Complexity Theory of Polynomial-Time Problems

Lecture 4: The polynomial method Part II: All-pairs shortest paths

Sebastian Krinninger

Overview on APSP Algorithms

- Floyd-Warshall algorithm: $O\left(n^{3}\right)$

Inserts one node at a time n iterations, each taking time $O\left(n^{2}\right)$

- Faster algorithms for sparse graphs
- Directed graphs:
- Single-source shortest paths: $O(m+n \log n)$ (Dijkstra with Fibonacci heap/Hollow heap)
- \Rightarrow All-pairs shortest paths: $O\left(m n+n^{2} \log n\right)$, improved to $O\left(m n+n^{2} \log \log n\right)$ [Pettie 02]
- Undirected graphs:
- Single-source shortest paths: $O(m)$ [Thorup 97]
- \Rightarrow All-pairs shortest paths: $O(\mathrm{mn})$
- Pseudopolynomial algorithms
- Today: Fastest "general-purpose" algorithm

History of slightly subcubic algorithms

Running Time	Author(s)	Year(s)
n^{3}	Floyd, Warshall	1962
$n^{3} / \log ^{1 / 3} n$	Fredman	1975
$n^{3} / \log ^{1 / 2} n$	Dobosiewicz, Takaoka	1990,1991
$n^{3} / \log ^{5 / 7} n$	Han	2004
$n^{3} / \log n$	Takaoka, Zwick, Chan	2004,2005
$n^{3} / \log ^{5 / 4} n$	Han	2006
$n^{3} / \log ^{2} n$	Chan, Han/Takaoka	2007,2012
$n^{3} / \underbrace{\Omega(\log n)^{1 / 2}}$	Williams	2014

Grows faster than any polylogarithmic factor

Problem definition: desired output

- Can create instances such that for every pair of nodes u, v shortest path from u to v consists of $\Omega(n)$ nodes
- \Rightarrow Cannot output all shortest paths explicitly in time $o\left(n^{3}\right)$
- Distance matrix: output size n^{2}
- Shortest path matrix SP: output size n^{2}

For every pair of nodes $u, v, \mathrm{SP}[u, v]=$ next node on shortest path from u to v

Machine model: Real RAM

Floyd-Warshall: $O\left(n^{3}\right)$ with only additions and comparisons $\Omega\left(n^{3}\right)$ lower bound if only additions and comparisons allowed [Kerr 70]

Real RAM:

- Additions and comparisons of reals: unit cost
- Other operations: logarithmic cost

Tools

Tool 1: Razborov-Smolensky

Represent AND of d variables $x_{1} \wedge \cdots \wedge x_{d}$ by low-degree polynomial

- Parameter q
- For every $i=1, \ldots, q, j=1, \ldots, d$: Set $r_{i, j}=0$ or 1 with probability $\frac{1}{2}$

$$
A\left(x_{1}, \ldots, x_{d}\right)=\bigwedge_{i=1}^{q}\left(1 \oplus \bigoplus_{j=1}^{d} r_{i, j} \cdot\left(x_{j} \oplus 1\right)\right)
$$

Lemma: $\operatorname{Pr}_{r_{i, j}}\left[A\left(x_{1}, \ldots, x_{d}\right)=x_{1} \wedge \cdots \wedge x_{d}\right] \geq 1-\frac{1}{2^{q}}$
By distributive law, A can be written as XOR of $(1+d)^{q}$ monomials

$$
A\left(x_{1}, \ldots, x_{d}\right)=\bigwedge_{i=1}^{q}\left(1 \oplus \bigoplus_{j=1}^{d} r_{i, j} \cdot\left(x_{j} \oplus 1\right)\right)
$$

Lemma: $\operatorname{Pr}_{r_{i, j}}\left[A\left(x_{1}, \ldots, x_{d}\right)=x_{1} \wedge \cdots \wedge x_{d}\right] \geq 1-\frac{1}{2^{q}}$

Proof:

$x_{1} \wedge \cdots \wedge x_{d}=1$: Each x_{j} must be 1. Clearly, $A\left(x_{1}, \ldots, x_{d}\right)=1$ $x_{1} \wedge \cdots \wedge x_{d}=0$: First, fix some i
S : subsets of x_{j} 's that are 0
S^{\prime} : subsets of x_{j} 's that are 0 and additionally $r_{i, j}=1$

Observation: For every set S, \#odd subsets = \#even subsets (by binary encoding of the $2^{|S|}$ subsets)

Bad event: i-th component of outer AND is $1 \Leftrightarrow\left|S^{\prime}\right|$ is even
Each subset of S has same probability of being picked as S^{\prime}

$$
\operatorname{Pr}\left[\left|S^{\prime}\right| \text { is odd }\right]=\operatorname{Pr}\left[\left|S^{\prime}\right| \text { is even }\right]=\frac{1}{2}
$$

$A\left(x_{1}, \ldots, x_{d}\right)=1$ only if bad event happens for each component of outer AND \Rightarrow Error probability $\leq \frac{1}{2^{q}}$

Tool 2: Fast rectangular matrix multiplication

Theorem: There is an algorithm for multiplying an $n \times n^{0.17}$ matrix with an $n^{0.17} \times n$ matrix in time $O\left(n^{2} \log ^{2} n\right)$.

Also works for finite fields such as F_{2} !

Fast evaluation of polynomial

Given: Polynomial $P(x[1], \ldots, x[d], y[1], \ldots, y[d])$ over F_{2}

- With $m \leq n^{0.1}$ monomials
- Two sets of inputs:

$$
\begin{array}{rlrl}
X= & \left\{x_{1}, \ldots, x_{n}\right\} \subseteq\{0,1\}^{d} & Y= & \left\{y_{1}, \ldots, y_{n}\right\} \subseteq\{0,1\}^{d} \\
& \left(x_{i}=\left(x_{i}[1], \ldots, x_{i}[d]\right)\right) & & \left(y_{j}=\left(y_{j}[1], \ldots, y_{j}[d]\right)\right)
\end{array}
$$

Lemma: There is an algorithm for evaluating P on all pairs $\left(x_{i}, y_{j}\right) \in X \times Y$ (simultaneously) in time $O\left(n^{2} \operatorname{poly}(\log n)\right)$.

Restrictions of monomials

Shape of polynomial P :

- $P=p_{1}+\cdots+p_{m}$
- each p_{k} is a monomial

Define

- $p_{k} \mid x$: restriction of k-th monomial to variables $x[1], \ldots, x[d]$
- $p_{k} \mid y$: restriction of k-th monomial to variables $y[1], \ldots, y[d]$
- $($ empty product $=1)$
"Inner product"
- $P=p_{1}\left|x \cdot p_{1}\right| y+\cdots+p_{m}\left|x \cdot p_{m}\right| y$

Reduction to matrix multiplication

Result matrix $R[i, j]$: Evaluation of P under $x_{i}=\left(x_{i}[1], \ldots, x_{i}[d]\right)$

$$
\text { and } y_{j}=\left(y_{j}[1], \ldots, y_{j}[d]\right)
$$

Tool 3: Union Bound and Chernoff Bound

Union Bound:

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]
$$

(Variant of) Chernoff Bound:
Let X_{1}, \ldots, X_{k} be independent 0/1-valued random variables such that $0<E\left[X_{i}\right]<1$.
Then, the random variable $X=\sum_{i=1}^{k} X_{i}$ satisfies:

$$
\operatorname{Pr}[X<(1-\delta) E[X]] \leq e^{-\delta^{2} E[X] / 2}
$$

for every $0 \leq \delta \leq 1$

Solving the Problem

Min-plus matrix product

We give an algorithm for the following problem:

- Given: $n \times d$ integer matrix A and $d \times n$ integer matrix B
- Output: $n \times n$ matrix C such that

$$
C[i, j]=\min _{k \in\{1, \ldots, d\}}(A[i, k]+B[k, j])
$$

Matrix multiplication in min-plus semiring:

- min is addition
- + is multiplication
- 0 is 1 -element
- ∞ is 0 -element
k^{*} such that $A\left[i, k^{*}\right]+B\left[k^{*}, j\right]=\min _{k \in\{1, \ldots, d\}}(A[i, k]+B[k, j])$ is a witness for i, j

Tripartite graph for min-plus product

1. Min-plus product $=$ APSP in tripartite graph
2. If $A=B=G: G \times G=$ matrix of 2 -hop distances

APSP and min-plus product are "equivalent"

In general: $G^{i}=$ matrix distances using exactly i hops
Distance matrix D :

$$
D=I+G+G^{2}+\cdots+G^{n-1}=(G+I)^{n-1}
$$

+ is entry-wise minimum
Identity matrix $I: 0$ at diagonal, ∞ otherwise
Repeated squaring: Compute $(G+I)^{2},(G+I)^{4},(G+I)^{8}, \ldots$,
$\Rightarrow O(\log n)$ min-plus products for distances, shortest paths through witnesses
Even stronger relationship known:
Theorem: APSP on n nodes can be solved in time $O(T(n))$ if and only min-plus product on $n \times n$ matrices can be solved in time $O(T(n))$.

Step 1: Divide into subproblems

Overall algorithm

1. Set $d=2^{\sqrt{\log n / 100}}$
2. Divide problem into $\frac{n}{d}$ subproblems
3. Solve each subproblem in time $O\left(n^{2}\right.$ poly $\left.(\log n)\right)$
4. Merge solutions in time $O\left(n^{3} / d\right)$

Total time:

$O\left(\frac{n^{3}}{d} \operatorname{poly}(\log n)\right)=n^{3} / 2^{\Omega(\log n)^{1 / 2}}$

For every $k=1, \ldots, \frac{n}{d}$:

- Compute product C_{k} of A_{k} and B_{k} ($n \times d$ matrix with $d \times n$ matrix)
Return: $\min \left(C_{1}, \ldots, C_{n / d}\right)$ (entry-wise minimum)

Subproblem

We solve the following subproblem:

- Given: $n \times d$ matrix A and $d \times n$ matrix B
- Output: $n \times n$ matrix W of witnesses such that

$$
W[i, j]=\underset{k \in\{1, \ldots, d\}}{\arg \min }(A[i, k]+B[k, j])
$$

From witnesses in W we can easily reconstruct values of min-plus product $\min _{k \in\{1, \ldots, d\}}(A[i, k]+B[k, j])$ in time $O\left(n^{2}\right)$

Step 2: Preprocess input of subproblem

Enforce unique minimum

For every entry i, k of A :

$$
A^{*}[i, k]:=A[i, k] \cdot(n+1)+k
$$

For every entry k, j of B

$$
B^{*}[k, j]:=B[k, j] \cdot(n+1)
$$

Running time:
$O(\log n)$ additions per entry
(add to itself for $O(\log n)$ times)
$\Rightarrow O(n d \log n)$

Fix some pair i, j and define k^{*} as smallest $k^{\prime} \in\{1, \ldots, d\}$ such that

$$
A\left[i, k^{\prime}\right]+B\left[k^{\prime}, j\right]=\min _{k \in\{1, . ., d\}}(A[i, k]+B[k, j])
$$

Claim: k^{*} is unique minimum of $A^{*}[i, k]+B^{*}[k, j]$ over $k^{*} \in\{1, \ldots, d\}$
\Rightarrow Work with A^{*} and B^{*} instead of A and B to ensure unique minima

Proof of Claim: k^{*} is unique minimum of $A^{*}[i, k]+B^{*}[k, j]$

 over $k^{*} \in\{1, \ldots, d\}$Let $k \neq k^{*}$. We show that $A^{*}[i, k]+B^{*}[k, j]>A^{*}\left[i, k^{*}\right]+B^{*}[k, j]$
or equivalently
(1) $(A[i, k]+B[k, j]) \cdot(n+1)+k>\left(A\left[i, k^{*}\right]+B\left[k^{*}, j\right]\right) \cdot(n+1)+k^{*}$

Case 1: $A[i, k]+B[k, j]=A\left[i, k^{*}\right]+B[k, j]$
Then $k^{*}<k$ because k^{*} is smallest index assuming min value
(1) follows immediately

Case 2: $A[i, k]+B[k, j]>A\left[i, k^{*}\right]+B[k, j]$
$\Rightarrow A[i, k]+B[k, j] \geq A\left[i, k^{*}\right]+B[k, j]+1 \quad$ (integers!)
$\Rightarrow(A[i, k]+B[k, j]) \cdot(n+1)+k$

$$
\begin{aligned}
& \geq\left(A\left[i, k^{*}\right]+B\left[k^{*}, j\right]\right) \cdot(n+1)+k+n+1 \\
& >\left(A\left[i, k^{*}\right]+B\left[k^{*}, j\right]\right) \cdot(n+1)+k^{*}
\end{aligned}
$$

Fredman's trick: Get rid of weights

Construct $n \times d^{2}$ matrix A^{\prime} and $d^{2} \times n$ matrix B^{\prime}

- $A^{\prime}[i,(k, \ell)]:=A^{*}[i, k]-A^{*}[i, \ell]$
- $B^{\prime}[(k, \ell), j]:=B^{*}[\ell, j]-B^{*}[k, j]$

Idea: Compare alternatives k and ℓ without taking sums Observation: $\quad A^{\prime}[i,(k, \ell)] \leq B^{\prime}[(k, \ell), j]$

$$
\Leftrightarrow A^{*}[i, k]+B^{*}[k, j] \leq A^{*}[i, \ell]+B^{*}[\ell, j]
$$

Fredman's trick continued

For every pair k, ℓ sort set $S_{k, \ell}:=\left\{A^{\prime}[i,(k, \ell)], B^{\prime}[(k, \ell), i] \mid i=1, \ldots, n\right\}$
Breaking ties:

- Precedence of A^{\prime}-entries over B^{\prime}-entries

$$
O\left(n d^{2} \log n\right) \leq O\left(n^{2}\right)
$$

- Otherwise arbitrarily

Define matrices $A^{\prime \prime}$ and $B^{\prime \prime}$:

- $A^{\prime \prime}[i,(k, \ell)]=\operatorname{rank}\left(A^{\prime}[i,(k, \ell)] ; S_{k, \ell}\right)$
- $B^{\prime \prime}[(k, \ell), j]=\operatorname{rank}\left(B^{\prime}[(k, \ell), j] ; S_{k, \ell}\right)$
(replace each value by rank in $S_{k, \ell}$)
\Rightarrow Every entry needs $1+\log n$ bits (no weight dependence!)

Properties:

1. Entries of $A^{\prime \prime}$ and $B^{\prime \prime}$ from $\{1, \ldots, 2 n\}$
2. Comparisons preserved:

$$
\begin{aligned}
& A^{\prime}[i,(k, \ell)] \leq B^{\prime}[(k, \ell), j] \text { iff } \\
& \quad A^{\prime \prime}[i,(k, \ell)] \leq B^{\prime \prime}[(k, \ell), j]
\end{aligned}
$$

3. For every i, j there is unique k^{*} such that for all ℓ :

$$
A^{\prime \prime}\left[i,\left(k^{*}, \ell\right)\right] \leq B^{\prime \prime}\left[\left(k^{*}, \ell\right), j\right]
$$

Footnote on running time: A^{\prime} and B^{\prime} do not need to be computed explicitly. No subtractions necessary!

Step 3: Design circuit for subproblem

Circuit for min-plus product

Circuit with $0 / 1$ as inputs
Gates:

- Boolean functions: AND, OR
- XOR (i.e., sum modulo 2)

Circuit only outputs 1 bit! \Rightarrow Compute result bit-per-bit
For every pair i, j and every $b \in\{1, \ldots, \log n\}$:
Design circuit $C_{b}\left(A^{\prime \prime}[i, *], B^{\prime \prime}[*, j]\right)$ computing b-th bit of unique k^{*} for which

$$
A^{\prime \prime}\left[i,\left(k^{*}, \ell\right)\right] \leq B^{\prime \prime}\left[\left(k^{*}, \ell\right), j\right] \text { for all } \ell
$$

Input: Each bit of i-th row of $A^{\prime \prime}$ and j-th colum of $B^{\prime \prime}$

Structure of circuit

Goal: For every i, j, compute k^{*} s.t. $\forall \ell: A^{\prime \prime}\left[i,\left(k^{*}, \ell\right)\right] \leq B^{\prime \prime}\left[\left(k^{*}, \ell\right), j\right]$

$$
C_{b}\left(A^{\prime \prime}[i, *], B^{\prime \prime}[*, j]\right)=\bigvee_{\begin{array}{c}
k \in\{1, \ldots, d\} \\
b \text { th bit of } k \text { is } 1
\end{array}} \bigwedge_{\ell=1}^{u}[\underbrace{\left.A^{\prime \prime}[i,(k, \ell)] \leq B^{\prime \prime}[(k, \ell), j]\right]}_{1 \text { iff comparison true (to be specified) }}
$$

Claim: $C_{b}(\cdot, \cdot)=b$-th bit of k^{*} for which $\forall \ell: A^{\prime \prime}\left[i,\left(k^{*}, \ell\right)\right] \leq B^{\prime \prime}\left[\left(k^{*}, \ell\right), j\right]$

Proof:

- Big AND returns 1 if and only if $k=k^{*} \quad$ (uniqueness of minimum)
- If b-th bit of k^{*} is 1 : Big OR includes k^{*} and thus returns 1
- If b-th bit of k^{*} is $0: \operatorname{Big}$ OR does not include k^{*} and thus returns 0

Step 4: Represent circuit by polynomial

Outer OR

$$
C_{b}\left(A^{\prime \prime}[i, *], B^{\prime \prime}[*, j]\right)=\varliminf_{\substack{k \in\{1, \ldots, d\}, b \text { th bit of } k \text { is } 1}} \bigwedge_{\ell=1}^{d}\left[A^{\prime \prime}[i,(k, \ell)] \leq B^{\prime \prime}[(k, \ell), j]\right]
$$

May be replaced by \oplus due to uniqueness:
AND outputs 1 for exactly one k

Polynomial for outer circuit

Fixing i, j, and k, we want to replace the following circuit by a polynomial:

$$
\bigwedge_{\ell=1}^{d} \underbrace{\left[A^{\prime \prime}[i,(k, \ell)] \leq B^{\prime \prime}[(k, \ell), j]\right]}_{=: L E Q_{k, \ell}(\cdot, \cdot)}
$$

Apply Razborov-Smolensky with $p=3+\log d$:

$$
\bigwedge_{x=1}^{p}\left(1 \oplus \bigoplus_{\ell=1}^{d} r_{x, \ell} \cdot\left(L E Q_{k, \ell}\left(A^{\prime \prime}[i, *], B^{\prime \prime}[*, j]\right) \oplus 1\right)\right)
$$

- Error probability for specific $k: \leq \frac{1}{2^{p}}=\frac{1}{8 d}$
- Error probability for all $k: \leq d \cdot \frac{1}{8 d}=\frac{1}{8}$
(union bound)

Less-or-equal-circuit for two numbers a and b

May be replaced by XOR: at most one of inner expressions is true

$$
\operatorname{LEQ(a,b)=(\underbrace {\bigwedge _{i=1}^{t}(1\oplus a_{i}\oplus b_{i})}_{i=1})\vee \bigvee _{i=1}^{t}}\left(\begin{array}{ll}
\left.\left(1 \oplus a_{i}\right) \wedge b_{i} \wedge \bigwedge_{j=1}^{i-1} 1 \oplus a_{j} \oplus b_{j}\right)
\end{array}\right)
$$

Polynomial for LEQ circuit

$$
\operatorname{LEQ}(a, b)=\left(\bigwedge_{i=1}^{t}\left(1 \oplus a_{i} \oplus b_{i}\right)\right) \oplus \bigoplus_{i=1}^{t}\left(\left(1 \oplus a_{i}\right) \wedge b_{i} \wedge \bigwedge_{j=1}^{i-1} 1 \oplus a_{j} \oplus b_{j}\right)
$$

Apply Razborov/Smolensky with $q=3+2 \log d+\log (t+1)$:

at most one a_{i}, at most one b_{i}, at most one constant
Additional trick: For every entry a of $A^{\prime \prime}$ and every entry b of $B^{\prime \prime}$:
Precompute XOR of a_{i} 's and XOR of b_{i} 's: additional time $O\left(n d^{2} t q\right) \leq O\left(n^{2}\right)$
Introduce new variables for these combinations for later evaluation
New form:

$$
L E Q^{\prime}(a, b)=\bigoplus_{t+1}\left(\bigwedge_{q}(" 2 \oplus \text { gates" })\right)
$$

Polynomial for LEQ circuit cont'd

$$
L E Q^{\prime}(a, b)=\bigoplus_{t+1}\left(\bigwedge_{q}\left({ }^{\prime \prime} 2 \oplus \text { gates" } "\right)\right.
$$

Expansion (distributive law): \rightarrow polynomial over F_{2} with

- degree $\leq q$
- \#monomials: $m \leq(t+1) \cdot 3^{q}$ monomials

Error probability: For each application of Raz/Smol: Error prob. $\leq \frac{1}{2^{q}}$
By union bound:

- For comparing a fixed pair (a, b) : error probability $\leq \frac{t+1}{2^{q}}$
- For all d^{2} comparisons: error probability $\leq \frac{d^{2}(t+1)}{2^{q}} \leq \frac{d^{2}(t+1)}{2^{3+2 \log d+\log (t+1)}}=\frac{1}{8}$

Final polynomial

$$
P_{b}\left(A^{\prime \prime}[i, *], B^{\prime \prime}[*, j]\right)=\bigoplus_{\substack{k=1, \ldots, d \\ b \text { th bit of } k \text { is } 1}} \bigwedge_{x=1}^{p}(1 \oplus \bigoplus_{\ell=1}^{d} r_{x, \ell} \cdot(\underbrace{\left.L E Q_{k, \ell}^{\prime}\left(A^{\prime \prime}[i, *], B^{\prime \prime}[*, j]\right) \oplus 1\right)}_{\text {XOR with } m \leq(t+1) \cdot 3^{q} \text { monomials }})
$$

XOR with $\leq(d+1) m$ monomials

Apply distributive law: \#monomials bounded by

$$
M \leq d \cdot((d+1) m)^{p}=d \cdot((d+1) m)^{2+\log d}
$$

Error probability: $\leq \frac{1}{8}+\frac{1}{8}=\frac{1}{4}$

The calculation $\quad d=2^{\sqrt{\log n / 100}} \quad p=3+\log d \quad q=3+2 \log d+\log (t+1)$

\#monomials $M \leq d \cdot((d+1) m)^{p}=d \cdot((d+1) m)^{3+\log d}$

$$
\begin{aligned}
& =d \cdot\left((d+1) \cdot(t+1) \cdot 3^{q}\right)^{3+\log d} \\
& =d \cdot\left((d+1) \cdot(t+1) \cdot 3^{3+2 \log d+\log (t+1)}\right)^{3+\log d}
\end{aligned}
$$

Claim: $M \leq n^{0.1}$

Taking logarithms:

$$
\begin{aligned}
& \log M \leq \log d+(3+\log d)(\log (d+1)+\log (t+1)+(3+2 \log d+\log (t+1)) \cdot \log 3) \quad d \geq t \\
& \leq \log d+(3+\log d)(\log (d+1)+\log (d+1)+(3+2 \log d+\log (d+1)) \cdot 2) \\
& \leq \log d+(3 \log d+\log d)(2 \log d+2 \log d+(3 \log d+2 \log d+2 \log d) \cdot 2) \\
& =\log d+4 \log d(4 \log d+(7 \log d) \cdot 2)=\log d+76 \log ^{2} d \leq 100 \log ^{2} d \\
& =100\left(\frac{\sqrt{\log n}}{100}\right)^{2} \leq 0.1 \log n
\end{aligned}
$$

Step 5: Fast evaluation of polynomial

Fast evaluation of polynomial

For every $b \in\{1, \ldots, \log n\}$:
Generate probabilistic polynomial P_{b} with the following properties

- P_{b} is XOR of $M \leq n^{0.1}$ monomials
- Variables of P_{b} can partitioned into two subsets X and Y
- For every pair i, j : if
- variables of X evaluated according to i-th row of $A^{\prime \prime}$ and
- variables of Y evaluated according to j-th column of $B^{\prime \prime}$,
- then P_{b} returns b-th bit of $\underset{k \in\{1, \ldots, d\}}{\arg \min }\left(A^{\prime \prime}[i,(k, \ell)] \leq B^{\prime \prime}[(k, \ell), j]\right)$ with probability $\geq \frac{3}{4}$
\Rightarrow (Fast Evaluation Lemma):
Can evaluate P_{b} for all n^{2} pairs i, j in time $O\left(n^{2}\right.$ poly $\left.(\log n)\right)$
Result matrix R_{b} with entries $R_{b}[i, j]$

Step 6: Amplify success probability

Majority amplification

For all pairs i, j and every $b \in\{1, \ldots, \log n\}$:

$$
R_{b}[i, j]=C_{b}\left(A^{\prime \prime}[i, *], B^{\prime \prime}[*, j]\right) \text { with probability } \geq \frac{3}{4}
$$

Repeat evaluation with $r=18 \log n$ different random polynomials Define $W_{b}[i, j]$ as majority output of all r evaluations

$$
\ldots \text {...still } O\left(n^{2} \operatorname{poly}(\log n)\right)
$$

Fix pair i, j and $b \in\{1, \ldots, \log n\}$
X : Random variable counting how often $R_{b}[i, j]$ and $C_{b}(i, j)$ agree over all r trials

$$
\begin{gathered}
\operatorname{Pr}\left[W_{b}[i, j] \neq C_{b}(i, j)\right] \leq \operatorname{Pr}\left[X<\frac{r}{2}\right] \\
E[X] \geq \frac{3 \cdot r}{4}
\end{gathered}
$$

Bounding success probability

Bound error probability using tail bound:

$$
\begin{aligned}
& \operatorname{Pr}\left[M_{b}[i, j] \neq C(i, j, b)\right] \leq \operatorname{Pr}\left[X<\frac{r}{2}\right] \leq \operatorname{Pr}\left[X<\frac{4}{6} \mathrm{E}[X]\right]=\operatorname{Pr}\left[X<\left(1-\frac{1}{3}\right) \mathrm{E}[X]\right] \\
& \leq e^{-\left(\frac{2}{3}\right)^{2} \mathrm{E}[X] / 2}=e^{-4 \mathrm{E}[X] / 18} \leq e^{-3 r / 18}=e^{-3 \log n} \leq 2^{-4 \log n}=n^{-4}
\end{aligned}
$$

Majority needs to be correct for all n^{2} pairs i, j and $\log d$ bit positions b in all $\frac{n}{d}$ instances of the algorithm:
Union bound:

$$
\operatorname{Pr}\left[\exists i, j, b: M_{b}[i, j] \neq C_{b}(i, j) \text { in some instance }\right] \leq \frac{n^{3} \log d}{d} \cdot n^{-4} \leq \frac{1}{n}
$$

Questions?

