Complexity Theory of Polynomial-Time Problems

Lecture 4: The polynomial method Part II: All-pairs shortest paths

Sebastian Krinninger

Overview on APSP Algorithms

- Floyd-Warshall algorithm: $O(n^3)$ Inserts one node at a time n iterations, each taking time $O(n^2)$
- Faster algorithms for sparse graphs
 - Directed graphs:
 - Single-source shortest paths: $O(m + n \log n)$ (Dijkstra with Fibonacci heap/Hollow heap)
 - \Rightarrow All-pairs shortest paths: $O(mn + n^2 \log n)$, improved to $O(mn + n^2 \log \log n)$ [Pettie 02]
 - Undirected graphs:
 - Single-source shortest paths: O(m) [Thorup 97]
 - \Rightarrow All-pairs shortest paths: O(mn)
- Pseudopolynomial algorithms
- Today: Fastest "general-purpose" algorithm

History of slightly subcubic algorithms

Running Time	Author(s)	Year(s)
n^3	Floyd, Warshall	1962
$n^3 / \log^{1/3} n$	Fredman	1975
$n^3/\log^{1/2}n$	Dobosiewicz, Takaoka	1990, 1991
$n^3/\log^{5/7}n$	Han	2004
$n^3/\log n$	Takaoka, Zwick, Chan	2004, 2005
$n^3/\log^{5/4}n$	Han	2006
$n^3/\log^2 n$	Chan, Han/Takaoka	2007, 2012
$\frac{n^3/\log^2 n}{n^3/2^{\Omega(\log n)^{1/2}}}$	Williams	2014

Grows faster than any polylogarithmic factor

Problem definition: desired output

- Can create instances such that for every pair of nodes u, v shortest path from u to v consists of $\Omega(n)$ nodes
- \Rightarrow Cannot output all shortest paths explicitly in time $o(n^3)$
- Distance matrix: output size n^2
- Shortest path matrix SP: output size n^2 For every pair of nodes u, v, SP[u, v] = next node on shortest path from u to v

Machine model: Real RAM

Floyd-Warshall: $O(n^3)$ with only additions and comparisons $\Omega(n^3)$ lower bound if only additions and comparisons allowed [Kerr 70]

Real RAM:

- Additions and comparisons of reals: unit cost
- Other operations: logarithmic cost

Tools

Tool 1: Razborov-Smolensky

Represent AND of d variables $x_1 \land \dots \land x_d$ by **low-degree** polynomial

• Parameter *q*

• For every
$$i = 1, ..., q, j = 1, ..., d$$
: Set $r_{i,j} = 0$ or 1 with probability $\frac{1}{2}$
$$A(x_1, ..., x_d) = \bigwedge_{i=1}^q \left(1 \bigoplus \bigoplus_{j=1}^d r_{i,j} \cdot (x_j \oplus 1) \right)$$

Lemma:
$$\Pr_{r_{i,j}}[A(x_1, ..., x_d) = x_1 \land \dots \land x_d] \ge 1 - \frac{1}{2^q}$$

By **distributive law**, A can be written as XOR of $(1 + d)^q$ monomials

$$A(x_1, \dots, x_d) = \bigwedge_{i=1}^q \left(1 \bigoplus \bigoplus_{j=1}^d r_{i,j} \cdot (x_j \oplus 1) \right)$$
Lemma: $\Pr_{r_{i,j}}[A(x_1, \dots, x_d) = x_1 \land \dots \land x_d] \ge 1 - \frac{1}{2^q}$
Proof:

$$x_1 \wedge \cdots \wedge x_d = 1$$
: Each x_j must be 1. Clearly, $A(x_1, \dots, x_d) = x_1 \wedge \cdots \wedge x_d = 0$: First, fix some *i*

S: subsets of x_i 's that are 0

S': subsets of x_j 's that are 0 and additionally $r_{i,j} = 1$

Bad event: *i*-th component of outer AND is $1 \Leftrightarrow |S'|$ is even Each subset of *S* has some probability of being picked as *S'*

Each subset of S has same probability of being picked as S'

$$\Pr[|S'| \text{ is odd}] = \Pr[|S'| \text{ is even}] = \frac{1}{2}$$

 $A(x_1, ..., x_d) = 1$ only if bad event happens for each component of outer AND \Rightarrow Error probability $\leq \frac{1}{2^q}$

1 Observation: For every set S, #odd subsets = #even subsets (by binary encoding of the 2^{|S|} subsets)

Tool 2: Fast rectangular matrix multiplication

Theorem: There is an algorithm for multiplying an $n \times n^{0.17}$ matrix with an $n^{0.17} \times n$ matrix in time $O(n^2 \log^2 n)$.

Also works for finite fields such as F_2 !

Fast evaluation of polynomial

Given: Polynomial P(x[1], ..., x[d], y[1], ..., y[d]) over F_2

- With $m \leq n^{0.1}$ monomials
- Two sets of inputs:

$$\begin{aligned} X &= \{x_1, \dots, x_n\} \subseteq \{0, 1\}^d & Y &= \{y_1, \dots, y_n\} \subseteq \{0, 1\}^d \\ (x_i &= (x_i[1], \dots, x_i[d])) & (y_j &= (y_j[1], \dots, y_j[d])) \end{aligned}$$

Lemma: There is an algorithm for evaluating P on all pairs $(x_i, y_j) \in X \times Y$ (simultaneously) in time $O(n^2 \operatorname{poly}(\log n))$.

Restrictions of monomials

Shape of polynomial *P*:

- $P = p_1 + \dots + p_m$
- each p_k is a **monomial**

Define

- $p_k|x$: restriction of k-th monomial to variables x[1], ..., x[d]
- $p_k|y$: restriction of k-th monomial to variables y[1], ..., y[d]
- (empty product = 1)

"Inner product"

• $P = p_1 | x \cdot p_1 | y + \dots + p_m | x \cdot p_m | y$

Reduction to matrix multiplication

Result matrix R[i, j]: Evaluation of P under $x_i = (x_i[1], ..., x_i[d])$ and $y_j = (y_j[1], ..., y_j[d])$

Tool 3: Union Bound and Chernoff Bound

Union Bound:

 $\Pr[A \cup B] \le \Pr[A] + \Pr[B]$

(Variant of) Chernoff Bound:

Let $X_1, ..., X_k$ be independent 0/1-valued random variables such that $0 < E[X_i] < 1$.

Then, the random variable $X = \sum_{i=1}^{k} X_i$ satisfies:

$$\Pr[X < (1 - \delta)E[X]] \le e^{-\delta^2 E[X]/2}$$

for every $0 \le \delta \le 1$

Solving the Problem

Min-plus matrix product

We give an algorithm for the following problem:

- Given: $n \times d$ integer matrix A and $d \times n$ integer matrix B
- Output: $n \times n$ matrix C such that

$$C[i,j] = \min_{k \in \{1,...,d\}} (A[i,k] + B[k,j])$$

Matrix multiplication in *min-plus semiring:*

- min is addition
- + is multiplication
- 0 is 1-element
- ∞ is 0-element

 k^* such that $A[i, k^*] + B[k^*, j] = \min_{k \in \{1, ..., d\}} (A[i, k] + B[k, j])$ is a **witness** for i, j

Tripartite graph for min-plus product

1. Min-plus product = APSP in tripartite graph

2. If A = B = G: $G \times G =$ matrix of 2-hop distances

APSP and min-plus product are "equivalent"

In general: G^i = matrix distances using **exactly** *i* hops

Distance matrix *D*:

$$D = I + G + G^{2} + \dots + G^{n-1} = (G + I)^{n-1}$$

+ is entry-wise minimum

Identity matrix I: 0 at diagonal, ∞ otherwise

Repeated squaring: Compute $(G + I)^2$, $(G + I)^4$, $(G + I)^8$, ...,

 $\Rightarrow O(\log n)$ min-plus products for distances, shortest paths through witnesses

Even **stronger** relationship known:

Theorem: APSP on *n* nodes can be solved in time O(T(n)) if and only min-plus product on $n \times n$ matrices can be solved in time O(T(n)).

Step 1: Divide into subproblems

Overall algorithm

- 1. Set $d = 2^{\sqrt{\log n/100}}$
- 2. Divide problem into $\frac{n}{d}$ subproblems
- 3. Solve each subproblem in time $O(n^2 \operatorname{poly}(\log n))$
- 4. Merge solutions in time $O(n^3/d)$

Total time:

$$O\left(\frac{n^3}{d}\operatorname{poly}(\log n)\right) = \frac{n^3}{2^{\Omega(\log n)^{1/2}}}$$

For every
$$k = 1, ..., \frac{n}{d}$$
:

• Compute product C_k of A_k and B_k ($n \times d$ matrix with $d \times n$ matrix)

Return: $\min(C_1, \dots, C_{n/d})$ (entry-wise minimum)

Subproblem

We solve the following subproblem:

- Given: $n \times d$ matrix A and $d \times n$ matrix B
- Output: $n \times n$ matrix W of witnesses such that $W[i, j] = \arg \min(A[i, k] + B[k, j])$ $k \in \{1, ..., d\}$

From witnesses in W we can easily reconstruct values of min-plus product $\min_{k \in \{1,...,d\}} (A[i,k] + B[k,j])$ in time $O(n^2)$

Step 2: Preprocess input of subproblem

Enforce unique minimum

For every entry
$$i, k$$
 of A :
 $A^*[i, k] := A[i, k] \cdot (n + 1) + k$
For every entry k, j of B
 $B^*[k, j] := B[k, j] \cdot (n + 1)$

Running time: $O(\log n)$ additions per entry(add to itself for $O(\log n)$ times) $\Rightarrow O(nd \log n)$

Fix some pair i, j and define k^* as smallest $k' \in \{1, ..., d\}$ such that $A[i, k'] + B[k', j] = \min_{k \in \{1, ..., d\}} (A[i, k] + B[k, j])$

Claim: k^* is unique minimum of $A^*[i,k] + B^*[k,j]$ over $k^* \in \{1, \dots, d\}$

 \Rightarrow Work with A^* and B^* instead of A and B to ensure unique minima

Proof of Claim: k^* is unique minimum of $A^*[i, k] + B^*[k, j]$ over $k^* \in \{1, ..., d\}$

Let $k \neq k^*$. We show that $A^*[i,k] + B^*[k,j] > A^*[i,k^*] + B^*[k,j]$ or equivalently (1) $(A[i,k] + B[k,j]) \cdot (n+1) + k > (A[i,k^*] + B[k^*,j]) \cdot (n+1) + k^*$

<u>Case 1</u>: $A[i,k] + B[k,j] = A[i,k^*] + B[k,j]$ Then $k^* < k$ because k^* is smallest index assuming min value (1) follows immediately

 $\begin{array}{l} \underline{\text{Case 2:}} A[i,k] + B[k,j] > A[i,k^*] + B[k,j] \\ \Rightarrow A[i,k] + B[k,j] \ge A[i,k^*] + B[k,j] + 1 \qquad \text{(integers!)} \\ \Rightarrow (A[i,k] + B[k,j]) \cdot (n+1) + k \\ & \geq (A[i,k^*] + B[k^*,j]) \cdot (n+1) + k + n + 1 \\ & \geq (A[i,k^*] + B[k^*,j]) \cdot (n+1) + k^* \end{array}$

Fredman's trick: Get rid of weights

Construct $n \times d^2$ matrix A' and $d^2 \times n$ matrix B'

- $A'[i, (k, \ell)] \coloneqq A^*[i, k] A^*[i, \ell]$
- $B'[(k,\ell),j] \coloneqq B^*[\ell,j] B^*[k,j]$

Idea: Compare alternatives k and ℓ without taking sumsObservation: $A'[i, (k, \ell)] \leq B'[(k, \ell), j]$ $\Leftrightarrow A^*[i, k] + B^*[k, j] \leq A^*[i, \ell] + B^*[\ell, j]$

Fredman's trick continued

For every pair k, ℓ sort set $S_{k,\ell} \coloneqq \{A'[i, (k, \ell)], B'[(k, \ell), i] \mid i = 1, ..., n\}$ Breaking ties:

- Precedence of A'-entries over B'-entries
- Otherwise arbitrarily

Define matrices A'' and B'':

- $A''[i, (k, \ell)] = \operatorname{rank}(A'[i, (k, \ell)]; S_{k,\ell})$
- $B''[(k, \ell), j] = \operatorname{rank}(B'[(k, \ell), j]; S_{k,\ell})$

(replace each value by **rank** in $S_{k,\ell}$)

 $\Rightarrow \text{Every entry needs } 1 + \log n \text{ bits}$ (no weight dependence!)

Properties:

1. Entries of A'' and B'' from $\{1, ..., 2n\}$

 $O(nd^2 \log n) \le O(n^2)$

- 2. Comparisons preserved: $A'[i, (k, \ell)] \le B'[(k, \ell), j]$ iff $A''[i, (k, \ell)] \le B''[(k, \ell), j]$
- 3. For every i, j there is unique k^* such that for all ℓ : $A''[i, (k^*, \ell)] \leq B''[(k^*, \ell), j]$

Footnote on running time: A' and B' do not need to be computed explicitly. No subtractions necessary!

Step 3: Design circuit for subproblem

Circuit for min-plus product

Circuit with 0/1 as inputs

Gates:

- Boolean functions: AND, OR
- XOR (i.e., sum modulo 2)

Circuit only outputs 1 bit! \Rightarrow Compute result bit-per-bit

For every pair *i*, *j* and every $b \in \{1, ..., \log n\}$: Design circuit $C_b(A''[i,*], B''[*,j])$ computing *b*-th bit of unique k^* for which $A''[i, (k^*, \ell)] \leq B''[(k^*, \ell), j]$ for all ℓ Input: Each bit of *i*-th row of A'' and *j*-th colum of B''

Structure of circuit

Goal: For every *i*, *j*, compute k^* s.t. $\forall \ell$: $A''[i, (k^*, \ell)] \leq B''[(k^*, \ell), j]$ $C_b(A''[i,*], B''[*,j]) = \bigvee_{\substack{k \in \{1,...,d\}, \\ b \text{th bit of } k \text{ is } 1}} \bigwedge_{\ell=1}^d \left[A''[i, (k, \ell)] \leq B''[(k, \ell), j] \right]$ 1 iff comparison true (to be specified)

Claim: $C_b(\cdot,\cdot) = b$ -th bit of k^* for which $\forall \ell: A''[i, (k^*, \ell)] \leq B''[(k^*, \ell), j]$

Proof:

- Big AND returns 1 if and only if $k = k^*$ (uniqueness of minimum)
- If *b*-th bit of k^* is 1: Big OR includes k^* and thus returns 1
- If *b*-th bit of k^* is 0: Big OR does not include k^* and thus returns 0

Step 4: Represent circuit by polynomial

Outer OR

$$C_{b}(A''[i,*],B''[*,j]) = \bigvee_{\substack{k \in \{1,...,d\},\\b \text{ th bit of } k \text{ is } 1}} \bigwedge_{\ell=1}^{d} [A''[i,(k,\ell)] \leq B''[(k,\ell),j]]$$

May be replaced by \bigoplus due to uniqueness:
AND outputs 1 for **exactly one** k

Polynomial for outer circuit

Fixing *i*, *j*, and *k*, we want to replace the following circuit by a polynomial:

$$\bigwedge_{\ell=1}^{d} \begin{bmatrix} A^{\prime\prime}[i,(k,\ell)] \le B^{\prime\prime}[(k,\ell),j] \end{bmatrix}$$
$$=: LEQ_{k,\ell}(\cdot,\cdot)$$

Apply **Razborov-Smolensky** with
$$p = 3 + \log d$$
:
$$\bigwedge_{x=1}^{p} \left(1 \bigoplus \bigoplus_{\ell=1}^{d} r_{x,\ell} \cdot \left(LEQ_{k,\ell}(A''[i,*],B''[*,j]) \oplus 1 \right) \right)$$

- Error probability for specific $k: \le \frac{1}{2^p} = \frac{1}{8d}$ Error probability for all $k: \le d \cdot \frac{1}{8d} = \frac{1}{8}$

(union bound)

Less-or-equal-circuit for two numbers a and b

May be replaced by XOR: at most one of inner expressions is true

$$LEQ(a,b) = \left(\bigwedge_{i=1}^{t} (1 \oplus a_i \oplus b_i)\right) \vee \bigvee_{i=1}^{t} \left((1 \oplus a_i) \wedge b_i \wedge \bigwedge_{j=1}^{i-1} 1 \oplus a_j \oplus b_j\right)$$
$$= 1 \text{ iff } a = b \qquad = 1 \text{ iff}$$

- First i 1 bits of a and b equal,
- *i*-th bit of a = 0, and
- *i*-th bit of b = 1

Polynomial for LEQ circuit $LEQ(a,b) = \left(\bigwedge_{i=1}^{t} (1 \oplus a_i \oplus b_i)\right) \oplus \bigoplus_{i=1}^{t} \left((1 \oplus a_i) \land b_i \land \bigwedge_{j=1}^{i-1} 1 \oplus a_j \oplus b_j\right)$

Apply Razborov/Smolensky with $q = 3 + 2 \log d + \log(t + 1)$:

 $\bigoplus_{t+1} \left(\bigwedge_{q} \left(\bigoplus_{\leq t} ("2 \oplus gates") \right) \right)$

at most one a_i , at most one b_i , at most one constant

Additional trick: For every entry a of A'' and every entry b of B'':

Precompute XOR of a_i 's and XOR of b_i 's: additional time $O(nd^2tq) \leq O(n^2)$

Introduce new variables for these combinations for later evaluation

New form:
$$LEQ'(a, b) = \bigoplus_{t+1} \left(\bigwedge_{q} ("2 \oplus \text{gates"}) \right)$$

Polynomial for LEQ circuit cont'd

$$LEQ'(a,b) = \bigoplus_{t+1} \left(\bigwedge_{q} ("2 \oplus gates") \right)$$

Expansion (distributive law): \rightarrow polynomial over F_2 with

- degree $\leq q$
- #monomials: $m \leq (t+1) \cdot 3^q$ monomials

Error probability: For each application of Raz/Smol: Error prob. $\leq \frac{1}{2^{q}}$ By union bound:

- For comparing a fixed pair (a, b): error probability $\leq \frac{t+1}{2^q}$
- For all d^2 comparisons: error probability $\leq \frac{d^2(t+1)}{2^q} \leq \frac{d^2(t+1)}{2^{3+2\log d + \log(t+1)}} = \frac{1}{8}$

Final polynomial

$$P_{b}(A''[i,*],B''[*,j]) = \bigoplus_{\substack{k=1,\dots,d\\b\text{th bit of }k\text{ is }1}} \bigwedge_{x=1}^{p} \left(1 \bigoplus \bigoplus_{\ell=1}^{d} r_{x,\ell} \cdot (LEQ'_{k,\ell}(A''[i,*],B''[*,j]) \oplus 1) \right)$$

$$XOR \text{ with } m \leq (t+1) \cdot 3^{q} \text{ monomials}$$

$$XOR \text{ with } \leq (d+1)m \text{ monomials}$$

Apply distributive law: #monomials bounded by $M \le d \cdot ((d+1)m)^p = d \cdot ((d+1)m)^{2+\log d}$ Error probability: $\le \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$ The calculation $d = 2^{\sqrt{\log n/100}}$ $p = 3 + \log d$ $q = 3 + 2\log d + \log(t+1)$

#monomials
$$M \le d \cdot ((d+1)m)^p = d \cdot ((d+1)m)^{3+\log d}$$

= $d \cdot ((d+1) \cdot (t+1) \cdot 3^q)^{3+\log d}$
= $d \cdot ((d+1) \cdot (t+1) \cdot 3^{3+2\log d + \log(t+1)})^{3+\log d}$
Claim: $M \le n^{0.1}$

Taking logarithms:

$$\begin{split} \log M &\leq \log d + (3 + \log d)(\log(d + 1) + \log(t + 1) + (3 + 2\log d + \log(t + 1)) \cdot \log 3) \quad d \geq t \\ &\leq \log d + (3 + \log d)(\log(d + 1) + \log(d + 1) + (3 + 2\log d + \log(d + 1)) \cdot 2) \\ &\leq \log d + (3\log d + \log d)(2\log d + 2\log d + (3\log d + 2\log d + 2\log d) \cdot 2) \\ &= \log d + 4\log d (4\log d + (7\log d) \cdot 2) = \log d + 76\log^2 d \leq 100\log^2 d \\ &= 100 \left(\frac{\sqrt{\log n}}{100}\right)^2 \leq 0.1\log n \end{split}$$

Step 5: Fast evaluation of polynomial

Fast evaluation of polynomial

For every $b \in \{1, \dots, \log n\}$:

Generate probabilistic polynomial P_b with the following properties

- P_b is XOR of $M \le n^{0.1}$ monomials
- Variables of P_b can partitioned into two subsets X and Y
- For every pair *i*, *j*: if
 - variables of X evaluated according to i-th row of A'' and
 - variables of Y evaluated according to j-th column of B'',
 - then P_b returns *b*-th bit of $\underset{k \in \{1,...,d\}}{\operatorname{returns}} (A''[i, (k, \ell)] \le B''[(k, \ell), j])$ with probability $\ge \frac{3}{4}$

 \Rightarrow (Fast Evaluation Lemma):

Can evaluate P_b for all n^2 pairs i, j in time $O(n^2 \operatorname{poly}(\log n))$ Result matrix R_b with entries $R_b[i, j]$

Step 6: Amplify success probability

Majority amplification

For all pairs *i*, *j* and every $b \in \{1, ..., \log n\}$: $R_b[i, j] = C_b(A''[i, *], B''[*, j])$ with probability $\geq \frac{3}{4}$

Repeat evaluation with $r = 18 \log n$ different random polynomials Define $W_b[i, j]$ as majority output of all r evaluations ...still $O(n^2 \operatorname{poly}(\log n))$

Fix pair i, j and $b \in \{1, ..., \log n\}$ X: Random variable counting how often $R_b[i, j]$ and $C_b(i, j)$ agree over all r trials $\Pr[W_b[i, j] \neq C_b(i, j)] \leq \Pr\left[X < \frac{r}{2}\right]$ $E[X] \geq \frac{3 \cdot r}{4}$

Bounding success probability

Chernoff: $\Pr[X < (1 - \delta)E[X]] \le e^{-\delta^2 E[X]/2}$

Bound error probability using tail bound:

$$\Pr[M_b[i,j] \neq C(i,j,b)] \le \Pr\left[X < \frac{r}{2}\right] \le \Pr\left[X < \frac{4}{6} \operatorname{E}[X]\right] = \Pr\left[X < \left(1 - \frac{1}{3}\right) \operatorname{E}[X]\right]$$
$$\le e^{-\left(\frac{2}{3}\right)^2 \operatorname{E}[X]/2} = e^{-4\operatorname{E}[X]/18} \le e^{-3r/18} = e^{-3\log n} \le 2^{-4\log n} = n^{-4}$$

Majority needs to be correct for all n^2 pairs *i*, *j* and log *d* bit positions *b* in all $\frac{n}{d}$ instances of the algorithm: Union bound:

$$\Pr[\exists i, j, b: M_b[i, j] \neq C_b(i, j) \text{ in some instance}] \leq \frac{n^3 \log d}{d} \cdot n^{-4} \leq \frac{1}{n}$$

Questions?