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Reminder: Relations = Reductions

transfer hardness of one problem to another one by reductions

problem 𝑸

time
size 𝑠(𝑛)

reduction instance 𝐽

𝐼 is a ‘yes’-instance 𝐽 is a ‘yes’-instance()

problem 𝑷

size 𝑛

instance 𝐼

𝑟(𝑛)

𝑡(𝑛) algorithm for 𝑄 implies a 𝑟 𝑛 + 𝑡(𝑠 𝑛 ) algorithm for 𝑃

if 𝑃 has no 𝑟 𝑛 + 𝑡(𝑠 𝑛 ) algorithm then 𝑄 has no 𝑡(𝑛) algorithm 



Reminder: Relations = Reductions

problem 𝑸

total time 
𝑟(𝑛)

size 𝑛.

reduction instance 𝐼1
problem 𝑷

size 𝑛

instance 𝐼

size 𝑛0
instance 𝐼𝑘

…

…



Subcubic Reduction

an algorithm 𝐴 for 𝑃 with oracle access to 𝑄 s.t.:

problem 𝑸

total time 
𝑟(𝑛)

size 𝑛.

reduction instance 𝐼1
problem 𝑷

size 𝑛

instance 𝐼

size 𝑛0
instance 𝐼𝑘

…

…

for any instance 𝐼, algorithm 𝐴(𝐼) correctly solves problem 𝑃 on 𝐼
𝐴 runs in time 𝑟(𝑛) = 𝑂(𝑛567) for some 𝛾 > 0

for any 𝜀 > 0 there is a 𝛿 > 0 s.t. ∑ 𝑛>56?0
>@. ≤ 𝑛56B

Properties:

A subcubic reduction from P to Q is



Subcubic Reduction

an algorithm 𝐴 for 𝑃 with oracle access to 𝑄 with:

problem 𝑸

total time 
𝑟(𝑛)

size 𝑛.

reduction instance 𝐼1
problem 𝑷

size 𝑛

instance 𝐼

size 𝑛0
instance 𝐼𝑘

…

…

for any instance 𝐼, algorithm 𝐴(𝐼) correctly solves problem 𝑃 on 𝐼
𝐴 runs in time 𝑟(𝑛) = 𝑂(𝑛567) for some 𝛾 > 0

for any 𝜀 > 0 there is a 𝛿 > 0 s.t. ∑ 𝑛>56?0
>@. ≤ 𝑛56B

Properties:

A subcubic reduction from P to Q is

A subcubic reduction implies:

If 𝑄 has an 𝑂(𝑛56C) algorithm for some 𝛼 > 0,  

then 𝑃 has an 𝑂(𝑛56E) algorithm for some 𝛽 > 0

similar: subquadratic/subquartic reductions



Subcubic Reduction

subcubic reduction: write 𝑃 ≤ 𝑄

subcubic equivalent: write 𝑃 ≡ 𝑄 if 𝑃 ≤ 𝑄 and 𝑄 ≤ 𝑃

For problems 𝐴, 𝐵, 𝐶 with 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐶 we have 𝐴 ≤ 𝐶.

In particular: If 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐶 and 𝐶 ≤ 𝐴
then 𝐴, 𝐵, 𝐶 are subcubic equivalent.

Transitivity:    (Exercise)

𝐴

𝐵 𝐶

If 𝐴 ≤ 𝐵 and 𝐵 is in time 𝑂 𝑛5/2N(OPQR)S/T

then 𝐴 is in time 𝑂 𝑛5/2N(OPQR)S/T .

Lemma:    (without proof)



Reminder

given a weighted directed graph 𝐺, compute the (length of the) 
shortest path between any pair of vertices

Floyd-Warshall‘62:  𝑂(𝑛5)

Williams‘14:  𝑂 𝑛5/2N(OPQR)S/T
...

All-Pairs-Shortest-Paths (APSP):

each edge has a weight in {1, . . , 𝑛W }

Conjecture:  for any 𝜀 > 0APSP has no 𝑂 𝑛56? algorithm

there exists 𝑐 > 0 such that



Reminder

given 𝑛.×𝑛[-matrix 𝐴 and 𝑛[×𝑛5-matrix 𝐵, define their
min-plus product as the 𝑛.×𝑛5-matrix 𝐶 with

Min-Plus Matrix Product:

𝐶>,\ = min
.`0`RT

𝐴>,0 + 𝐵0,\

from definition:  𝑂 𝑛5 (if 𝑛 = 𝑛. = 𝑛[ = 𝑛5)

Conjecture:  for any 𝜀 > 0 there is no 𝑂 𝑛56? algorithm

each entry in {1, . . , 𝑛W, ∞}

there exists 𝑐 > 0 such that



Reminder

Thm:
If APSP has a 𝑇(𝑛) algorithm
then Min-Plus Product has an 
𝑂(𝑇 𝑛 + 𝑛[) algorithm. 

⋮ ⋮
⋮𝑛 𝑛𝑛

𝑤 𝑖,𝑘 = 𝐴[𝑖, 𝑘] 𝑤 𝑘, 𝑗 = 𝐵[𝑘, 𝑗]

Thm:
If Min-Plus Product has a 𝑇(𝑛)
algorithm then APSP has an 
𝑂((𝑇 𝑛 + 𝑛[) log𝑛) algorithm. 

Consider adjacency matrix 𝐴 of 𝐺

Add selfloops with cost 0:  𝐴 + 𝐼

Square log 𝑛 times using Min-Plus 
Product:

Then 𝐵>,\ is the length of the
shortest path from i to j

𝐵 ≔ (𝐴+ 𝐼)[ mno p



Subcubic Reduction

an algorithm 𝐴 for 𝑃 with oracle access to 𝑄 with:

problem 𝑸

total time 
𝑟(𝑛)

size 𝑛.

reduction instance 𝐼1
problem 𝑷

size 𝑛

instance 𝐼

size 𝑛0
instance 𝐼𝑘

…

…

for any instance 𝐼, algorithm 𝐴(𝐼) correctly solves problem 𝑃 on 𝐼
𝐴 runs in time 𝑟(𝑛) = 𝑂(𝑛567) for some 𝛾 > 0

for any 𝜀 > 0 there is a 𝛿 > 0 s.t. ∑ 𝑛>56?0
>@. ≤ 𝑛56B

Properties:

A subcubic reduction from P to Q is



Cor:

Subcubic Equivalences

Thm:
If APSP has a 𝑇(𝑛) algorithm
then Min-Plus Product has an 
𝑂(𝑇(𝑛)) algorithm. 

Thm:
If Min-Plus Product has a 𝑇(𝑛)
algorithm then APSP has an 
𝑂(𝑇 𝑛 log 𝑛) algorithm. 

Cor: APSP has an 𝑂(𝑛56?) algorithm for some 𝜀 > 0 if and only if
Min-Plus Product has an 𝑂(𝑛56B) algorithm for some 𝛿 > 0

APSP and Min-Plus Product are subcubic equivalent

Min-Plus Product is in time 𝑂 𝑛5/2N(OPQR)S/T



Subcubic Equivalences

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum 
Submatrix

Betweenness
Centrality

2nd Shortest 
Path

MedianMetricity
⟺

⟺

[Vassilevska-Williams,Williams’10]
[Abboud,Grandoni,Vassilevska-Williams’15]

Negative 
Triangle

⟺



Triangle Problems

Decide whether there are vertices 𝒊, 𝒋, 𝒌 such that

from definition:  𝑂(𝑛5)

each edge has a weight in {−𝑛W, . . , 𝑛W}

no 𝑂 𝑛56? algorithm known (which works for all 𝑐 > 0)

Given a weighted directed graph 𝐺

𝑤 𝑗, 𝑖 + 𝑤 𝑖, 𝑘 + 𝑤 𝑘, 𝑗 < 0

Intermediate problem: 

All-Pairs-Negative-Triangle

Decide for every 𝒊 ∈ 𝑰, 𝒋 ∈ 𝑱 whether there is a vertex 𝒌 ∈ 𝑲 s.t.
Given a weighted directed graph 𝐺 with vertex set 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾

𝑤 𝑗, 𝑖 + 𝑤 𝑖, 𝑘 + 𝑤 𝑘, 𝑗 < 0

Negative Triangle



Subcubic Equivalences

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum 
Submatrix

Betweenness
Centrality

2nd Shortest 
Path

MedianMetricity
⟺

⟺

[Vassilevska-Williams,Williams’10]
[Abboud,Grandoni,Vassilevska-Williams’15]

Negative 
Triangle

⟺



Neg-Triangle to Min-Plus-Product

Negative 
Triangle

Given a weighted directed graph 𝐺 on vertex set {1,… , 𝑛}

Min-Plus 
Product

Adjacency matrix A:
𝐴>,\ = weight of edge 𝑖, 𝑗 , or ∞ if the edge does not exist

1. Compute Min-Plus Product 𝐵 ≔ 𝐴 ∗ 𝐴:
𝐵>,\ = min

0
𝐴>,0 + 𝐴0,\

2. Compute min
>,\

𝐴\,> + 𝐵>,\

this equals min
> ,\,0

𝐴\,> + 𝐴>,0 + 𝐴0,\

i.e. the smallest weight of any triangle

thus we solved Negative Triangle

𝑇��Q�����QO� 𝑛 ≤ 𝑇����O�� 𝑛 + 𝑂(𝑛[)

→ subcubic reduction

Running Time:

3 1 ∞ ∞
∞ ∞ 4 ∞
1 5 ∞ 2
2 ∞ 7 1

𝐴:



Subcubic Equivalences

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum 
Submatrix

Betweenness
Centrality

2nd Shortest 
Path

MedianMetricity
⟺

⟺

[Vassilevska-Williams,Williams’10]
[Abboud,Grandoni,Vassilevska-Williams’15]

Negative 
Triangle

⟺



Min-Plus to All-Pairs-Neg-Triangle Min-Plus 
Product

All-Pairs-
Negative-
Triangle

3 1 ∞ ∞
∞ ∞ 4 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ 1

5 ∞ ∞ ∞
7 ∞ ∞ ∞
∞ 2 ∞ ∞
∞ ∞ ∞ 4

𝐴 𝐵

3 1

4

2
1

5
7
2

4
𝐼

𝐾

𝐽−2

−7
Add all edges from J to I with (carefully chosen) weights 𝑤(𝑗, 𝑖)
Run All-Pairs-Negative-Triangle algorithm
Result:  for all 𝑖, 𝑗, is there a 𝑘 such that 𝑤 𝑗, 𝑖 + 𝑤 𝑖, 𝑘 + 𝑤 𝑘, 𝑗 < 0?  

⇔𝑤 𝑖, 𝑘 + 𝑤 𝑘, 𝑗 < −𝑤 𝑗, 𝑖

WANTED: Min-Plus:  for all 𝑖, 𝑗: min
0
𝑤 𝑖, 𝑘 + 𝑤 𝑘, 𝑗

= minimum number 𝑧 s.t. there is a 𝑘 s.t.  𝑤 𝑖, 𝑘 + 𝑤 𝑘, 𝑗 < 𝑧 + 1

binary search via	𝑤 𝑗, 𝑖 !  simultaneous for all 𝑖, 𝑗!

𝑛 = 4 in the picture



Min-Plus to All-Pairs-Neg-Triangle Min-Plus 
Product

All-Pairs-
Negative-
Triangle

3 1 ∞ ∞
∞ ∞ 4 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ 1

5 ∞ ∞ ∞
7 ∞ ∞ ∞
∞ 2 ∞ ∞
∞ ∞ ∞ 4

𝐴 𝐵

3 1

4

2
1

5
7
2

4
𝐼

𝐾

𝐽−2

−7

binary search via	𝑤 𝑗, 𝑖 !  simultaneous for all 𝑖, 𝑗!

need that all (finite) weights are in {−𝑛W ,… , 𝑛W}
each entry of Min-Plus Product is in {−2𝑛W, … , 2𝑛W,∞}
binary search takes log[ 4𝑛W + 1 = 𝑂(log 𝑛) steps

𝑛 = 4 in the picture



Min-Plus to All-Pairs-Neg-Triangle Min-Plus 
Product

All-Pairs-
Negative-
Triangle

3 1 ∞ ∞
∞ ∞ 4 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ 1

5 ∞ ∞ ∞
7 ∞ ∞ ∞
∞ 2 ∞ ∞
∞ ∞ ∞ 4

𝐴 𝐵

3 1

4

2
1

5
7
2

4
𝐼

𝐾

𝐽−2

−7

binary search via	𝑤 𝑗, 𝑖 !  simultaneous for all 𝑖, 𝑗!

for all 𝑖, 𝑗:  initialize 𝑚 𝑖, 𝑗 ≔ −2𝑛W and 𝑀(𝑖, 𝑗): = 2𝑛W

𝑛 = 4 in the picture

repeat log	(4𝑛W)	times:
for all 𝑖, 𝑗:  set 𝑤 𝑗, 𝑖 ≔ − (𝑚 𝑖, 𝑗 + 𝑀(𝑖, 𝑗))/2
compute All-Pairs-Negative-Triangle
for all 𝑖, 𝑗:  if i,j is in negative triangle:  𝑀 𝑖, 𝑗 ≔ −𝑤 𝑗, 𝑖 − 1

otherwise:  𝑚 𝑖, 𝑗 ≔ −𝑤 𝑗, 𝑖
(missing: handling of ∞)



Min-Plus to All-Pairs-Neg-Triangle Min-Plus 
Product

All-Pairs-
Negative-
Triangle

3 1 ∞ ∞
∞ ∞ 4 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ 1

5 ∞ ∞ ∞
7 ∞ ∞ ∞
∞ 2 ∞ ∞
∞ ∞ ∞ 4

𝐴 𝐵

3 1

4

2
1

5
7
2

4
𝐼

𝐾

𝐽−2

−7

binary search takes log[ 4𝑛W + 1 = 𝑂(log 𝑛) steps

𝑇(𝑛)	algorithm for All-Pairs-Neg-Triangle yields
𝑂(𝑇(𝑛)	log	𝑛)	algorithm for Min-Plus Product

→ subcubic reduction

𝑛 = 4 in the picture

In particular: 𝑂(𝑛56?)	algorithm for All-Pairs-Neg-Triangle for some
𝜀 > 0 implies	𝑂(𝑛56?)	algorithm for Min-Plus Product for some 𝜀 > 0



Subcubic Equivalences

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum 
Submatrix

Betweenness
Centrality

2nd Shortest 
Path

MedianMetricity
⟺

⟺

[Vassilevska-Williams,Williams’10]
[Abboud,Grandoni,Vassilevska-Williams’15]

Negative 
Triangle

⟺



All-Pairs-Neg-Triangle to Neg-Triangle All-Pairs-
Negative-
Triangle

Negative 
Triangle

Decide whether there are vertices 𝑖, 𝑗, 𝑘 such that
𝑤 𝑗, 𝑖 + 𝑤 𝑖, 𝑘 + 𝑤 𝑘, 𝑗 < 0

Negative Triangle

All-Pairs-Negative-Triangle
Decide for every 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 whether there is a vertex 𝑘 ∈ 𝐾 such that

𝑤 𝑗, 𝑖 + 𝑤 𝑖, 𝑘 + 𝑤 𝑘, 𝑗 < 0

Given graph 𝐺

Given graph 𝐺 with vertex set 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾

Split 𝐼, 𝐽, 𝐾 into 𝑛/𝑠 parts of size 𝑠:

For each of the (𝑛/𝑠)5	triples (𝐼�, 𝐽�,𝐾�):
consider graph 𝐺[𝐼� ∪ 𝐽� ∪ 𝐾�]

𝐼.,… , 𝐼R/�,	𝐽. , … , 𝐽R/�, 𝐾.,… , 𝐾R/�

𝐼�

𝐾�

𝐽�

𝐼

𝐾

𝐽



All-Pairs-Neg-Triangle to Neg-Triangle All-Pairs-
Negative-
Triangle

Negative 
Triangle

For each of the (𝑛/𝑠)5	triples of parts (𝐼�, 𝐽�,𝐾�):

While 𝐺[𝐼� ∪ 𝐽� ∪ 𝐾�]	contains a negative triangle:
Find a negative triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼� ∪ 𝐽� ∪ 𝐾�]

Initialize 𝐶 as 𝑛×𝑛 all-zeroes matrix

Set 𝐶 𝑖, 𝑗 ≔ 1
Set 𝑤(𝑖, 𝑗) ≔ ∞

(𝑖, 𝑗) is in no more negative triangles

𝐼�

𝐾�

𝐽�

𝐼

𝐾

𝐽✔ guaranteed termination:

✔ correctness:

can set ≤ 𝑛[ weights to ∞

if (𝑖, 𝑗)	is in negative triangle, 
we will find one



All-Pairs-Neg-Triangle to Neg-Triangle All-Pairs-
Negative-
Triangle

Negative 
Triangle

Find a negative triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼� ∪ 𝐽� ∪ 𝐾�]

How to find a negative triangle
if we can only decide whether one exists?

Partition 𝐼� into 𝐼�(.), 𝐼�([), 𝐽� into 𝐽�(.), 𝐽�([),  𝐾� into 𝐾�(.),𝐾�([)

𝐼�

𝐾�

𝐽�

Since 𝐺[𝐼� ∪ 𝐽� ∪ 𝐾�] contains a negative triangle,
at least one of the 25 subgraphs

𝐺[𝐼�(�) ∪ 𝐽�(�) ∪ 𝐾�(W)]
contains a negative triangle

Decide for each such subgraph whether
it contains a negative triangle

Recursively find a triangle in one subgraph



All-Pairs-Neg-Triangle to Neg-Triangle All-Pairs-
Negative-
Triangle

Negative 
Triangle

Find a negative triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼� ∪ 𝐽� ∪ 𝐾�]

How to find a negative triangle
if we can only decide whether one exists?

Partition 𝐼� into 𝐼�(.), 𝐼�([), 𝐽� into 𝐽�(.), 𝐽�([),  𝐾� into 𝐾�(.),𝐾�([)

Since 𝐺[𝐼� ∪ 𝐽� ∪ 𝐾�] contains a negative triangle,
at least one of the 25 subgraphs

𝐺[𝐼�(�) ∪ 𝐽�(�) ∪ 𝐾�(W)]
contains a negative triangle

Decide for each such subgraph whether
it contains a negative triangle

Recursively find a triangle in one subgraph

𝑇������Q�����QO� 𝑛 ≤

25 ⋅ 𝑇�� �����Q�����QO�(𝑛)

+	𝑇������Q�����QO� 𝑛/2

= 𝑂(𝑇�� �����Q�����QO� 𝑛 )

Running Time:



All-Pairs-Neg-Triangle to Neg-Triangle All-Pairs-
Negative-
Triangle

Negative 
Triangle

For each of the (𝑛/𝑠)5	triples of parts (𝐼�, 𝐽�,𝐾�):

While 𝐺[𝐼� ∪ 𝐽� ∪ 𝐾�]	contains a negative triangle:
Find a negative triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼� ∪ 𝐽� ∪ 𝐾�]

Initialize 𝐶 as 𝑛×𝑛 all-zeroes matrix

Set 𝐶 𝑖, 𝑗 ≔ 1
Set 𝑤(𝑖, 𝑗) ≔ ∞

(∗) = 𝑂(𝑇������Q�����QO�(𝑠)) = 𝑂(𝑇�� �����Q�����QO�(𝑠))
Running Time:

(∗)

Total time: #triples + #triangles	found ⋅ (∗)

≤ 𝑛/𝑠 5 + 𝑛[ ⋅ 𝑇�� �����Q�����QO�(𝑠)

Set 𝑠 = 𝑛./5 and assume 𝑇�� �����Q�����QO� 𝑛 = 𝑂(𝑛56?)

Total time: 𝑂 𝑛[ ⋅ 𝑛.6?/5 = 𝑂(𝑛56?/5)



Subcubic Equivalences

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum 
Submatrix

Betweenness
Centrality

2nd Shortest 
Path

MedianMetricity
⟺

⟺

[Vassilevska-Williams,Williams’10]
[Abboud,Grandoni,Vassilevska-Williams’15]

Negative 
Triangle

⟺



Radius

𝐺 is a weighted directed graph
𝑑(𝑢, 𝑣)	is the distance from 𝑢 to 𝑣 in 𝐺

Radius:  min
®
max
°
𝑑(𝑢, 𝑣)

𝑢 is in some sense the most central vertex

APSPRadius

compute all pairwise distances, 
then evaluate definition of radius in time 𝑂(𝑛[)

⟹ Radius is in time 𝑂 𝑛5/2N(OPQR)S/T

𝑢

𝑣

𝑤(𝑢, 𝑣)

→ subcubic reduction



Negative Triangle to Radius

Negative Triangle instance: 
graph 𝐺 with 𝑛 nodes, 
edge-weights in {−𝑛W, … , 𝑛W}

Radius

Negative 
Triangle

𝑖

𝑗

𝑤(𝑖, 𝑗)

Radius instance: 
graph 𝐻 with O(𝑛) nodes, 
edge-weights in {0, … , 𝑂(𝑛W )}

𝑀 ∶= 3𝑛W

𝐴 𝐵 𝐶 𝐷

𝑖¶ 𝑖· 𝑖¸ 𝑖¹

𝑗¶ 𝑗· 𝑗¸ 𝑗¹

1) Make four layers with 𝑛 nodes
2) For any edge (𝑖, 𝑗): Add 𝑖¶, 𝑗· ,
𝑖·, 𝑗¸ , 𝑖¸ , 𝑗¹ with weight 𝑀 +𝑤(𝑖, 𝑗)



Negative Triangle to Radius

Negative Triangle instance: 
graph 𝐺 with 𝑛 nodes, 
edge-weights in {−𝑛W, … , 𝑛W}

Radius

Negative 
Triangle

𝑖

𝑗

𝑤(𝑖, 𝑗)

Radius instance: 
graph 𝐻 with O(𝑛) nodes, 
edge-weights in {0, … , 𝑂(𝑛W )}

𝑀 ∶= 3𝑛W

𝐴 𝐵 𝐶 𝐷

𝑖¶ 𝑖¹

𝑗·
𝑘¸

1) Make four layers with 𝑛 nodes
2) For any edge (𝑖, 𝑗): Add 𝑖¶, 𝑗· ,
𝑖·, 𝑗¸ , 𝑖¸ , 𝑗¹ with weight 𝑀 +𝑤(𝑖, 𝑗)

𝑘

(𝑖, 𝑗, 𝑘)	has weight 𝑊

⇔	path has length 3𝑀+ 𝑊

→ 	∃𝑖¶, 𝑗·, 𝑘¸ , 𝑖¹-path of length ≤ 3𝑀 − 1?



Negative Triangle to Radius

Negative Triangle instance: 
graph 𝐺 with 𝑛 nodes, 
edge-weights in {−𝑛W, … , 𝑛W}

Radius

Negative 
Triangle

Radius instance: 
graph 𝐻 with O(𝑛) nodes, 
edge-weights in {0, … , 𝑂(𝑛W )}

𝑀 ∶= 3𝑛W

𝐴 𝐵 𝐶 𝐷

𝑖¶ 𝑖¹

𝑗·
𝑘¸

1) Make four layers with 𝑛 nodes
2) For any edge (𝑖, 𝑗): Add 𝑖¶, 𝑗· ,
𝑖·, 𝑗¸ , 𝑖¸ , 𝑗¹ with weight 𝑀 +𝑤(𝑖, 𝑗)

(𝑖, 𝑗, 𝑘)	has weight 𝑊

⇔	path has length 3𝑀+ 𝑊

→ 	∃𝑖¶, 𝑗·, 𝑘¸ , 𝑖¹-path of length ≤ 3𝑀 − 1?3) Add edges of weight 3𝑀 − 1 from
any	𝑖¶ to all nodes except 𝑖¹ (and 𝑖¶)

Radius:  min
®
max
°

𝑑(𝑢, 𝑣) Radius of 𝐻 is ≤ 3𝑀 − 1 iff
there is a negative triangle in 𝐺

Claim:

𝑖

𝑗

𝑤(𝑖, 𝑗)

𝑘



Negative Triangle to Radius Radius

Negative 
Triangle

Radius of 𝐻 is ≤ 3𝑀 − 1 iff
there is a negative triangle in 𝐺

Claim:

Proof:

If there is a negative triangle (𝑖, 𝑗, 𝑘)	then 𝑖¶ is in distance ≤ 3𝑀 − 1	to 𝑖¹ (by (2)),
and in distance ≤ 3𝑀− 1 to any other vertex (by (3)), 
so the radius is ≤ max

°
𝑑 𝑖¶,𝑣 ≤ 3𝑀 − 1

If there is no negative triangle 𝑖, 𝑗, 𝑘 :	
Any node 𝑢 of the form 𝑖·/𝑖¸/𝑖¹ cannot reach 𝐴, so it has max

°
𝑑 𝑢, 𝑣 = ∞

Any 𝑖¶ is in distance ≥ 3𝑀	to 𝑖¹, since there is no 𝑖¶, 𝑗·, 𝑘¸ , 𝑖¹-path of length ≤
3𝑀 − 1 (note that the edges added in (3) also do not help)
Hence, for all 𝑢, max

°
𝑑 𝑢,𝑣 ≥ 3𝑀, and thus the radius is at least 3𝑀



Subcubic Equivalences

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum 
Submatrix

Betweenness
Centrality

2nd Shortest 
Path

MedianMetricity
⟺

⟺

[Vassilevska-Williams,Williams’10]
[Abboud,Grandoni,Vassilevska-Williams’15]

Negative 
Triangle

⟺



MaxSubmatrix

given an 𝑛×𝑛 matrix 𝐴 with entries in {−𝑛W , . . , 𝑛W}
Σ 𝐵 ≔ sum of all entries of matrix 𝐵
compute maximum Σ 𝐵 over all submatrices 𝐵 of 𝐴

there are 𝑂(𝑛¾) possible submatrices 𝐵

computing Σ 𝐵 :  𝑂(𝑛[)

trivial running time:  𝑂(𝑛¿)

Exercise:  design an 𝑂(𝑛5) algorithm

MaxSubmatrix:

Thm: MaxSubmatrix is subcubic equivalent to APSP
[Tamaki,Tokuyama’98]

[Backurs,Dikkala,Tzamos’16]

𝐴

𝐵
𝑥. 𝑥[

𝑦.

𝑦[



MaxSubmatrix

given an 𝑛×𝑛 matrix 𝐴 with entries in {−𝑛W , . . , 𝑛W}
Σ 𝐵 ≔ sum of all entries of matrix 𝐵
compute maximum Σ 𝐵 over all submatrices 𝐵 of 𝐴

𝐴

𝐵
𝑥. 𝑥[

𝑦.

𝑦[

MaxSubmatrix:

Thm: MaxSubmatrix is subcubic equivalent to APSP
[Tamaki,Tokuyama’98]

[Backurs,Dikkala,Tzamos’16]

compute maximum Σ 𝐵 over all submatrices 𝐵 of 𝐴 containing the center of 𝐴
MaxCenteredSubmatrix:

𝐴

𝐵

i.e. we require 𝑥. ≤ 𝑛/2 < 𝑥[ and 𝑦. ≤ 𝑛/2 < 𝑦[

Thm: MaxCenteredSubmatrix is subcubic equ. to APSP

we only prove: NegativeTriangle ≤ MaxCenteredSubmatrix

Exercise:  MaxCenteredSubmatrix ≤ APSP



NegTriangle to MaxCentSubmatrix 𝐴

𝐵

𝑥. 𝑥[

𝑦.

𝑦[

Positive Triangle instance: 
graph 𝐺 with 𝑛 nodes, 
edge-weights in {−𝑛W, … , 𝑛W}

MaxCenteredSubmatrix: 
2𝑛×2𝑛-matrix 𝐴
entries in {−𝑛Â(W) ,… ,𝑛Â(W)}

𝑀 ≔ 2𝑛WÃ5

𝑀
𝑀

𝑀
𝑀

𝑀
𝑀

−𝑀[

0
𝑦[ − 𝑛 = 𝑖

𝑥. = 𝑖

𝑦. = 𝑘

𝑥[ − 𝑛 = 𝑗

III

III IV

Σ 𝐵ÄÄ

= 𝑤(𝑘, 𝑖)
Σ 𝐵Ä

= 𝑤(𝑗, 𝑘)

Σ 𝐵ÄÅ

= 𝑤(𝑖, 𝑗)

In quadrant II we want for any 𝑘, 𝑖:

ÆÆ𝐴�,�

R

�@>

R

�@0

= 𝑤(𝑘, 𝑖)

this is satisfied by defining:
𝐴0,> ≔ 𝑤 𝑘, 𝑖 − 𝑤 𝑘 + 1, 𝑖

−𝑤 𝑘, 𝑖 + 1 + 𝑤(𝑘 + 1, 𝑖 + 1)

(where 𝑤 𝑥, 𝑦 ≔ 0	for 𝑥 > 𝑛 or 𝑦 > 𝑛)

𝑖

𝑗

𝑤(𝑖, 𝑗)

𝑘



NegTriangle to MaxCentSubmatrix 𝐴

𝐵

𝑥. 𝑥[

𝑦.

𝑦[

Positive Triangle instance: 
graph 𝐺 with 𝑛 nodes, 
edge-weights in {−𝑛W, … , 𝑛W}

MaxCenteredSubmatrix: 
2𝑛×2𝑛-matrix 𝐴
entries in {−𝑛Â(W) ,… ,𝑛Â(W)}

𝑀 ≔ 2𝑛WÃ5

In quadrant II we want for any 𝑘, 𝑖:

ÆÆ𝐴�,�

R

�@>

R

�@0

= 𝑤(𝑘, 𝑖)

this is satisfied by defining:
𝐴0,> ≔ 𝑤 𝑘, 𝑖 − 𝑤 𝑘 + 1, 𝑖

−𝑤 𝑘, 𝑖 + 1 + 𝑤(𝑘 + 1, 𝑖 + 1)

(where 𝑤 𝑥, 𝑦 ≔ 0	for 𝑥 > 𝑛 or 𝑦 > 𝑛)

With this definition of 𝐴, for any 1 ≤ 𝑘, 𝑖 ≤ 𝑛:

ÆÆ𝐴�,�

R

�@>

R

�@0

= ÆÆ𝑤 𝑦, 𝑥 −𝑤 𝑦+ 1,𝑥  

R

�@>

R

�@0 −𝑤 𝑦, 𝑥 + 1
+𝑤(𝑦 + 1, 𝑥 + 1)

where any 𝑤(𝑦,𝑥)	with 𝑘 < 𝑦 ≤ 𝑛 and 𝑖 < 𝑥 ≤ 𝑛
appears with factors +1− 1− 1+ 1 = 0

and any 𝑤 𝑦, 𝑥 , s.t. exactly one of 𝑦 = 𝑘 or
𝑦 = 𝑛 + 1 or 𝑥 = 𝑖 or 𝑥 = 𝑛 + 1 holds, 
appears with factors +1− 1 = 0

and since 𝑤(𝑦, 𝑛 + 1) = 𝑤(𝑛 + 1, 𝑥) = 0, 
the only remaining summand is 𝑤(𝑘, 𝑖)

𝑖

𝑗

𝑤(𝑖, 𝑗)

𝑘



NegTriangle to MaxCentSubmatrix 𝐴

𝐵

𝑥. 𝑥[

𝑦.

𝑦[

Positive Triangle instance: 
graph 𝐺 with 𝑛 nodes, 
edge-weights in {−𝑛W, … , 𝑛W}

MaxCenteredSubmatrix: 
2𝑛×2𝑛-matrix 𝐴
entries in {−𝑛Â(W) ,… ,𝑛Â(W)}

𝑀 ≔ 2𝑛WÃ5

𝑀
𝑀

𝑀
𝑀

𝑀
𝑀

−𝑀[

0
𝑦[ − 𝑛 = 𝑖

𝑥. = 𝑖

𝑦. = 𝑘

𝑥[ − 𝑛 = 𝑗

III

III IV

Σ 𝐵ÄÄ

= 𝑤(𝑘, 𝑖)
Σ 𝐵Ä

= 𝑤(𝑗, 𝑘)

Σ 𝐵ÄÅ

= 𝑤(𝑖, 𝑗)

In quadrant II we want for any 𝑘, 𝑖:

ÆÆ𝐴�,�

R

�@>

R

�@0

= 𝑤(𝑘, 𝑖)

this is satisfied by defining:
𝐴0,> ≔ 𝑤 𝑘, 𝑖 − 𝑤 𝑘 + 1, 𝑖

−𝑤 𝑘, 𝑖 + 1 + 𝑤(𝑘 + 1, 𝑖 + 1)

(where 𝑤 𝑥, 𝑦 ≔ 0	for 𝑥 > 𝑛 or 𝑦 > 𝑛)

MaxCentSubmatrix of 𝐴 is > 𝑀
iff 𝐺 has a positive triangle

Claim:𝑖

𝑗

𝑤(𝑖, 𝑗)

𝑘



Summary

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum 
Submatrix

Betweenness
Centrality

2nd Shortest 
Path

MedianMetricity
⟺

⟺

Negative 
Triangle

⟺


