Complexity Theory of Polynomial-Time Problems

Lecture 3: The polynomial method Part I: Orthogonal Vectors

Sebastian Krinninger

Organization of lecture

- No lecture on 26.05. (State holiday)
- 2nd exercise sheet: Next week
- Tutorials:
 - New slot: Friday, 12:15 14:00, U12 E1.1, biweekly
 - Fr, 13.05. (tomorrow)
 - Fr, 03.06.
 - Etc.

The polynomial method

- Recently developed technique in Algorithm Design
- Current fastest algorithms for
 - All-Pairs Shortest Paths [Williams 14]
 - Orthogonal Vectors [Abboud/Williams/Yu 15]
 - Hamming Nearest Neighbors [Alman/Williams 15]
- Two main tools
 - 1. Razborov-Smolensky from Circuit Complexity
 - 2. Fast rectangular matrix multiplication

Reminder: Orthogonal Vectors Problem

Input: Two sets $A, B \subseteq \{0,1\}^d$ of d-dimensional 0/1-vectors of size nOutput: Is there a pair $a \in A, b \in B$ s.t. a and b are orthogonal?

$$\exists a \in A, b \in B: \quad \langle a, b \rangle = 0$$

$$\sum_{k=1}^{d} a[k] \cdot b[k] = 0$$

$$\forall 1 \le k \le d: (a[k] = 0) \lor (b[k] = 0)$$

Trivial algorithms:

• $O(n^2 d)$ • $O(2^d n)$ } Interesting Regime: $d = c \log n$

Today's result

Reminder:

Conjecture: There is no algorithm for the orthogonal vectors problem with running time $O(n^{2-\epsilon} \operatorname{poly}(d))$ for any $\epsilon > 0$.

State of the art:

Theorem: There is an algorithm for the orthogonal vectors problem with running time $n^{2-1/O(\log(d/\log n))}$.

In this lecture: $n^{2-1/O(\log d)}$

Algorithm is randomized and correct with high probability, i.e., probability $\geq 1 - 1/n$

Overview

- 1. Reduce problem to many subproblems of very small size
- 2. Precompute small **circuits** for solving subproblems
- 3. Evaluate circuits with **probabilistic polynomials** of **low degree**
- 4. Evaluate polynomials using fast **rectangular** matrix multiplication

Overview

1. Reduce problem to many subproblems of very small size

- 2. Precompute small **circuits** for solving subproblems
- 3. Evaluate circuits with **probabilistic polynomials** of **low degree**
- 4. Evaluate polynomials using fast rectangular matrix multiplication

Dividing into smaller subproblems

- 1. Divide A and B into $q = \lceil \frac{n}{s} \rceil$ subsets of size $\leq s$: A_1, \dots, A_q and B_1, \dots, B_q
- 2. Construct a polynomial $P(a_1[1], ..., a_1[d], ..., a_s[1], ..., a_s[d], b_1[1], ..., b_1[d], ..., b_s[1] ..., b_s[1])$

 $P(A_i, B_j) = 1$ if and only if A_i, B_j contains orthogonal pair ...only with high probability

- 3. For every pair of subsets A_i , B_j : evaluate P on A_i , B_j ...simultaneously! $\rightarrow O(\frac{n^2}{s^2} \operatorname{polylog}(n))$
- 4. Return "yes" if some A_i , B_j contains orthogonal pair, "no" otherwise

We set $s = 2^{\epsilon \log n / \log d} = n^{\epsilon / \log d}$ for some sufficiently small ϵ

- 1. How to construct suitable polynomial *P*?
- 2. How to evaluate *P* fast on all pairs of inputs?

Overview

- 1. Reduce problem to many subproblems of very small size
- 2. Precompute small **circuits** for solving subproblems
- 3. Evaluate circuits with **probabilistic polynomials** of **low degree**
- 4. Evaluate polynomials using fast rectangular matrix multiplication

Boolean circuits

Boolean circuit

- Directed acyclic graph
- Sources: input bits
- Sink: output bit
- Inner nodes: Boolean operations
- AND: ^
- OR: V
- Arbitrary "fan-in"

Circuit for checking orthogonality of vectors

x and y orthogonal iff $\neg \exists i: x[i] = 1 \land y[i] = 1$

Output bit z = 1 iff x and y orthogonal

AND of ORs with

- 2*d* negated inputs
- 1 output

Circuit for finding orthogonal pair

Overview

- 1. Reduce problem to many subproblems of very small size
- 2. Precompute small **circuits** for solving subproblems
- 3. Evaluate circuits with **probabilistic polynomials** of **low degree**
- 4. Evaluate polynomials using fast rectangular matrix multiplication

From circuits to polynomials

- Obtain polynomial over F_2 outputting 1 if and only if circuit outputs 1
- F_2 : Field of $\{0, 1\}$ with operations \bigoplus and \cdot
- \oplus is XOR-operation:
 - $0 \oplus 0 = 0$ $1 \oplus 0 = 1$ $0 \oplus 1 = 1$ $1 \oplus 1 = 0$
 - XOR of multiple variables:

 $x_1 \oplus x_2 \oplus \cdots \oplus x_k = 1$ if and only if odd number of x_i 's is 1

- Expanded polynomials:
 - $a \cdot (b \oplus c) \cdot (a \oplus b \oplus d) = ac \oplus abc \oplus abd \oplus acd$
 - XOR of monomials
 - Goal: Few monomials allows fast evaluation later

Representing circuit by polynomial

Straightforward approach:

- AND: $a \wedge b \Rightarrow a \cdot b$
- Negation: $\neg a \Rightarrow 1 \oplus a$

• OR:
$$a \lor b \Rightarrow \neg(\neg a \land \neg b)$$

(addition=subtraction in F_2) (DeMorgan's Law)

Example: Bottom-level of circuit $\neg a \lor \neg b \Rightarrow 1 \oplus a \cdot b$

Expanding a multiplication (distributive law)

Running time: $O(k^t t \cdot deg)$ where deg is degree after expansion (maximum size of any monomial); here deg $\leq t$

Razborov/Smolensky trick [Raz87] [Smo87]

DeMorgan:

$$OR(x_1, ..., x_k) = 1 \bigoplus \prod_{i=1}^{k} (1 \bigoplus x_i)$$

After expansion: 2^k monomials

Probabilistic representation of OR

Parameter *t* Fewer monomials, correct whp

Correct representation with high probability

Case 1: $x_1 \vee \cdots \vee x_k = 0$

Easy case: each XOR outputs 0, top OR outputs 0

Case 2:
$$x_1 \vee \cdots \vee x_k = 1$$

Let *X* be set of inputs with $x_i = 1$

For each XOR:

- If XOR has odd number of links to X: XOR outputs 1 (good event: top OR outputs 1)
- If XOR has even number of links to X: XOR outputs 0 (bad event!)

Probability that XOR has even number of links to *X*:

= 1/2 because last element of X "decides" whether number of links is even or odd (each with prob. 1/2)

Probabilistic representation of OR

Bounding number of monomials

Formal definition of polynomial

For i = 1 ... t, j = 1 ... k:

- With probability $\frac{1}{2}$: Set $r_{i,j} = 1$
- Otherwise: Set $r_{i,j} = 0$

Polynomial:
$$OR_t(x_1, ..., x_k) =$$

 $1 \bigoplus \prod_{i=1}^k (1 \bigoplus \bigoplus_{j=1}^k r_{i,j} \cdot x_i)$

After expansion: $(k + 1)^t$ monomials

Probabilistic representation of OR

Formal definition

Definition: Let *C* be a Boolean circuit with *k* input gates and let *D* be a finite distribution of polynomials on *k* variables over a ring *R* containing 0 and 1^(*). The distribution *D* is a probabilistic polynomial over *R* representing *C* with error δ if for all $(x_1, \ldots, x_k) \in \{0, 1\}^k$: $\Pr_{p \sim D}[p(x_1, \ldots, x_k) = C(x_1, \ldots, x_k)] > 1 - \delta.$

Example: OR-gate represented by

$$OR_t(x_1, \dots, x_k) = 1 \bigoplus \prod_{i=1}^t (1 \bigoplus \bigoplus_{j=1}^k r_{i,j} \cdot x_i)$$
 with error $\delta = 1 - \frac{1}{2^t}$

(*) In our case, R is the field F_2

Representing OV circuit I

Bottom OR: $\neg x[k] \lor \neg y[k]$ $\Rightarrow 1 \bigoplus x[k] \cdot y[k]$

Middle AND:

- 1. DeMorgan
- 2. Razborov/Smolensky with $t_1 = 3 \log s$ Number of monomials: $(d + 1)^{t_1}$

Representing OV circuit II

Middle ANDs:

XOR of s^2 polynomials, each with $(d + 1)^{t_1}$ monomials $\Rightarrow s^2 (d + 1)^{t_1}$ monomials

Top OR: Raz/Smol with $t_2 = 2$ $\Rightarrow (s^2(d+1)^{t_1})^{t_2}$ monomials $= s^4(d+1)^{6\log s}$

Analysis of error

We apply Razborov/Smolensky

- s^2 times with $t_1 = 3 \log s$
- 1 time with $t_2 = 2$

Union Bound: $Pr(X \cup Y) \le Pr(X) + Pr(Y)$

Probability of error:
$$\leq \frac{s^2}{2^{t_1}} + \frac{1}{2^{t_2}} = \frac{s^2}{s^3} + \frac{1}{4} = \frac{1}{s} + \frac{1}{4} \leq \frac{1}{3}$$

(1/s is small enough for instances with sufficiently large n)

Plugging in the right values

$$s = 2^{\epsilon \log n / \log d}$$

$$\epsilon = 1/160$$

#monomials: $m \le s^4 (d+1)^{6 \log s} \le s^4 (d+1)^{6\epsilon \log n / \log d}$

$$\leq 4\epsilon \log n + 12\epsilon \log n = 0.1 \log n$$
$$\Rightarrow m < n^{0.1}$$

Running time for expanding polynomial

We explicitly have to expand our polynomial into XOR of monomials! Running time dominated by applications of distributive law

 1^{st} expansion (repeated s^2 times):

- Degree after expansion: $O(t_1)$
- Total time: $O(s^2(d+1)^{t_1}t_1^2)$

2nd expansion :

- Degree after expansion: $O(t_1t_2)$
- Running time: $O\left((s^2(d+1)^{t_1})^{t_2}t_1^2t_2^2\right) \le O(n^{0.1}t_1^2t_2^2) \le O(n^{0.1}\log^2 n)$

 \Rightarrow Total time: $O(n^{0.1} \log^2 n)$ (negligible)

Summary for probabilistic polynomial

We can construct polynomial P over F_2 with 2sd inputs such that, given two sets $A', B' \subseteq \{0,1\}^d$ of d-dimensional 0/1-vectors of size s, with probability $> \frac{2}{3}$: P(A', B') = 1 iff A' and B' have orthogonal pair.

Overview

- 1. Reduce problem to many subproblems of very small size
- 2. Precompute small **circuits** for solving subproblems
- 3. Evaluate circuits with **probabilistic polynomials** of **low degree**
- 4. Evaluate polynomials using fast **rectangular** matrix multiplication

Fast matrix multiplication

- Goal: Compute $C = A \times B$ where A and B are $n \times n$ matrices
- Naïve algorithm: $O(n^3)$
- Strassen's algorithm: $O(n^{2.807})$
- Current fastest: $O(n^{2.373})$
- Best we can hope for: $O(n^2)$

Rectangular matrix multiplication

Lemma: There is an algorithm for multiplying an $N \times N^{0.17}$ matrix with an $N^{0.17} \times N$ matrix in time $O(N^2 \log^2 n)$.

Also works for finite fields such as F_2 !

Fast evaluation of polynomial

- Given: Polynomial P(x[1], ..., x[K], y[1], ..., y[K]) over F_2
- With at most $N^{0.1}$ monomials
- Two sets of inputs:

$$X = \{x_1, \dots, x_N\} \subseteq \{0, 1\}^K, Y = \{y_1, \dots, y_N\} \subseteq \{0, 1\}^K$$

• Evaluate P on all pairs $(x_i, y_j) \in X \times Y$ simultaneously in time $O(N^2 \text{polylog}(n))$

Reduction to matrix multiplication

Evaluating OV-polynomial on all subgroups

- 1. Divide A and B into $q = \lceil \frac{n}{s} \rceil$ subsets of size $\leq s$: A_1, \dots, A_q and B_1, \dots, B_q
- 2. Construct a polynomial $P(a_1[1], ..., a_1[d], ..., a_q[1], ..., a_q[d], b_1[1], ..., b_1[d], ..., b_q[1] ..., b_q[1])$

 $P(A_i, B_j) = 1$ if and only if A_i, B_j contains orthogonal pair

3. For every pair of subsets A_i , B_j : evaluate P on A_i , B_j P has $\leq n^{0.1}$ monomials

Simultaneous evaluation in time $O(n^2/s^2 \operatorname{polylog}(n)) \le n^{2-1/O(\log d)}$

$$s = 2^{\epsilon \log n / \log d} = n^{\epsilon / \log d}$$
 for $\epsilon = 1/160$

Remarks

Correctness with high probability

- Polynomial is only correct with probability $\geq 2/3$
- Amplify the success probability by repeating with $10\log n$ independent polynomials and taking majority value
- \Rightarrow Chernoff Bound

Faster algorithm:

- $n^{2-1/O(\log(d/\log n))}$
- Just needs better estimate for number of monomials and slightly different choice of *s*