$\square \square \square$ max planck institut informatik

Complexity Theory of Polynomial-Time Problems

Lecture 5: Subcubic Equivalences

Karl Bringmann

Reminder: Relations = Reductions

transfer hardness of one problem to another one by reductions

$t(n)$ algorithm for Q implies a $r(n)+t(s(n))$ algorithm for P
if P has no $r(n)+t(s(n))$ algorithm then Q has no $t(n)$ algorithm

Reminder: Relations = Reductions

Subcubic Reduction

A subcubic reduction from P to Q is
an algorithm A for P with oracle access to Q s.t.:

problem Q

Properties:
for any instance I, algorithm $A(I)$ correctly solves problem P on I A runs in time $r(n)=O\left(n^{3-\gamma}\right)$ for some $\gamma>0$ for any $\varepsilon>0$ there is a $\delta>0$ s.t. $\sum_{i=1}^{k} n_{i}{ }^{3-\varepsilon} \leq n^{3-\delta}$

Subcubic Reduction

A subcubic reduction from P to Q is an algorithm A for P with oracle access to Q with:

A subcubic reduction implies:
If Q has an $O\left(n^{3-\alpha}\right)$ algorithm for some $\alpha>0$,
then P has an $O\left(n^{3-\beta}\right)$ algorithm for some $\beta>0$

Properties:
for any instance I, algorithm $A(I)$ correctly solves problem P on I A runs in time $r(n)=O\left(n^{3-\gamma}\right)$ for some $\gamma>0$ for any $\varepsilon>0$ there is a $\delta>0$ s.t. $\sum_{i=1}^{k} n_{i}{ }^{3-\varepsilon} \leq n^{3-\delta}$

Subcubic Reduction

subcubic reduction: write $P \leq Q$
subcubic equivalent: write $P \equiv Q$ if $P \leq Q$ and $Q \leq P$

Transitivity: (Exercise)

For problems A, B, C with $A \leq B$ and $B \leq C$ we have $A \leq C$.

In particular: If $A \leq B$ and $B \leq C$ and $C \leq A$ then A, B, C are subcubic equivalent.

Lemma: (without proof)
If $A \leq B$ and B is in time $O\left(n^{3} / 2^{\Omega(\log n)^{1 / 2}}\right)$ then A is in time $O\left(n^{3} / 2^{\Omega(\log n)^{1 / 2}}\right)$.

Reminder

All-Pairs-Shortest-Paths (APSP):

given a weighted directed graph G, compute the (length of the) shortest path between any pair of vertices

$$
\text { each edge has a weight in }\left\{1, . ., n^{c}\right\}
$$

Floyd-Warshall'62: $O\left(n^{3}\right)$

Williams'14: $O\left(n^{3} / 2^{\Omega(\log n)^{1 / 2}}\right)$

Conjecture: for any $\varepsilon>0$ APSP has no $O\left(n^{3-\varepsilon}\right)$ algorithm

Reminder

Min-Plus Matrix Product:
 each entry in $\left\{1, . ., n^{c}, \infty\right\}$

given $n_{1} \times n_{2}$-matrix A and $n_{2} \times n_{3}$-matrix B, define their min-plus product as the $n_{1} \times n_{3}$-matrix C with

$$
C_{i, j}=\min _{1 \leq k \leq n_{2}} A_{i, k}+B_{k, j}
$$

from definition: $O\left(n^{3}\right) \quad$ (if $n=n_{1}=n_{2}=n_{3}$)

Conjecture: for any $\varepsilon>0$ there is no $O\left(n^{3-\varepsilon}\right)$ algorithm there exists $c>0$ such that

Reminder

Thm:

If APSP has a $T(n)$ algorithm then Min-Plus Product has an $O\left(T(n)+n^{2}\right)$ algorithm.

Thm:

If Min-Plus Product has a $T(n)$ algorithm then APSP has an $O\left(\left(T(n)+n^{2}\right) \log n\right)$ algorithm.

Consider adjacency matrix A of G
Add selfloops with cost 0: $A+I$
Square $\lceil\log n\rceil$ times using Min-Plus Product:

$$
B:=(A+I)^{2^{[\log n]}}
$$

Then $B_{i, j}$ is the length of the shortest path from i to j

Subcubic Reduction

A subcubic reduction from P to Q is an algorithm A for P with oracle access to Q with:

Properties:

for any instance I, algorithm $A(I)$ correctly solves problem P on I
A runs in time $r(n)=O\left(n^{3-\gamma}\right)$ for some $\gamma>0$
for any $\varepsilon>0$ there is a $\delta>0$ s.t. $\sum_{i=1}^{k} n_{i}^{3-\varepsilon} \leq n^{3-\delta}$

Subcubic Equivalences

Thm:

If APSP has a $T(n)$ algorithm then Min-Plus Product has an $O(T(n))$ algorithm.

Thm:

If Min-Plus Product has a $T(n)$ algorithm then APSP has an $O(T(n) \log n)$ algorithm.

APSP and Min-Plus Product are subcubic equivalent

Cor: APSP has an $O\left(n^{3-\varepsilon}\right)$ algorithm for some $\varepsilon>0$ if and only if Min-Plus Product has an $O\left(n^{3-\delta}\right)$ algorithm for some $\delta>0$

Cor: Min-Plus Product is in time $O\left(n^{3} / 2^{\Omega(\log n)^{1 / 2}}\right)$

Subcubic Equivalences

[Vassilevska-Williams,Williams'10]

Triangle Problems

Negative Triangle

 each edge has a weight in $\left\{-n^{c}, . ., n^{c}\right\}$Given a weighted directed graph G
Decide whether there are vertices $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ such that

$$
w(j, i)+w(i, k)+w(k, j)<0
$$

from definition: $O\left(n^{3}\right)$
no $O\left(n^{3-\varepsilon}\right)$ algorithm known (which works for all $c>0$)

Intermediate problem:

All-Pairs-Negative-Triangle

Given a weighted directed graph G with vertex set $V=I \cup J \cup K$
Decide for every $\boldsymbol{i} \in \boldsymbol{I}, \boldsymbol{j} \in \boldsymbol{J}$ whether there is a vertex $\boldsymbol{k} \in \boldsymbol{K}$ s.t.

$$
w(j, i)+w(i, k)+w(k, j)<0
$$

Subcubic Equivalences

[Vassilevska-Williams,Williams'10]

Neg-Triangle to Min-Plus-Product

Min-Plus

Product
Given a weighted directed graph G on vertex set $\{1, \ldots, n\}$
Adjacency matrix A:
$A_{i, j}=$ weight of edge (i, j), or ∞ if the edge does not exist

Negative Triangle

1. Compute Min-Plus Product $B:=A * A$:

$$
B_{i, j}=\min _{k} A_{i, k}+A_{k, j}
$$

A: $31 \infty \infty$
$\infty \infty 4 \infty$
2. Compute $\min _{i, j} A_{j, i}+B_{i, j}$
this equals $\min _{i, j, k} A_{j, i}+A_{i, k}+A_{k, j}$
$15 \infty 2$
$2 \infty 71$
i.e. the smallest weight of any triangle thus we solved Negative Triangle

Running Time: $\quad T_{\text {NegTriangle }}(n) \leq T_{\text {MinPlus }}(n)+O\left(n^{2}\right)$
\rightarrow subcubic reduction

Subcubic Equivalences

[Vassilevska-Williams,Williams'10]

Min-Plus to All-Pairs-Neg-Triangle

$$
\begin{array}{cccc}
3 & 1 & \infty & \infty \\
\infty & \infty & 4 & \infty \\
\infty & \infty & \infty & 2 \\
\infty & \infty & \infty & 1 \\
& A &
\end{array}
$$

Min-Plus

 Product| 5 | ∞ | ∞ | ∞ |
| :---: | :---: | :---: | :---: |
| 7 | ∞ | ∞ | ∞ |
| ∞ | 2 | ∞ | ∞ |
| ∞ | ∞ | ∞ | 4 |
| c | B | | |

All-Pairs-NegativeTriangle

Add all edges from J to I with (carefully chosen) weights $w(j, i)$
Run All-Pairs-Negative-Triangle algorithm
Result: for all i, j, is there a k such that $w(j, i)+w(i, k)+w(k, j)<0$?

$$
\Leftrightarrow w(i, k)+w(k, j)<-w(j, i)
$$

WANTED: Min-Plus: for all $i, j: \min _{k} w(i, k)+w(k, j)$
$=$ minimum number z s.t. there is a k s.t. $w(i, k)+w(k, j)<z+1$

Min-Plus to All-Pairs-Neg-Triangle

$$
\begin{array}{cccc}
3 & 1 & \infty & \infty \\
\infty & \infty & 4 & \infty \\
\infty & \infty & \infty & 2 \\
\infty & \infty & \infty & 1 \\
& & A &
\end{array}
$$

Min-Plus Product

5	∞	∞	∞
7	∞	∞	∞
∞	2	∞	∞
∞	∞	∞	4
	B		

binary search via $w(j, i)$! simultaneous for all i, j !
need that all (finite) weights are in $\left\{-n^{c}, \ldots, n^{c}\right\}$ each entry of Min-Plus Product is in $\left\{-2 n^{c}, \ldots, 2 n^{c}, \infty\right\}$ binary search takes $\log _{2}\left(4 n^{c}+1\right)=O(\log n)$ steps

Min-Plus to All-Pairs-Neg-Triangle

$$
\begin{array}{cccc}
3 & 1 & \infty & \infty \\
\infty & \infty & 4 & \infty \\
\infty & \infty & \infty & 2 \\
\infty & \infty & \infty & 1 \\
& A &
\end{array}
$$

Min-Plus

Product

5	∞	∞	∞
7	∞	∞	∞
∞	2	∞	∞
∞	∞	∞	4
c	B		

All-Pairs-NegativeTriangle
binary search via $w(j, i)$! simultaneous for all i, j !
for all i, j : initialize $m(i, j):=-2 n^{c}$ and $M(i, j):=2 n^{c}$
repeat $\log \left(4 n^{c}\right)$ times:
for all i, j : set $w(j, i):=-\lceil(m(i, j)+M(i, j)) / 2\rceil$
compute All-Pairs-Negative-Triangle
for all i, j : if i, j is in negative triangle: $M(i, j):=-w(j, i)-1$ otherwise: $m(i, j):=-w(j, i)$

Min-Plus to All-Pairs-Neg-Triangle

```
3 1 m \infty
\infty}4
\infty \infty 2
\infty \infty \infty 1


Min-Plus Product
\begin{tabular}{cccc}
5 & \(\infty\) & \(\infty\) & \(\infty\) \\
7 & \(\infty\) & \(\infty\) & \(\infty\) \\
\(\infty\) & 2 & \(\infty\) & \(\infty\) \\
\(\infty\) & \(\infty\) & \(\infty\) & 4 \\
\(c\) & \(B\) &
\end{tabular}

All-Pairs-NegativeTriangle
binary search takes \(\log _{2}\left(4 n^{c}+1\right)=O(\log n)\) steps
\(T(n)\) algorithm for All-Pairs-Neg-Triangle yields \(O(T(n) \log n)\) algorithm for Min-Plus Product

In particular: \(O\left(n^{3-\varepsilon}\right)\) algorithm for All-Pairs-Neg-Triangle for some \(\varepsilon>0\) implies \(O\left(n^{3-\varepsilon}\right)\) algorithm for Min-Plus Product for some \(\varepsilon>0\) \(\rightarrow\) subcubic reduction

\section*{Subcubic Equivalences}

[Vassilevska-Williams,Williams'10]

\section*{All-Pairs-Neg-Triangle to Neg-Triangle}

All-Pairs-NegativeTriangle
Negative Triangle Given graph \(G\)
Decide whether there are vertices \(i, j, k\) such that
\[
w(j, i)+w(i, k)+w(k, j)<0
\]

Negative
Triangle

All-Pairs-Negative-Triangle Given graph \(G\) with vertex set \(V=I \cup J \cup K\)
Decide for every \(i \in I, j \in J\) whether there is a vertex \(k \in K\) such that
\[
w(j, i)+w(i, k)+w(k, j)<0
\]

Split \(I, J, K\) into \(n / s\) parts of size \(s\) :
\[
I_{1}, \ldots, I_{n / s}, J_{1}, \ldots, J_{n / s}, K_{1}, \ldots, K_{n / s}
\]

For each of the \((n / s)^{3}\) triples \(\left(I_{x}, J_{y}, K_{z}\right)\) : consider graph \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\)


\section*{All-Pairs-Neg-Triangle to Neg-Triangle}

Initialize \(C\) as \(n \times n\) all-zeroes matrix
For each of the \((n / s)^{3}\) triples of parts \(\left(I_{x}, J_{y}, K_{z}\right)\) :
While \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\) contains a negative triangle:
Find a negative triangle \((i, j, k)\) in \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\)
All-Pairs-NegativeTriangle

Set \(C[i, j]:=1\)
Set \(w(i, j):=\infty\)
\((i, j)\) is in no more negative triangles
\(\checkmark\) guaranteed termination:
can set \(\leq n^{2}\) weights to \(\infty\)
\(\checkmark\) correctness:
if \((i, j)\) is in negative triangle, we will find one


\section*{All-Pairs-Neg-Triangle to Neg-Triangle}

Find a negative triangle \((i, j, k)\) in \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\)
How to find a negative triangle if we can only decide whether one exists?

All-Pairs-NegativeTriangle

Negative
Triangle
Partition \(I_{x}\) into \(I_{x}{ }^{(1)}, I_{x}{ }^{(2)}, J_{y}\) into \(J_{y}{ }^{(1)}, J_{y}{ }^{(2)}, K_{z}\) into \(K_{z}{ }^{(1)}, K_{z}{ }^{(2)}\)
Since \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\) contains a negative triangle, at least one of the \(2^{3}\) subgraphs
\[
G\left[I_{x}{ }^{(a)} \cup J_{y}{ }^{(b)} \cup K_{z}{ }^{(c)}\right]
\]
contains a negative triangle
Decide for each such subgraph whether it contains a negative triangle

Recursively find a triangle in one subgraph

\section*{All－Pairs－Neg－Triangle to Neg－Triangle}

Find a negative triangle \((i, j, k)\) in \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\)
All－Pairs－ Negative－ Triangle

How to find a negative triangle if we can only decide whether one exists？

Negative
Triangle
Partition \(I_{x}\) into \(I_{x}{ }^{(1)}, I_{x}{ }^{(2)}, J_{y}\) into \(J_{y}{ }^{(1)}, J_{y}{ }^{(2)}, K_{z}\) into \(K_{z}{ }^{(1)}, K_{z}{ }^{(2)}\)
Since \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\) contains a negative triangle， at least one of the \(2^{3}\) subgraphs
\[
G\left[I_{x}{ }^{(a)} \cup J_{y}{ }^{(b)} \cup K_{z}{ }^{(c)}\right] \quad \text { Running Time: }
\]
contains a negative triangle
\(T_{\text {FindNegTriangle }}(n) \leq\)
Decide for each such subgraph whether it contains a negative triangle

Recursively find a triangle in one subgraph
\(2^{3} \cdot T_{\text {DecideNegTriangle }}(n)\)

\section*{All-Pairs-Neg-Triangle to Neg-Triangle}

Initialize \(C\) as \(n \times n\) all-zeroes matrix
For each of the \((n / s)^{3}\) triples of parts \(\left(I_{x}, J_{y}, K_{z}\right)\) :
While \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\) contains a negative triangle:
Find a negative triangle \((i, j, k)\) in \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\)
Set \(C[i, j]:=1\)
All-Pairs-NegativeTriangle

Negative
Triangle

Set \(w(i, j):=\infty\)

\section*{Running Time:}
\((*)=O\left(T_{\text {FindNegTriangle }}(s)\right)=O\left(T_{\text {DecideNegTriangle }}(s)\right)\)
Total time: \(((\#\) triples \()+(\) \#triangles found \()) \cdot(*)\)
\[
\leq\left((n / s)^{3}+n^{2}\right) \cdot T_{\text {DecideNegTriangle }}(s)
\]

Set \(s=n^{1 / 3}\) and assume \(T_{\text {DecideNegTriangle }}(n)=O\left(n^{3-\varepsilon}\right)\)

\section*{Subcubic Equivalences}

[Vassilevska-Williams,Williams'10]

\section*{Radius}
\(G\) is a weighted directed graph
\(d(u, v)\) is the distance from \(u\) to \(v\) in \(G\)
Radius: \(\min _{u} \max _{v} d(u, v)\)

\(u\) is in some sense the most central vertex

\section*{Radius \(\longrightarrow\) APSP}
compute all pairwise distances, then evaluate definition of radius in time \(O\left(n^{2}\right)\)
\(\rightarrow\) subcubic reduction
\(\Rightarrow\) Radius is in time \(O\left(n^{3} / 2^{\Omega(\log n)^{1 / 2}}\right)\)

\section*{Negative Triangle to Radius}

Negative Triangle instance:
graph \(G\) with \(n\) nodes, edge-weights in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)

Radius instance:
\(\longrightarrow\) graph \(H\) with \(\mathrm{O}(n)\) nodes, edge-weights in \(\left\{0, \ldots, O\left(n^{c}\right)\right\}\)

\section*{Negative} Triangle

1) Make four layers with \(n\) nodes
2) For any edge ( \(i, j\) ): Add \(\left(i_{A}, j_{B}\right)\), \(\left(i_{B}, j_{C}\right),\left(i_{C}, j_{D}\right)\) with weight \(M+w(i, j)\)

\section*{Negative Triangle to Radius}

Negative Triangle instance:
graph \(G\) with \(n\) nodes, edge-weights in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)

Radius instance:
\(\longrightarrow\) graph \(H\) with \(\mathrm{O}(n)\) nodes, edge-weights in \(\left\{0, \ldots, O\left(n^{c}\right)\right\}\)

\section*{Negative} Triangle

\(\Leftrightarrow\) path has length \(3 M+W\)
\(\rightarrow \exists i_{A}, j_{B}, k_{C}, i_{D}\)-path of length \(\leq 3 M-1\) ?

\section*{Negative Triangle to Radius}

Negative Triangle instance: graph \(G\) with \(n\) nodes, edge-weights in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)

Radius instance:
\(\longrightarrow\) graph \(H\) with \(\mathrm{O}(n)\) nodes, edge-weights in \(\left\{0, \ldots, O\left(n^{c}\right)\right\}\)

Negative Triangle

\(\Leftrightarrow\) path has length \(3 M+W\)
\(\rightarrow \exists i_{A}, j_{B}, k_{C}, i_{D}\)-path of length \(\leq 3 M-1\) ?
Claim: Radius of \(H\) is \(\leq 3 M-1\) iff there is a negative triangle in \(G\)

\section*{Negative Triangle to Radius}

Claim: Radius of \(H\) is \(\leq 3 M-1\) iff there is a negative triangle in \(G\)

\section*{Proof:}

If there is a negative triangle \((i, j, k)\) then \(i_{A}\) is in distance \(\leq 3 M-1\) to \(i_{D}\) (by (2)), and in distance \(\leq 3 M-1\) to any other vertex (by (3)),
so the radius is \(\leq \max _{v} d\left(i_{A}, v\right) \leq 3 M-1\)
If there is no negative triangle \((i, j, k)\) :
Any node \(u\) of the form \(i_{B} / i_{C} / i_{D}\) cannot reach \(A\), so it has \(\max _{v} d(u, v)=\infty\)
Any \(i_{A}\) is in distance \(\geq 3 M\) to \(i_{D}\), since there is no \(i_{A}, j_{B}, k_{C}, i_{D}\)-path of length \(\leq\) \(3 M-1\) (note that the edges added in (3) also do not help)
Hence, for all \(u, \max _{v} d(u, v) \geq 3 M\), and thus the radius is at least \(3 M\)

\section*{Subcubic Equivalences}

[Vassilevska-Williams,Williams'10]

\section*{MaxSubmatrix}

\section*{MaxSubmatrix:}
given an \(n \times n\) matrix \(A\) with entries in \(\left\{-n^{c}, . ., n^{c}\right\}\)
\(\Sigma(B):=\) sum of all entries of matrix \(B\)
compute maximum \(\Sigma(B)\) over all submatrices \(B\) of \(A\)


Thm: MaxSubmatrix is subcubic equivalent to APSP
[Tamaki,Tokuyama'98]
[Backurs,Dikkala,Tzamos'16]
there are \(O\left(n^{4}\right)\) possible submatrices \(B\)
computing \(\Sigma(B): O\left(n^{2}\right)\)
trivial running time: \(O\left(n^{6}\right)\)

Exercise: design an \(O\left(n^{3}\right)\) algorithm

\section*{MaxSubmatrix}

MaxSubmatrix:
given an \(n \times n\) matrix \(A\) with entries in \(\left\{-n^{c}, . ., n^{c}\right\}\)
\(\Sigma(B):=\) sum of all entries of matrix \(B\)
compute maximum \(\Sigma(B)\) over all submatrices \(B\) of \(A\)


Thm: MaxSubmatrix is subcubic equivalent to APSP
[Tamaki,Tokuyama'98]
[Backurs,Dikkala,Tzamos'16]

\section*{MaxCenteredSubmatrix:}
compute maximum \(\Sigma(B)\) over all submatrices \(B\) of \(A\) containing the center of \(A\) i.e. we require \(x_{1} \leq n / 2<x_{2}\) and \(y_{1} \leq n / 2<y_{2}\)

Thm: MaxCenteredSubmatrix is subcubic equ. to APSP we only prove: NegativeTriangle \(\leq\) MaxCenteredSubmatrix Exercise: MaxCenteredSubmatrix \(\leq\) APSP


\section*{NegTriangle to MaxCentSubmatrix}

Positive Triangle instance: graph \(G\) with \(n\) nodes, edge-weights in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)


In quadrant II we want for any \(k, i\) :
\[
\sum_{y=k}^{n} \sum_{x=i}^{n} A_{y, x}=w(k, i)
\]
this is satisfied by defining:
\[
\begin{aligned}
& A_{k, i}:= w(k, i)-w(k+1, i) \\
&-w(k, i+1)+w(k+1, i+1) \\
&(\text { where } w(x, y):=0 \text { for } x>n \text { or } y>n) \\
& \text { 【. max }
\end{aligned}
\]

MaxCenteredSubmatrix:
\(\longrightarrow 2 n \times 2 n\)-matrix \(A\) entries in \(\left\{-n^{O(c)}, \ldots, n^{O(c)}\right\}\)

\[
M:=2 n^{c+3}
\]


\section*{NegTriangle to MaxCentSubmatrix}

Positive Triangle instance: graph \(G\) with \(n\) nodes, edge-weights in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)

\(\longrightarrow 2 n \times 2 n\)-matrix \(A\)

MaxCenteredSubmatrix: entries in \(\left\{-n^{o(c)}, \ldots, n^{o(c)}\right\}\)

\[
M:=2 n^{c+3}
\]

With this definition of \(A\), for any \(1 \leq k, i \leq n\) :
\[
\begin{array}{r}
\sum_{y=k}^{n} \sum_{x=i}^{n} A_{y, x}=\sum_{y=k}^{n} \sum_{x=i}^{n} \begin{array}{l}
(y, x)-w(y+1, x) \\
-w(y, x+1) \\
+w(y+1, x+1)
\end{array}
\end{array}
\]
where any \(w(y, x)\) with \(k<y \leq n\) and \(i<x \leq n\) appears with factors \(+1-1-1+1=0\) and any \(w(y, x)\), s.t. exactly one of \(y=k\) or \(y=n+1\) or \(x=i\) or \(x=n+1\) holds, appears with factors \(+1-1=0\)
and since \(w(y, n+1)=w(n+1, x)=0\),
the only remaining summand is \(w(k, i)\)

\section*{NegTriangle to MaxCentSubmatrix}

Positive Triangle instance: graph \(G\) with \(n\) nodes, edge-weights in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)

MaxCenteredSubmatrix:
\(\longrightarrow 2 n \times 2 n\)-matrix \(A\) entries in \(\left\{-n^{O(c)}, \ldots, n^{O(c)}\right\}\)


In quadrant II we want for any \(k, i\) :
\[
\sum_{y=k}^{n} \sum_{x=i}^{n} A_{y, x}=w(k, i)
\]
this is satisfied by defining:
\[
\begin{aligned}
A_{k, i}:= & w(k, i)-w(k+1, i) \\
& -w(k, i+1)+w(k+1, i+1)
\end{aligned}
\]
(where \(w(x, y):=0\) for \(x>n\) or \(y>n\) )


\section*{Summary}
```

