Complexity Theory of Polynomial-Time Problems

Lecture 3: The polynomial method
Part I: Orthogonal Vectors

Sebastian Krinninger

Organization of lecture

- No lecture on 26.05. (State holiday)
- $2^{\text {nd }}$ exercise sheet: Next week
- Tutorials:
- New slot: Friday, 12:15-14:00, U12 E1.1, biweekly
- Fr, 13.05. (tomorrow)
- Fr, 03.06.
- Etc.

The polynomial method

- Recently developed technique in Algorithm Design
- Current fastest algorithms for
- All-Pairs Shortest Paths [Williams 14]
- Orthogonal Vectors [Abboud/Williams/Yu 15]
- Hamming Nearest Neighbors [Alman/Williams 15]
- Two main tools

1. Razborov-Smolensky from Circuit Complexity
2. Fast rectangular matrix multiplication

Reminder: Orthogonal Vectors Problem

Input: Two sets $A, B \subseteq\{0,1\}^{d}$ of d-dimensional 0/1-vectors of size n Output: Is there a pair $a \in A, b \in B$ s.t. a and b are orthogonal?

$$
\begin{array}{ll}
\exists a \in A, b \in B: & \langle a, b\rangle=0 \\
& \sum_{k=1}^{d} a[k] \cdot b[k]=0 \\
& \forall 1 \leq k \leq d:(a[k]=0) \vee(b[k]=0)
\end{array}
$$

Trivial algorithms:

- $O\left(n^{2} d\right)$
- $\left.O\left(2^{d} n\right) \quad\right\}$ Interesting Regime: $d=c \log n$

Today's result

Reminder:
Conjecture: There is no algorithm for the orthogonal vectors problem with running time $O\left(n^{2-\epsilon}\right.$ poly $\left.(d)\right)$ for any $\epsilon>0$.

State of the art:
Theorem: There is an algorithm for the orthogonal vectors problem with running time $n^{2-1 / O(\log (d / \log n))}$.

In this lecture: $n^{2-1 / O(\log d)}$
Algorithm is randomized and correct with high probability, i.e., probability \geq $1-1 / n$

Overview

1. Reduce problem to many subproblems of very small size
2. Precompute small circuits for solving subproblems
3. Evaluate circuits with probabilistic polynomials of low degree
4. Evaluate polynomials using fast rectangular matrix multiplication

Overview

1. Reduce problem to many subproblems of very small size
2. Precompute small circuits for solving subproblems
3. Evaluate circuits with probabilistic polynomials of low degree
4. Evaluate polynomials using fast rectangular matrix multiplication

Dividing into smaller subproblems

1. Divide A and B into $q=\left\lceil\frac{n}{s}\right\rceil$ subsets of size $\leq s$:
A_{1}, \ldots, A_{q} and B_{1}, \ldots, B_{q}
2. Construct a polynomial $P\left(a_{1}[1], \ldots a_{1}[d], \ldots, a_{s}[1] \ldots, a_{s}[d]\right.$,

$$
\left.b_{1}[1], \ldots b_{1}[d], \ldots, b_{s}[1] \ldots, b_{s}[1]\right)
$$

$P\left(A_{i}, B_{j}\right)=1$ if and only if A_{i}, B_{j} contains orthogonal pair ...only with high probability
3. For every pair of subsets A_{i}, B_{j} : evaluate P on A_{i}, B_{j}

$$
\ldots \text {..simultaneously! } \rightarrow O\left(\frac{n^{2}}{s^{2}} \text { polylog }(n)\right)
$$

4. Return "yes" if some A_{i}, B_{j} contains orthogonal pair, "no" otherwise

We set $s=2^{\epsilon \log n / \log d}=n^{\epsilon / \log d}$ for some sufficiently small ϵ

Questions

1. How to construct suitable polynomial P ?
2. How to evaluate P fast on all pairs of inputs?

Overview

1. Reduce problem to many subproblems of very small size

2. Precompute small circuits for solving subproblems
3. Evaluate circuits with probabilistic polynomials of low degree
4. Evaluate polynomials using fast rectangular matrix multiplication

Boolean circuits

Boolean circuit

- Directed acyclic graph
- Sources: input bits
- Sink: output bit
- Inner nodes: Boolean operations
- AND: ^
- OR: V
- Arbitrary "fan-in"

Circuit for checking orthogonality of vectors

Are x and y orthogonal?

x and y orthogonal iff

$$
\neg \exists i: x[i]=1 \wedge y[i]=1
$$

Output bit $z=1$ iff
x and y orthogonal

AND of ORs with

- $2 d$ negated inputs
- 1 output

Circuit for finding orthogonal pair

Is there an orthogonal pair?

Check orthogonality for every pair
x_{1}, y_{1} orthogonal OR
x_{1}, y_{2} orthogonal OR
OR
x_{s}, y_{s} orthogonal?

OR of ANDs of ORs
$2 d s^{2}$ negated inputs

Overview

1. Reduce problem to many subproblems of very small size
2. Precompute small circuits for solving subproblems
3. Evaluate circuits with probabilistic polynomials of low degree
4. Evaluate polynomials using fast rectangular matrix multiplication

From circuits to polynomials

- Obtain polynomial over F_{2} outputting 1 if and only if circuit outputs 1
- F_{2} : Field of $\{0,1\}$ with operations \oplus and .
- \oplus is XOR-operation:
- $0 \oplus 0=0 \quad 1 \oplus 0=1 \quad 0 \oplus 1=1 \quad 1 \oplus 1=0$
- XOR of multiple variables:
$x_{1} \oplus x_{2} \oplus \cdots \oplus x_{k}=1$ if and only if odd number of x_{i} 's is 1
- Expanded polynomials:
- $a \cdot(b \oplus c) \cdot(a \oplus b \oplus d)=a c \oplus a b c \oplus a b d \oplus a c d$
- XOR of monomials
- Goal: Few monomials allows fast evaluation later

Representing circuit by polynomial

Straightforward approach:

- AND: $\quad a \wedge b \Rightarrow a \cdot b$
- Negation: $\neg a \Rightarrow 1 \oplus a \quad$ (addition=subtraction in F_{2})
- OR:
$a \vee b \Rightarrow \neg(\neg a \wedge \neg b) \quad$ (DeMorgan's Law)

Example: Bottom-level of circuit

$$
\neg a \vee \neg b \Rightarrow 1 \oplus a \cdot b
$$

Expanding a multiplication (distributive law)

Running time: $O\left(k^{t} t \cdot\right.$ deg) where deg is degree after expansion (maximum size of any monomial); here deg $\leq t$

Razborov/Smolensky trick [Raz87] [Smo87]

Naïve representation of OR

DeMorgan:

$$
O R\left(x_{1}, \ldots, x_{k}\right)=1 \oplus \prod_{i=1}^{k}\left(1 \oplus x_{i}\right)
$$

After expansion: 2^{k} monomials

Probabilistic representation of OR

Parameter t
Fewer monomials, correct whp

Correct representation with high probability

Case 1: $x_{1} \vee \cdots \vee x_{k}=0$
Easy case: each XOR outputs 0 , top OR outputs 0
Case 2: $x_{1} \vee \cdots \vee x_{k}=1$
Let X be set of inputs with $x_{i}=1$
For each XOR:

- If XOR has odd number of links to X : XOR outputs 1 (good event: top OR outputs 1)
- If XOR has even number of links to X : XOR outputs 0 (bad event!)
Probability that XOR has even number of links to X :
$=1 / 2$ because last element of X "decides" whether number of links is even or odd (each with prob. 1/2)

Probabilistic representation of OR

\Rightarrow Probability that all XORs output $0:=\left(\frac{1}{2}\right)^{t}=\frac{1}{2^{t}}$
\Rightarrow Probability that OR outputs $1:=1-\frac{1}{2^{t}}$

Bounding number of monomials

Formal definition of polynomial
For $i=1 \ldots t, j=1 \ldots k$:

- With probability $\frac{1}{2}$: Set $r_{i, j}=1$
- Otherwise:

Set $r_{i, j}=0$
Polynomial: $O R_{t}\left(x_{1}, \ldots, x_{k}\right)=$

$$
1 \oplus \prod_{i=1}^{t}\left(1 \oplus \oplus_{j=1}^{k} r_{i, j} \cdot x_{i}\right)
$$

After expansion: $(k+1)^{t}$ monomials

Probabilistic representation of OR

Formal definition

Definition: Let C be a Boolean circuit with k input gates and let D be a finite distribution of polynomials on k variables over a ring R containing 0 and $1^{(*)}$. The distribution D is a probabilistic polynomial over R representing C with error δ if for all $\left(x_{1}, \ldots, x_{k}\right) \in\{0,1\}^{k}:$

$$
\operatorname{Pr}_{p \sim D}\left[p\left(x_{1}, \ldots, x_{k}\right)=C\left(x_{1}, \ldots, x_{k}\right)\right]>1-\delta .
$$

Example: OR-gate represented by
$O R_{t}\left(x_{1}, \ldots, x_{k}\right)=1 \oplus \prod_{i=1}^{t}\left(1 \oplus \oplus_{j=1}^{k} r_{i, j} \cdot x_{i}\right)$ with error $\delta=1-\frac{1}{2^{t}}$
${ }^{(*)}$ In our case, R is the field F_{2}

Representing OV circuit I

Are x and y orthogonal?

Bottom OR:

$$
\begin{aligned}
& \neg x[k] \vee \neg y[k] \\
& \quad \Rightarrow 1 \oplus x[k] \cdot y[k]
\end{aligned}
$$

Middle AND:

1. DeMorgan
2. Razborov/Smolensky with $t_{1}=3 \log s$
Number of monomials:

$$
(d+1)^{t_{1}}
$$

Representing OV circuit II

Is there an orthogonal pair?

Middle ANDs:
XOR of s^{2} polynomials, each with $(d+1)^{t_{1}}$ monomials
$\Rightarrow s^{2}(d+1)^{t_{1}}$ monomials

Top OR:

$\mathrm{Raz} / \mathrm{Smol}$ with $t_{2}=2$
$\Rightarrow\left(s^{2}(d+1)^{t_{1}}\right)^{t_{2}}$ monomials $=s^{4}(d+1)^{6 \log s}$

Analysis of error

We apply Razborov/Smolensky

- s^{2} times with $t_{1}=3 \log s$
- 1 time with $t_{2}=2$

Union Bound: $\operatorname{Pr}(X \cup Y) \leq \operatorname{Pr}(X)+\operatorname{Pr}(Y)$

Probability of error: $\leq \frac{s^{2}}{2^{t_{1}}}+\frac{1}{2^{t_{2}}}=\frac{s^{2}}{s^{3}}+\frac{1}{4}=\frac{1}{s}+\frac{1}{4} \leq \frac{1}{3}$
($1 / s$ is small enough for instances with sufficiently large n)

Plugging in the right values

$$
\begin{gathered}
s=2^{\epsilon \log n / \log d} \\
\epsilon=1 / 160
\end{gathered}
$$

\#monomials: $m \leq s^{4}(d+1)^{6 \log s} \leq s^{4}(d+1)^{6 \epsilon \log n / \log d}$

$$
\leq 4 \epsilon \log n+12 \epsilon \log n=0.1 \log n
$$

$$
\Rightarrow m \leq n^{0.1}
$$

Running time for expanding polynomial

We explicitly have to expand our polynomial into XOR of monomials!
Running time dominated by applications of distributive law
$1^{\text {st }}$ expansion (repeated s^{2} times):

- Degree after expansion: $O\left(t_{1}\right)$
- Total time: $O\left(s^{2}(d+1)^{t_{1}} t_{1}^{2}\right)$
$2^{\text {nd }}$ expansion :
- Degree after expansion: $O\left(t_{1} t_{2}\right)$
- Running time: $O\left(\left(s^{2}(d+1)^{t_{1}}\right)^{t_{2}} t_{1}^{2} t_{2}^{2}\right) \leq O\left(n^{0.1} t_{1}^{2} t_{2}^{2}\right) \leq O\left(n^{0.1} \log ^{2} n\right)$
\Rightarrow Total time: $O\left(n^{0.1} \log ^{2} n\right)$ (negligible)

Summary for probabilistic polynomial

We can construct polynomial P over F_{2} with $2 s d$ inputs such that, given two sets $A^{\prime}, B^{\prime} \subseteq\{0,1\}^{d}$ of d-dimensional $0 / 1$-vectors of size s, with probability $>\frac{2}{3}$: $P\left(A^{\prime}, B^{\prime}\right)=1$ iff A^{\prime} and B^{\prime} have orthogonal pair.

Overview

1. Reduce problem to many subproblems of very small size
2. Precompute small circuits for solving subproblems
3. Evaluate circuits with probabilistic polynomials of low degree
4. Evaluate polynomials using fast rectangular matrix multiplication

Fast matrix multiplication

- Goal: Compute $C=A \times B$ where A and B are $n \times n$ matrices
- Naïve algorithm: $O\left(n^{3}\right)$
- Strassen's algorithm: $O\left(n^{2.807}\right)$
- Current fastest: $O\left(n^{2.373}\right)$
- Best we can hope for: $O\left(n^{2}\right)$

Rectangular matrix multiplication

$$
N^{0.1}
$$

$=$

Lemma: There is an algorithm for multiplying an $N \times N^{0.17}$ matrix with an $N^{0.17} \times N$ matrix in time $O\left(N^{2} \log ^{2} n\right)$.

Also works for finite fields such as F_{2} !

Fast evaluation of polynomial

- Given: Polynomial $P(x[1], \ldots, x[K], y[1], \ldots, y[K])$ over F_{2}
- With at most $N^{0.1}$ monomials
- Two sets of inputs:

$$
X=\left\{x_{1}, \ldots, x_{N}\right\} \subseteq\{0,1\}^{K}, Y=\left\{y_{1}, \ldots, y_{N}\right\} \subseteq\{0,1\}^{K}
$$

- Evaluate P on all pairs $\left(x_{i}, y_{j}\right) \in X \times Y$ simultaneously in time $O\left(N^{2}\right.$ polylog $\left.(n)\right)$

Reduction to matrix multiplication

$N^{0.1}$ monomials
Entry (i, j) : Restriction of i-th monomial to input y_{j}

Entry (i, j) : Restriction of j-th monomial to input x_{i}

Evaluating OV-polynomial on all subgroups

1. Divide A and B into $q=\left\lceil\frac{n}{s}\right\rceil$ subsets of size $\leq s$:
A_{1}, \ldots, A_{q} and B_{1}, \ldots, B_{q}
2. Construct a polynomial $P\left(a_{1}[1], \ldots a_{1}[d], \ldots, a_{q}[1] \ldots, a_{q}[d]\right.$,

$$
\left.b_{1}[1], \ldots b_{1}[d], \ldots, b_{q}[1] \ldots, b_{q}[1]\right)
$$

$P\left(A_{i}, B_{j}\right)=1$ if and only if A_{i}, B_{j} contains orthogonal pair
3. For every pair of subsets A_{i}, B_{j} : evaluate P on A_{i}, B_{j}
P has $\leq n^{0.1}$ monomials
Simultaneous evaluation in time $O\left(n^{2} / s^{2}\right.$ polylog $\left.(n)\right) \leq n^{2-1 / O(\log d)}$

$$
s=2^{\epsilon \log n / \log d}=n^{\epsilon / \log d} \text { for } \epsilon=1 / 160
$$

Remarks

Correctness with high probability

- Polynomial is only correct with probability $\geq 2 / 3$
- Amplify the success probability by repeating with $10 \log n$ independent polynomials and taking majority value
- \Rightarrow Chernoff Bound

Faster algorithm:

- $n^{2-1 / O(\log (d / \log n))}$
- Just needs better estimate for number of monomials and slightly different choice of S

