

Complexity Theory of Polynomial-Time Problems

Lecture 2: SETH and OV

Karl Bringmann

Tutorial Slot

Tuesday, 16:15 - 18:00

works for everybody?

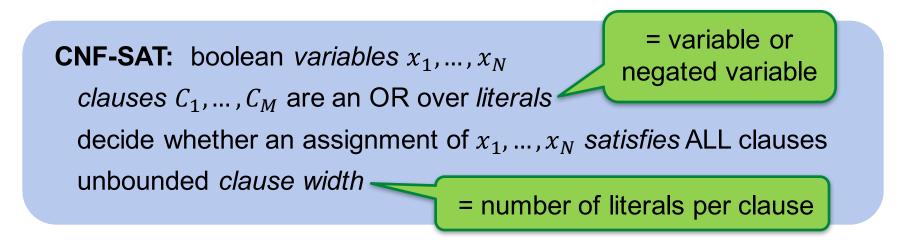
alternative time slot:

	Мо	Tue	Wed	Thu	Fri
10-12					
12-14					new
14-16					
16-18		current			

I. SETH

Satisfiability Problem

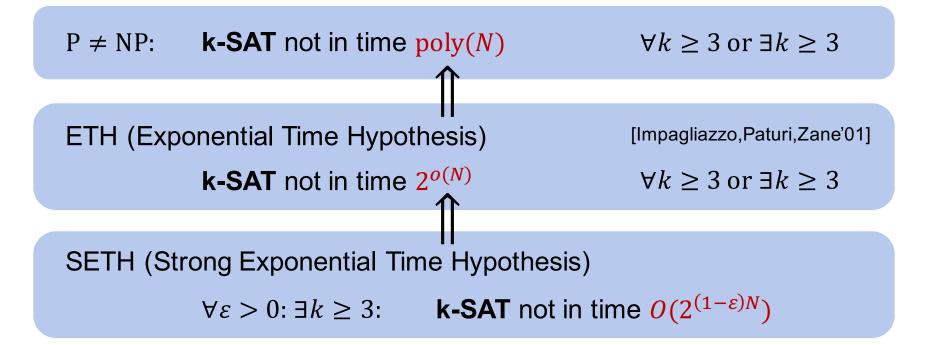
 $(x_1 \lor \neg x_2 \lor x_4) \land (x_3 \lor \neg x_3) \land$ $(\neg x_1 \lor x_2 \lor x_3 \lor x_4)$



k-SAT: clause width bounded by
$$k$$

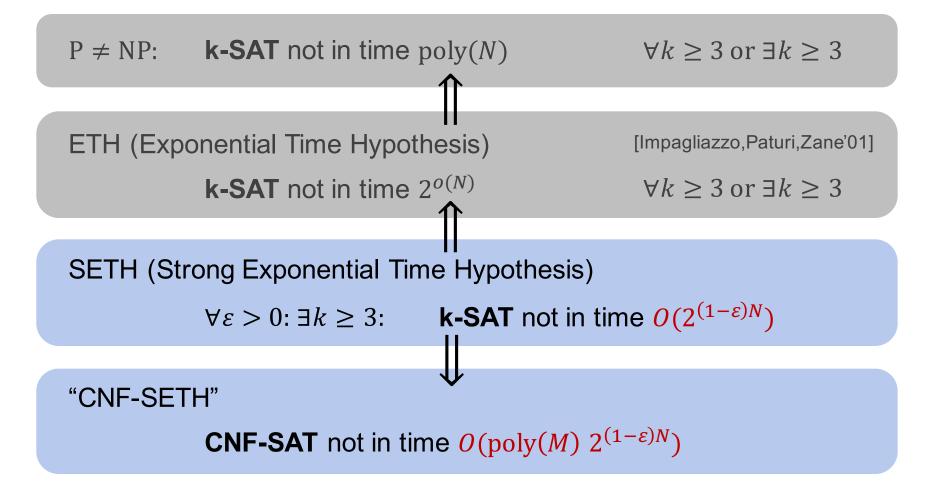
thus $M \le N^k$

Satisfiability Hypotheses



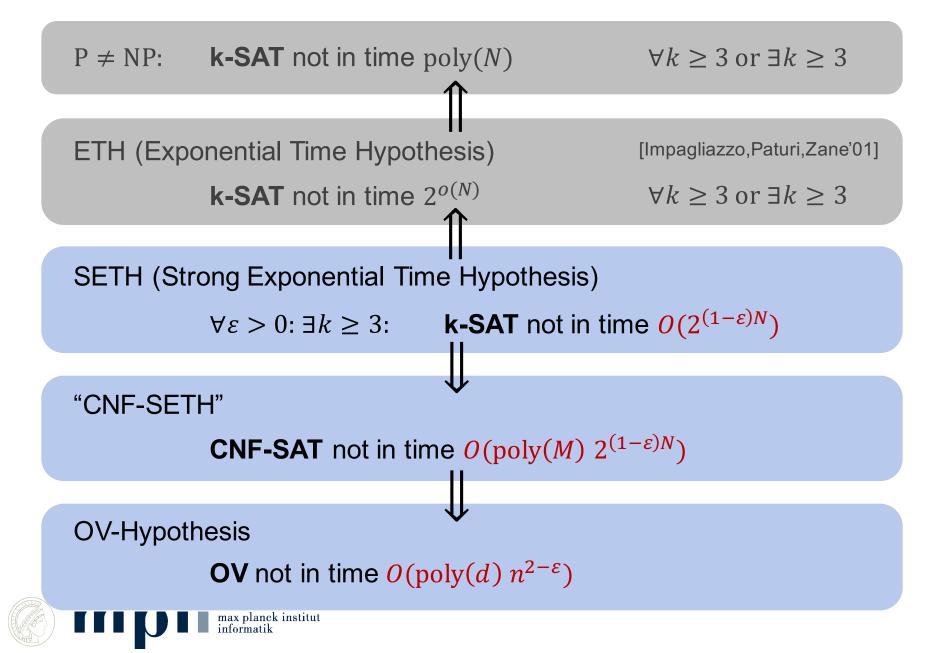
best-known algorithm for k-SAT: $O(2^{(1-c_k)n})$ where $c_k = \Theta(1/k)$

Satisfiability Hypotheses



best-known algorithm for CNF-SAT: [Calabro,Impagliazzo,Paturi'06] $O(2^{(1-x)N})$ where $x = \Theta(1/\log(M/N))$

Satisfiability Hypotheses



Reminder: Definition of Reductions

transfer hardness of one problem to another one by reductions

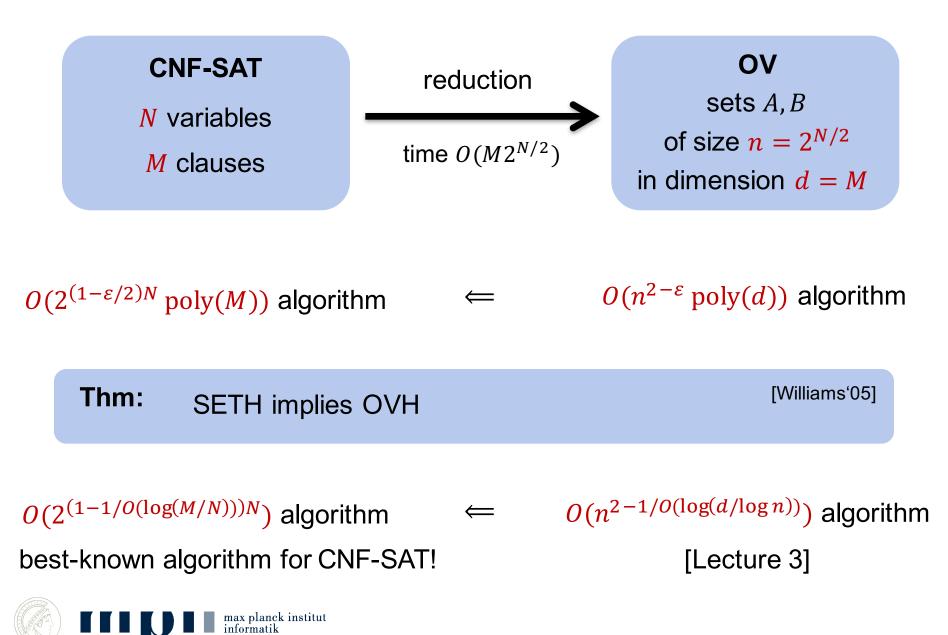


t(n) algorithm for Q implies a r(n) + t(s(n)) algorithm for P

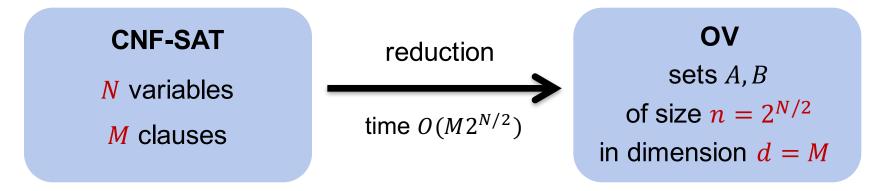
max planck institut

if P has no r(n) + t(s(n)) algorithm then Q has no t(n) algorithm

SETH-Hardness for OV



SETH-Hardness for OV



Proof:

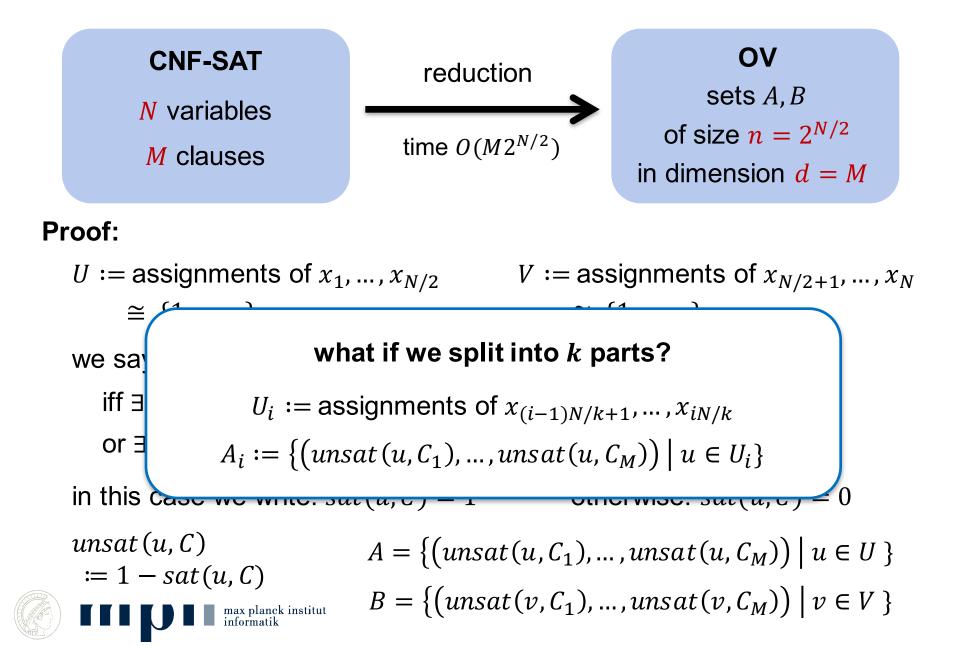
$$U := \text{assignments of } x_1, \dots, x_{N/2} \qquad V := \text{assignments of } x_{N/2+1}, \dots, x_N$$
$$\cong \{1, \dots, n\} \qquad \cong \{1, \dots, n\}$$

we say that partial assignment u satisfies clause C

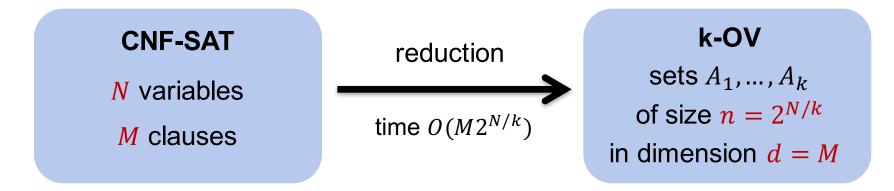
iff $\exists i: x_i$ is set to **true** in *u* and x_i appears **unnegated** in *C* or $\exists i: x_i$ is set to **false** in *u* and x_i appears **negated** in *C*

in this case we write: sat(u, C) = 1 otherwise: sat(u, C) = 0 unsat(u, C) $\approx 1 - sat(u, C)$ $M = \{(unsat(u, C_1), \dots, unsat(u, C_M)) | u \in U\}$ $B = \{(unsat(v, C_1), \dots, unsat(v, C_M)) | v \in V\}$

SETH-Hardness for OV



SETH-Hardness for k-OV



k-OrthogonalVectors:

- *Input:* Sets $A_1, ..., A_k \subseteq \{0,1\}^d$ of size n
- *Task:* Decide whether there are $a^{(1)} \in A_1, ..., a^{(k)} \in A_k$ such that $\forall 1 \le i \le d$: $\prod_{j=1}^k a^{(j)}{}_i = 0$ $\Leftrightarrow \forall 1 \le i \le d$: $\exists j$: $a^{(j)}{}_i = 0$

Thm: k-OV has no $O(n^{k-\varepsilon})$ algorithm unless SETH fails.

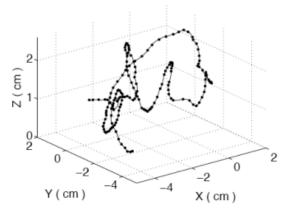
[Williams,Patrascu'10]

II. Fréchet Distance

Curve Similarity

Given two polygonal curves, how similar are they?

Applications in: signature recognition, analysis of moving objects



Discrete Fréchet Distance

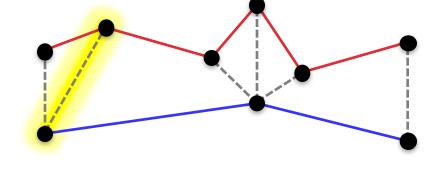
natural measure for curve similarity

rich field of research: many extensions and applications

Discrete Fréchet Distance

natural measure for curve similarity

rich field of research: many extensions and applications



man and dog walk along two curves

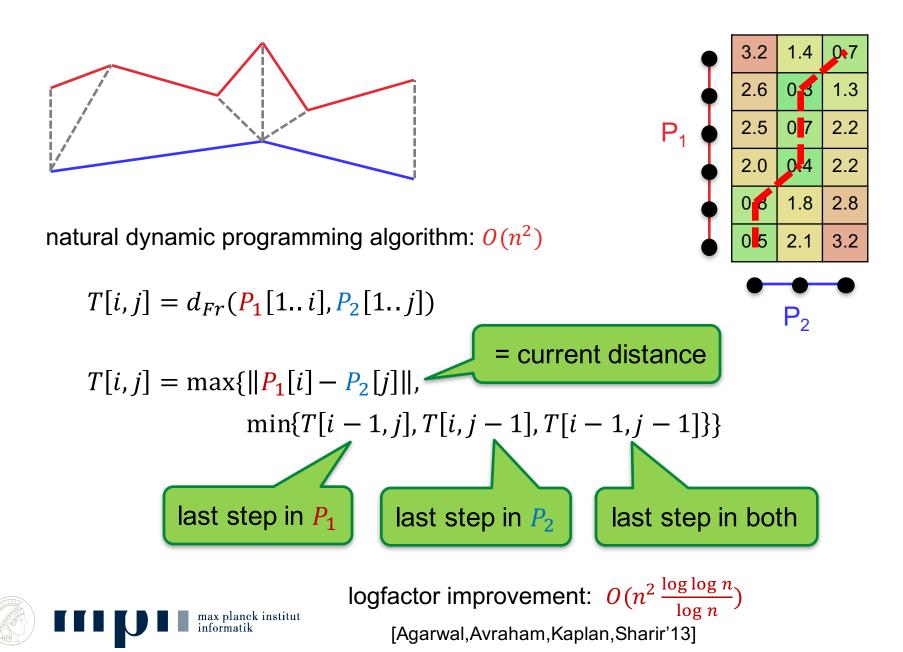
only allowed to go forward

in every time step: advance in one or both curves to the next vertex

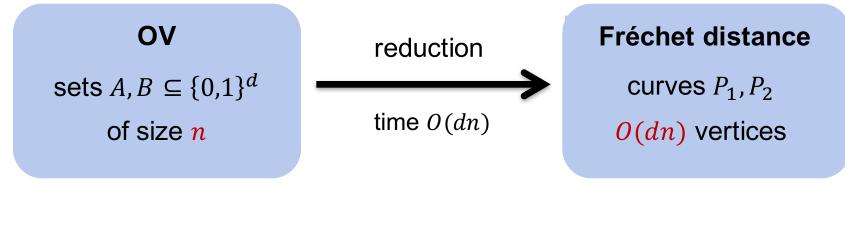
what is the minimum possible length of the **leash**?

 $d_{\rm dF}(P_1, P_2) = \min_{\substack{\text{all ways of traversing} \\ P_1 \text{ and } P_2}} \max_{\substack{\text{time step } t \\ P_1 \text{ because} \\ T = 0}} distance at time t$

Dynamic Program and Known Results

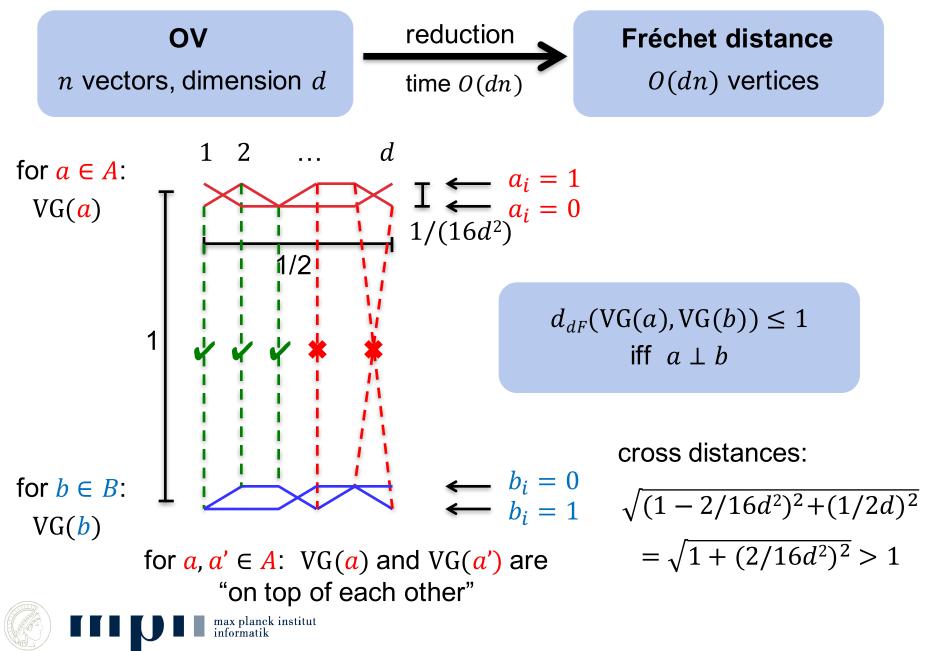


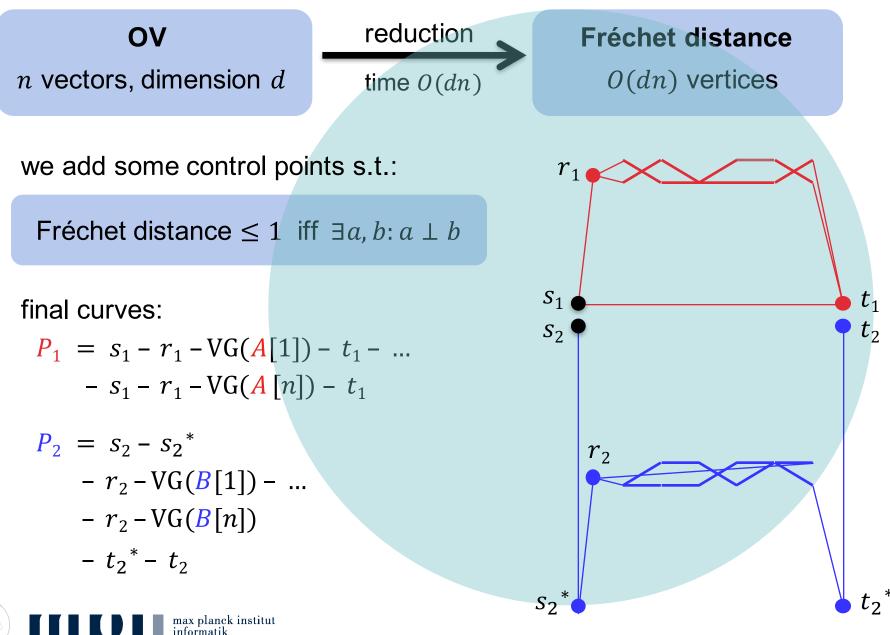
OV-Hardness Result



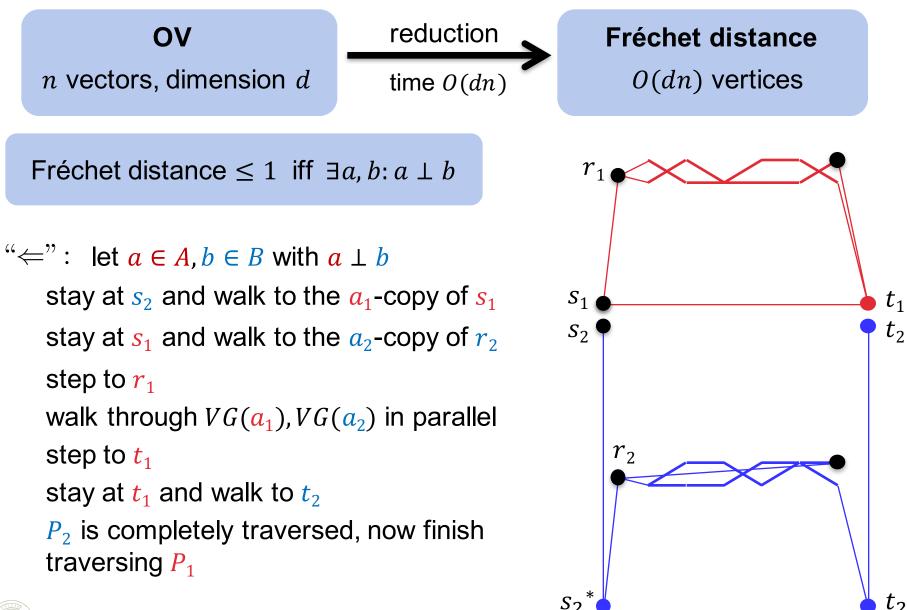
 $O(n^{2-\varepsilon} \operatorname{poly}(d))$ algorithm $\Leftarrow O(n^{2-\varepsilon})$ algorithm

Thm:	Fréchet distance has no $O(n^{2-\varepsilon})$ algorithm	[B.'14]
	unless the OV-Hypothesis fails.	



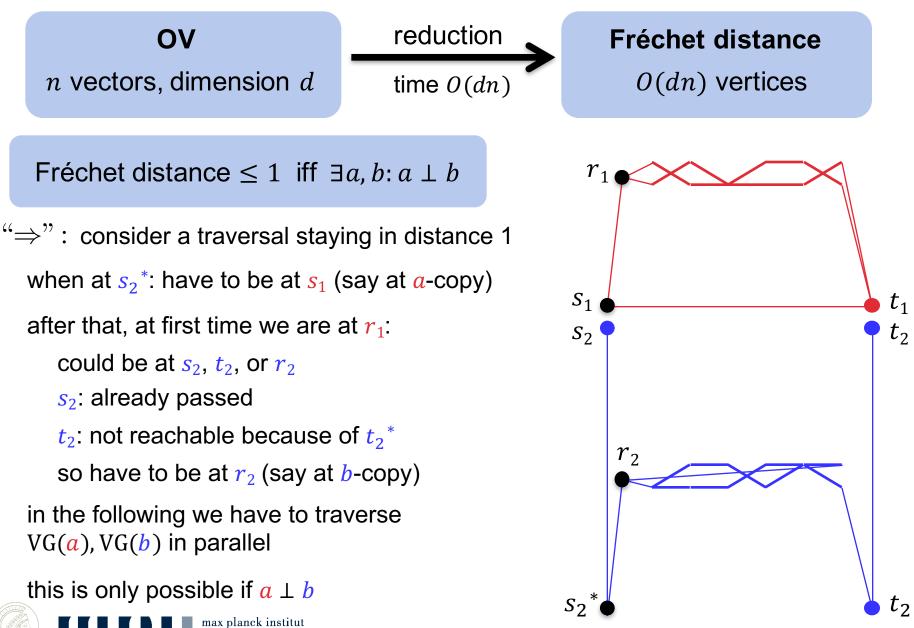


Proof: Correctness

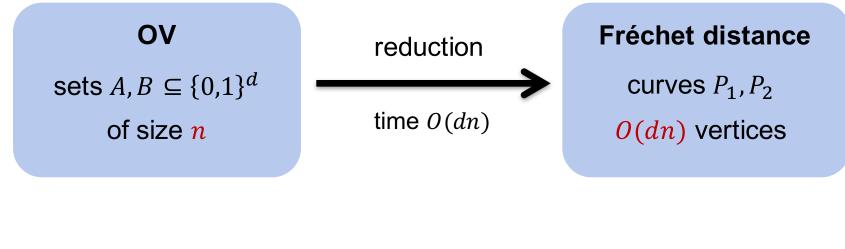


max planck institut

Proof: Correctness



OV-Hardness Result



 $O(n^{2-\varepsilon} \operatorname{poly}(d))$ algorithm $\Leftarrow O(n^{2-\varepsilon})$ algorithm

Thm:	Fréchet distance has no $O(n^{2-\varepsilon})$ algorithm	[B.'14]
	unless the OV-Hypothesis fails.	

Inapproximability

Thm: Fréchet distance has no 1.001-approximation ^[B.'14] in time $O(n^{2-\varepsilon})$ unless the OV-Hypothesis fails.

different construction yields 1.399-inapproximability [B.,Mulzer'15]

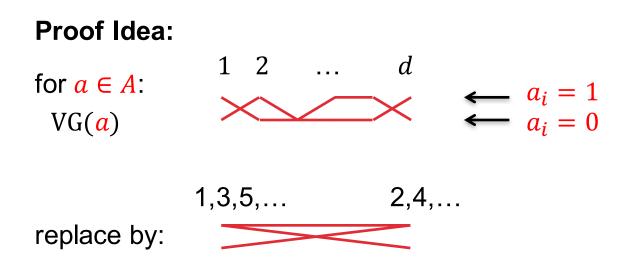
Q: improve constant

Thm: Fréchet distance has has an α -approximation ^[B.,Mulzer'15] in time $O(n^2/\alpha + n \log n)$

Q: close this gap

Inapproximability

Thm: Fréchet distance has no 1.001-approximation ^[B.'14] in time $O(n^{2-\varepsilon})$ unless the OV-Hypothesis fails.



we still have to walk in parallel through vector gadgets!

Inapproximability

Thm: Fréchet distance has no 1.001-approximation in time $O(n^{2-\varepsilon})$ unless the OV-Hypothesis fails.

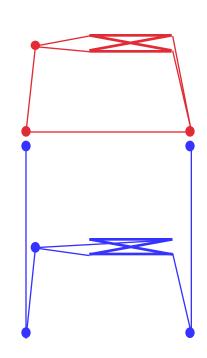
Proof Idea:

construction has a fixed (constant) set of points

minimal distance between any pair of points in distance > 1 in P_1 and P_2 is C > 1.001

if $d_{dF}(P_1, P_2) > 1$ then $d_{dF}(P_1, P_2) > 1.001$

thus any 1.001-approximation of the Fréchet distance can decide OV



[B.'14]

Generalizations

Fréchet distance has no $O(n^{2-\varepsilon})$ algorithm unless OVH fails even on **one-dimensional** curves [B.,Mulzer'15]

A generalization to **k** curves has no $O(n^{k-\varepsilon})$ algorithm unless OVH fails (for curves in the plane)

[Buchin,Buchin,Konzack,Mulzer,Schulz'16]

Q: $\Omega(n^{k-\varepsilon})$ lower bound for k one-dimensional curves

continuous Fréchet distance:

Q: $\Omega(n^{2-\varepsilon})$ lower bound for one-dimensional curves **Q**: $\Omega(n^{k-\varepsilon})$ lower bound for k curves

> max planck institut informatik

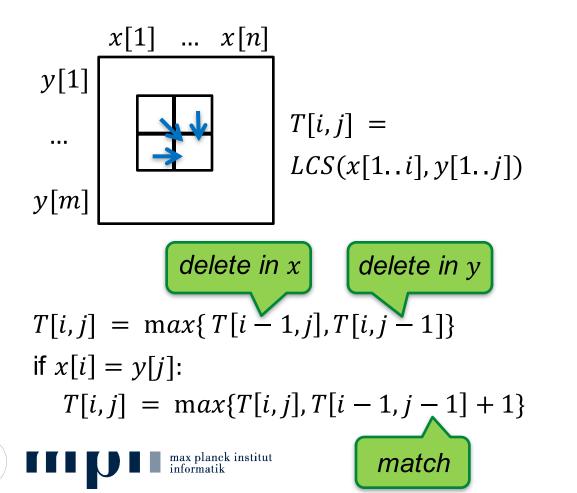
III. Longest Common Subsequence

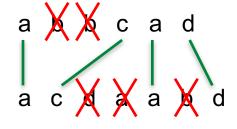
Longest Common Subsequence (LCS)

given strings x, y of length $n \ge m$, compute longest string z that is a subsequence of both x and y

natural dynamic program $O(n^2)$

write LCS(x, y) = |z|



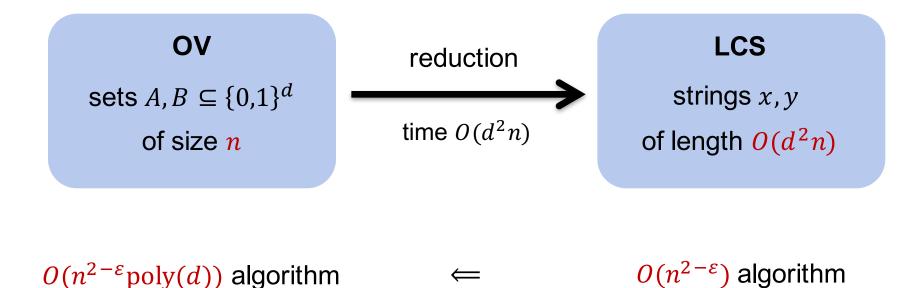


logfactor improvement:

```
O(n^2/\log^2 n)
```

[Masek,Paterson'80]

OV-Hardness Result



Thm: Longest Common Subsequence [B.,Künnemann'15+ Abboud,Backurs,V-Williams'15] has no $O(n^{2-\varepsilon})$ algorithm unless the OV-Hypothesis fails.

Proof: Coordinate Gadgets

OV: Given
$$A, B \subseteq \{0,1\}^d$$
 of size n each
Are there $a \in A, b \in B$ such that $\forall i: a_i \cdot b_i = 0$

we want to simulate the **coordinates** {0,1} and the behavior of $a_i \cdot b_i$

$$0^{A} := 001 \qquad 1^{A} := 111$$

$$LCS = 2 \qquad LCS = 2 \qquad LCS = 2 \qquad 1^{B} := 000$$

replace a_i by a_i^A and b_i by b_i^B

 $LCS(a_i^A, b_i^B)$ can be written as $f(a_i \cdot b_i)$, with f(0) > f(1)

OV: Given $A, B \subseteq \{0,1\}^d$ of size n each Are there $a \in A, b \in B$ such that $\forall i: a_i \cdot b_i = 0$

we want to simulate **orthogonality** of $a \in A, b \in B$ in the picture: d = 4concatenate $a_1^A, ..., a_d^A$, padded with a new symbol 2 length 4d $VG(a) := a_1^A 2 ... 2 a_2^A 2 ... 2 a_3^A 2 ... 2 a_4^A$ $VG(b) := b_1^B 2 ... 2 b_2^B 2 ... 2 b_3^B 2 ... 2 b_4^B$

- no LCS matches symbols in a_i^A with symbols in b_j^B where $i \neq j$

OV: Given
$$A, B \subseteq \{0,1\}^d$$
 of size n each
Are there $a \in A, b \in B$ such that $\forall i: a_i \cdot b_i = 0$

we want to simulate **orthogonality** of $a \in A, b \in B$

concatenate a_1^A , ..., a_d^A , padded with a new symbol 2

$$VG(a) := a_1^A 2 \dots 2 a_2^A 2 \dots 2 a_3^A 2 \dots 2 a_4^A$$
$$VG(b) := b_1^B 2 \dots 2 b_2^B 2 \dots 2 b_3^B 2 \dots 2 b_4^B$$

length 4d

- no LCS matches symbols in a_i^A with symbols in b_j^B where $i \neq j$ assume otherwise

then we could match $\leq (d-2)4d$ symbols 2 and $\leq 3d$ symbols 0/1but $LCS(VG(a), VG(b)) \geq (d-1)4d > (d-2)4d + 3d$

OV: Given
$$A, B \subseteq \{0,1\}^d$$
 of size n each
Are there $a \in A, b \in B$ such that $\forall i: a_i \cdot b_i = 0$

we want to simulate **orthogonality** of $a \in A, b \in B$ concatenate $a_1^A, ..., a_d^A$, padded with a new symbol 2

$$VG(a) := a_1^A 2 \dots 2 a_2^A 2 \dots 2 a_3^A 2 \dots 2 a_4^A$$
$$VG(b) := b_1^B 2 \dots 2 b_2^B 2 \dots 2 b_3^B 2 \dots 2 b_4^B$$

- no LCS matches symbols in a_i^A with symbols in b_j^B where $i \neq j$

- some LCS matches all 2's

OV: Given
$$A, B \subseteq \{0,1\}^d$$
 of size n each
Are there $a \in A, b \in B$ such that $\forall i: a_i \cdot b_i = 0$

we want to simulate **orthogonality** of $a \in A, b \in B$ concatenate $a_1^A, ..., a_d^A$, padded with a new symbol 2

$$VG(a) := a_1^A 2 \dots 2 a_2^A 2 \dots 2 a_3^A 2 \dots 2 a_4^A$$
$$VG(b) := b_1^B 2 \dots 2 b_2^B 2 \dots 2 b_3^B 2 \dots 2 b_4^B$$

 $-LCS(VG(a), VG(b)) = (d - 1)4d + \sum_{i=1}^{d} LCS(a_i^A, b_i^B) = f(a_i \cdot b_i)$ $#2's \qquad LCS(VG(a), VG(b)) = C + 2 \quad \text{if } a \perp b$ $LCS(VG(a), VG(b)) \leq C \qquad \text{otherwise}$ Where C = (d - 1)4d + 2d - 2

Proof: Normalized Vectors Gadgets

OV: Given $A, B \subseteq \{0,1\}^d$ of size n each Are there $a \in A, b \in B$ such that $\forall i: a_i \cdot b_i = 0$

add a (d + 1)-st coordinate:

 $a_{d+1} \coloneqq 0$ $b_{d+1} \coloneqq 1$

this does not change $a \perp b$

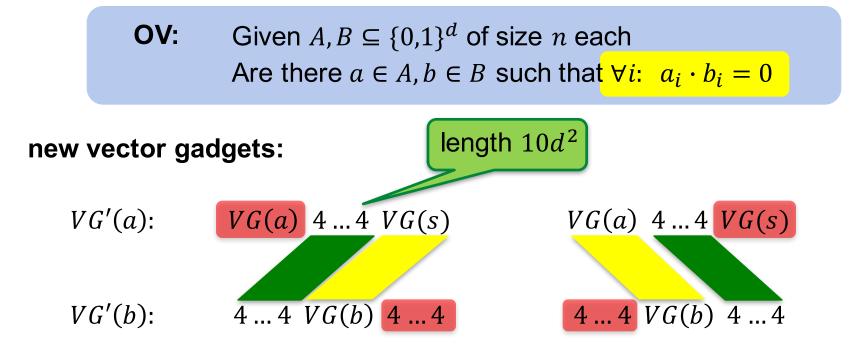
still holds: $\exists C$: LCS(VG(a), VG(b)) = C + 2 if $a \perp b$ $LCS(VG(a), VG(b)) \leq C$ otherwise

define vector:

 $s \coloneqq (0, \dots, 0, 1) \in \{0, 1\}^{d+1} \qquad LCS(VG(s), VG(b)) = C$

aim for max{LCS(VG(a), VG(b)), LCS(VG(s), VG(b))} this takes only 2 values, depending on whether $a \perp b$

Proof: Normalized Vectors Gadgets



 $LCS(VG'(a), VG'(b)) = 10d^{2} + \max\{LCS(VG(a), VG(b)), LCS(VG(s), VG(b))\}$

$$LCS(VG'(a), VG'(b)) = \begin{cases} C' + 2 & \text{if } a \perp b \\ C' & \text{otherwise} \end{cases}$$

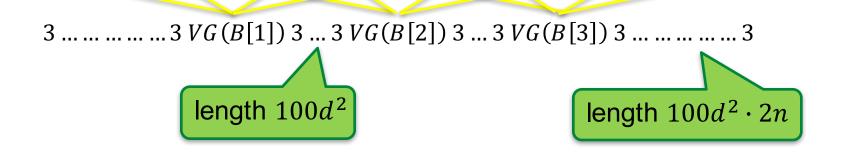
max planck institut informatik write VG for VG'

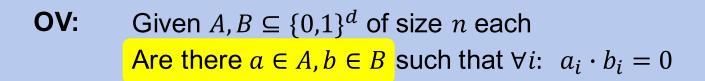
OV: Given $A, B \subseteq \{0,1\}^d$ of size n each Are there $a \in A, b \in B$ such that $\forall i: a_i \cdot b_i = 0$

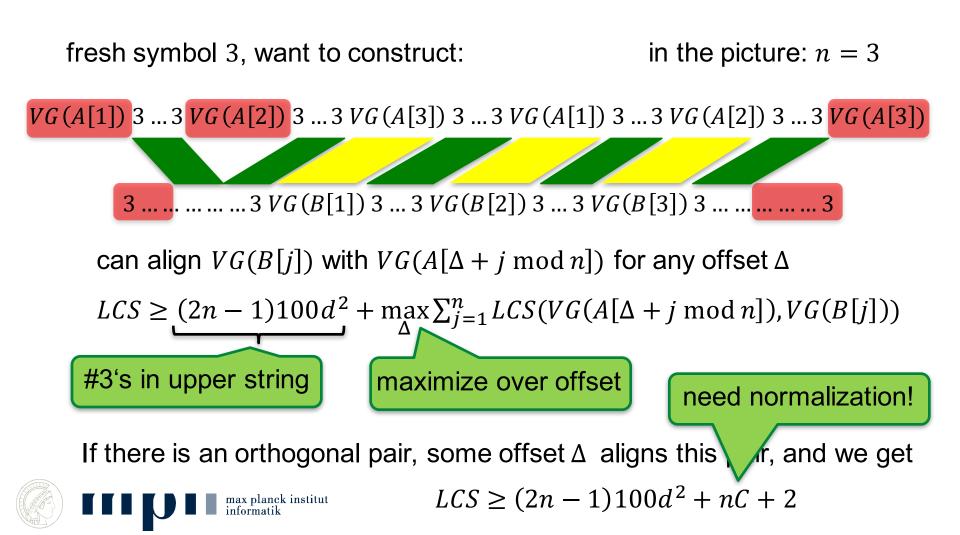
fresh symbol 3, want to construct:

in the picture: n = 3

VG(*A*[1]) 3 ... 3 *VG*(*A*[2]) 3 ... 3 *VG*(*A*[3]) 3 ... 3 *VG*(*A*[1]) 3 ... 3 *VG*(*A*[2]) 3 ... 3 *VG*(*A*[3])



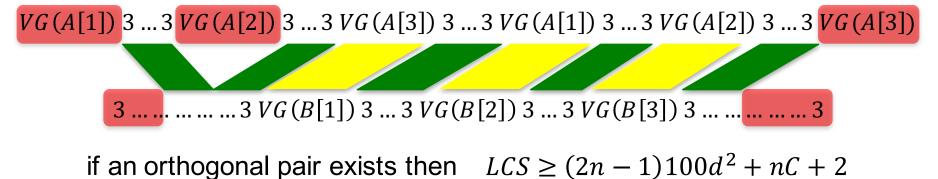




OV: Given $A, B \subseteq \{0,1\}^d$ of size n each Are there $a \in A, b \in B$ such that $\forall i: a_i \cdot b_i = 0$

fresh symbol 3, want to construct:

in the picture: n = 3

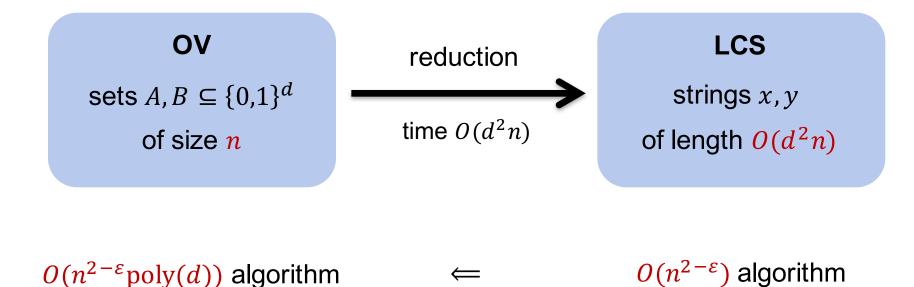


Claim: otherwise: $LCS \le (2n-1)100d^2 + nC$

this finishes the proof:

equivalent to OV instance

OV-Hardness Result



Thm: Longest Common Subsequence [B.,Künnemann'15+ Abboud,Backurs,V-Williams'15] has no $O(n^{2-\varepsilon})$ algorithm unless the OV-Hypothesis fails.

Proof of Claim

OV: Given $A, B \subseteq \{0,1\}^d$ of size n each Are there $a \in A, b \in B$ such that $\forall i: a_i \cdot b_i = 0$

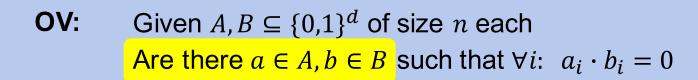
Claim: if no orthogonal pair exists: $LCS \le (2n-1)100d^2 + nC$

VG(*A*[1]) 3 ... 3 *VG*(*A*[2]) 3 ... 3 *VG*(*A*[3]) 3 ... 3 *VG*(*A*[1]) 3 ... 3 *VG*(*A*[2]) 3 ... 3 *VG*(*A*[3])

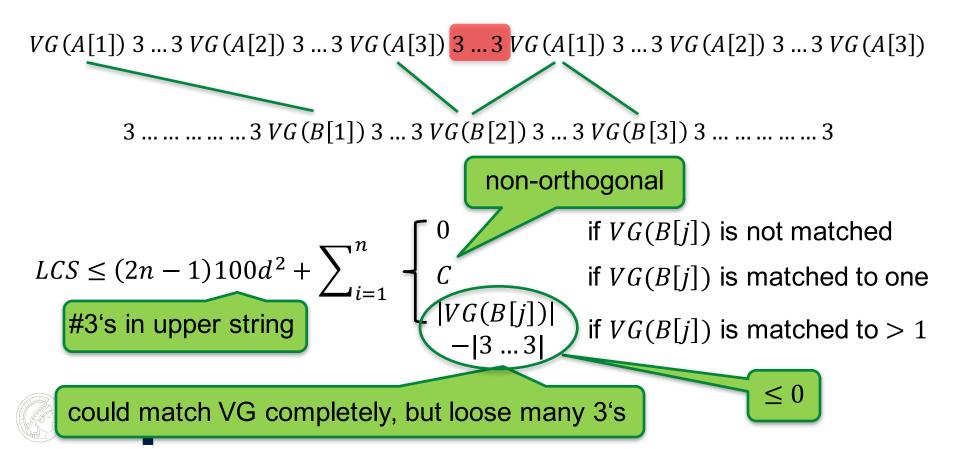
consider how an LCS matches the VG(B[j])

- no crossings

Proof of Claim



Claim: if no orthogonal pair exists: $LCS \le (2n-1)100d^2 + nC$



Extensions

similar problems:

edit distance

dynamic time warping

alphabet size:

. . .

longest common subsequence and edit distance are even hard on *binary* strings, i.e., alphabet {0,1}

longest common subsequence of **k** strings takes time $\Omega(n^{k-\varepsilon})$

Summary

reduction SETH \rightarrow OV

introduced k-OV

OV-hardness for Fréchet distance

OV-hardness for longest common subsequence

