not all of them were Russian...
Better name: Four Soviets??

Boolean Matrix Multiplication

Input: Boolean (0/1) matrices A and B
Output: $A \times B$ where + is OR and $*$ is AND

Naïve Algorithm

Running time:

- time $O(n)$ per inner product
- \#inner products: n^{2}
- $\Rightarrow O\left(n^{3}\right)$ total time
$C[i, j]=\bigvee_{1 \leq k \leq n} A[i, k] \wedge B[k, j]$

Is there a k such that

$$
A[i, k]=1 \text { and } B[k, j]=1 ?
$$

Main Idea

Divide A into blocks of size $t \times t$

We use $t=0.5 \log n$

Number of blocks:

$$
\left(\frac{n}{t}\right)^{2}=\frac{n^{2}}{\log ^{2} n}
$$

1. Preprocess blocks and construct lookup table
2. Speed up naïve algorithm using lookup table

Preprocessing a Block X

1. For every t-dimensional vector v : precompute product $X \cdot v$

> \# inner products: t
> $\Rightarrow O\left(t^{2}\right)$ time
2. Store results in lookup table: \Rightarrow retrieve $X \cdot v$ in time $O(t)$
$\# t$-dimensional vectors: $2^{t}=2^{0.5 \log n}=n^{0.5}$
Total time: $\left(\frac{n}{t}\right)^{2} \times 2^{t} \times t^{2}=n^{2} 2^{t}=n^{2.5}=0\left(\frac{n^{3}}{\log n}\right)$

\#blocks \#vectors inner product

Multiplying with Lookup Table

$$
O\left(n \times \frac{n}{t} \times \frac{n}{t} \times t\right)=O\left(\frac{n^{3}}{t}\right)=O\left(\frac{n^{3}}{\log n}\right)
$$

Summary

Key property: small number of possible cell entries

Main idea: speedup from lookup tables after preprocessing

Discussion:

- In preprocessing: need to prepare for all t-dimensional input vectors
- Counter-intuitive at first?

Only some of the t-dimensional vectors might really appear in B

- \# different t-dimensional vectors in general: $2^{t}=n^{0.5}$
- \# t-dimensional vectors per block in matrix multiplication: n
- \Rightarrow Reusability outweighs preprocessing cost
- \Rightarrow Four Russians in some sense a charging trick:

Charge running time to the t-dim. vectors instead of the columns

Beyond Four Russians

Very general technique:

- Matrix problems, dynamic programming problems (e.g. LCS)
- "Shaving off" logarithmic factors popular for certain problems
- \Rightarrow Race to fastest algorithm

Example: All-pairs shortest paths (APSP)
Floyd-Warshall: $O\left(n^{3}\right)$

State of the art: $O\left(\frac{n^{3}}{\left.2^{\Omega(\sqrt{\log n)}}\right)}\right.$
$22^{\sqrt{\log n}}$ grows faster than $\log ^{c} n$ for any constant c

The Polynomial Method

- Ideas from circuit complexity
- We will teach it in May

Transitive Closure Problem

Directed graph G, n nodes

TC matrix

1	1	1	0	1	1	1	1	1
0	1	1	0	1	1	1	1	1
0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1
0	0	0	0	0	1	1	1	1
0	0	0	0	0	1	1	1	1
0	0	0	0	0	1	1	1	1
0	0	0	0	0	1	1	1	1

Thm: BMM in time $O(T(n)) \Leftrightarrow$ TC in time $O(T(n))$

Naïve Algorithm: $O\left(n^{3}\right)$ by breadth-first search from each node

Reduction: From BMM ($\left.T^{\prime}(n)\right)$ to TC $(T(n))$

A
B

Reduction: From TC $\left(T^{\prime}(n)\right)$ to BMM (T(n))

A: adjacency matrix of G $A[i, j]=1$ if and only if G has edge (i, j)
I: identity matrix

Fact: $(A \vee I)^{k}[i, j]=1$ if and only if \exists path from i to j of length at most k

Fact: $T C=(A \vee I)^{n}$

$$
\begin{array}{ll}
\text { Repeated squaring: } & M^{2}=M \times M \\
& M^{4}=M^{2} \times M^{2} \\
& M^{8}=M^{4} \times M^{4}
\end{array}
$$

Lem: TC can be computed using $\log n$ Boolean matrix multiplications

Drawback of Reduction

Lem: TC can be computed with $\log n$ Boolean matrix multiplications

$$
T^{\prime}(n)=T(n) \times \log n=\frac{n^{3}}{\log n} \times \log n=n^{3}
$$

Log-factor improvement of Four Russians is gone!

Goal: Better reduction with $T^{\prime}(n)=O(T(n))$

Reducing Problem to DAG

1. Compute strongly connected components (SCCs)

- $\quad i$ and j in same component iff i can reach j and j can reach i
- Suffices to solve problem on graph of SCCs
- Graph of SCCs is directed acyclic graph (DAG)

2. Compute topological order $<$ on DAG:
$O\left(n^{2}\right)$ edge (i, j) in DAG $\Rightarrow i \prec j$

Recursive Transitive Closure

Input: DAG G with n nodes in topological order
X : First $n / 2$ edges in topological order Y : Last $n / 2$ edges in topological order

RECURSE

M : Adjacency matrix of edges between X and Y

Summary

BMM and TC have same asymptotic time complexity

Same status:

- All-pairs shortest paths (APSP) and
- Min-plus matrix multiplication

