

Complexity Theory of Polynomial-Time Problems

Lecture 5: Subcubic Equivalences

Karl Bringmann

Reminder: Relations = Reductions

transfer hardness of one problem to another one by reductions

t(n) algorithm for Q implies a r(n) + t(s(n)) algorithm for P

max planck institut

if P has no r(n) + t(s(n)) algorithm then Q has no t(n) algorithm

Reminder: Relations = Reductions

A subcubic reduction from P to Q is

an algorithm *A* for *P* with **oracle** access to *Q* s.t.:

Properties:

for any instance *I*, algorithm *A*(*I*) correctly solves problem *P* on *I A* runs in time $r(n) = O(n^{3-\gamma})$ for some $\gamma > 0$ for any $\varepsilon > 0$ there is a $\delta > 0$ s.t. $\sum_{i=1}^{k} n_i^{3-\varepsilon} \le n^{3-\delta}$

A subcubic reduction from P to Q is

an algorithm A for P with **oracle** access to Q with:

A subcubic reduction implies:

If *Q* has an $O(n^{3-\alpha})$ algorithm for some $\alpha > 0$, then *P* has an $O(n^{3-\beta})$ algorithm for some $\beta > 0$

Properties:

for any instance *I*, algorithm *A*(*I*) correctly solves problem *P* on *I A* runs in time $r(n) = O(n^{3-\gamma})$ for some $\gamma > 0$

for any $\varepsilon > 0$ there is a $\delta > 0$ s.t. $\sum_{i=1}^{k} n_i^{3-\varepsilon} \le n^{3-\delta}$

max planck institut

similar: subquadratic/subquartic reductions

subcubic reduction: write $P \leq Q$

subcubic equivalent: write $P \equiv Q$ if $P \leq Q$ and $Q \leq P$

Transitivity: (Exercise)

For problems A, B, C with $A \leq B$ and $B \leq C$ we have $A \leq C$.

In particular: If $A \le B$ and $B \le C$ and $C \le A$ then A, B, C are subcubic equivalent.

Lemma: (without proof)

If $A \le B$ and B is in time $O\left(n^3/2^{\Omega(\log n)^{1/2}}\right)$ then A is in time $O\left(n^3/2^{\Omega(\log n)^{1/2}}\right)$.

max planck institut informatik

Reminder

All-Pairs-Shortest-Paths (APSP):

given a weighted directed graph *G*, compute the (length of the) **shortest path between any pair** of vertices

each edge has a weight in $\{1, ..., n^c\}$

```
Floyd-Warshall'62: O(n^3)
```

max planck institut

. . .

Williams'14: $O(n^3/2^{\Omega(\log n)^{1/2}})$

Conjecture: for any $\varepsilon > 0$ APSP has no $O(n^{3-\varepsilon})$ algorithm

there exists c > 0 such that

Reminder

from definition: $O(n^3)$ (if $n = n_1 = n_2 = n_3$)

Conjecture: for any $\varepsilon > 0$ there is no $O(n^{3-\varepsilon})$ algorithm

there exists c > 0 such that

Reminder

Thm:

If APSP has a T(n) algorithm then Min-Plus Product has an $O(T(n) + n^2)$ algorithm.

Thm:

If Min-Plus Product has a T(n)algorithm then APSP has an $O((T(n) + n^2) \log n)$ algorithm.

Consider adjacency matrix A of G

Add selfloops with cost 0: A + I

Square $\lceil \log n \rceil$ times using Min-Plus Product: $B \coloneqq (A + I)^{2^{\lceil \log n \rceil}}$

Then $B_{i,j}$ is the length of the shortest path from i to j

A subcubic reduction from P to Q is

an algorithm A for P with **oracle** access to Q with:

Properties:

for any instance *I*, algorithm *A*(*I*) correctly solves problem *P* on *I A* runs in time $r(n) = O(n^{3-\gamma})$ for some $\gamma > 0$ for any $\varepsilon > 0$ there is a $\delta > 0$ s.t. $\sum_{i=1}^{k} n_i^{3-\varepsilon} \le n^{3-\delta}$

Subcubic Equivalences

Thm:

If APSP has a T(n) algorithm then Min-Plus Product has an O(T(n)) algorithm.

Thm:

If Min-Plus Product has a T(n)algorithm then APSP has an $O(T(n) \log n)$ algorithm.

APSP and Min-Plus Product are subcubic equivalent

Cor: APSP has an $O(n^{3-\varepsilon})$ algorithm for some $\varepsilon > 0$ if and only if Min-Plus Product has an $O(n^{3-\delta})$ algorithm for some $\delta > 0$

Cor: Min-Plus Product is in time $O\left(n^3/2^{\Omega(\log n)^{1/2}}\right)$

Subcubic Equivalences

Triangle Problems

Negative Triangle

each edge has a weight in $\{-n^c, ..., n^c\}$

Given a weighted directed graph G

Decide whether there are vertices *i*, *j*, *k* such that

w(j,i) + w(i,k) + w(k,j) < 0

from definition: $O(n^3)$

no $O(n^{3-\varepsilon})$ algorithm known (which works for all c > 0)

Intermediate problem:

All-Pairs-Negative-Triangle

Given a weighted directed graph *G* with vertex set $V = I \cup J \cup K$ Decide **for every** $i \in I, j \in J$ whether there is a vertex $k \in K$ s.t. w(j,i) + w(i,k) + w(k,j) < 0

Subcubic Equivalences

Neg-Triangle to Min-Plus-Product

Given a weighted directed graph G on vertex set $\{1, ..., n\}$ Adjacency matrix A:

 $A_{i,j}$ = weight of edge (i, j), or ∞ if the edge does not exist

1. Compute Min-Plus Product $B \coloneqq A * A$:

$$B_{i,j} = \min_{k} A_{i,k} + A_{k,j} \qquad \qquad A: \quad 3 \quad 1 \quad \infty \quad \infty \\ \infty \quad \infty \quad 4 \quad \infty$$

2. Compute $\min_{i,j} A_{j,i} + B_{i,j}$ 1 5 ∞ 2

this equals $\min_{i,j,k} A_{j,i} + A_{i,k} + A_{k,j}$ i.e. the smallest weight of any triangle

thus we solved Negative Triangle

max planck institut informatik

Running Time: $T_{\text{NegTriangle}}(n) \le T_{\text{MinPlus}}(n) + O(n^2)$

 \rightarrow subcubic reduction

Min-Plus

Product

Negative

Triangle

 $2 \propto 7 1$

Subcubic Equivalences

Add all edges from J to I with (carefully chosen) weights w(j,i)Run All-Pairs-Negative-Triangle algorithm Result: for all i, j, is there a k such that w(j,i) + w(i,k) + w(k,j) < 0? $\Leftrightarrow w(i,k) + w(k,j) < -w(j,i)$

WANTED: Min-Plus: for all i, j: $\min_{k} w(i, k) + w(k, j)$ = minimum number z s.t. there is a k s.t. w(i, k) + w(k, j) < z + 1 $\lim_{informatik} \max_{informatik} \max_{in$

binary search via w(j,i)! simultaneous for all i,j!

need that all (finite) weights are in $\{-n^c, ..., n^c\}$ each entry of Min-Plus Product is in $\{-2n^c, ..., 2n^c, \infty\}$ binary search takes $\log_2(4n^c + 1) = O(\log n)$ steps

binary search via w(j,i)! **simultaneous** for all *i*, *j*!

for all *i*, *j*: initialize $m(i, j) \coloneqq -2n^c$ and $M(i, j) \coloneqq 2n^c$ repeat $\log(4n^c)$ times:

max planck institut

informatik

for all i, j: set $w(j, i) \coloneqq -[(m(i, j) + M(i, j))/2]$ compute All-Pairs-Negative-Triangle for all i, j: if i,j is in negative triangle: $M(i, j) \coloneqq -w(j, i) - 1$ otherwise: $m(i, j) \coloneqq -w(j, i)$

(missing: handling of ∞)

binary search takes $\log_2(4n^c + 1) = O(\log n)$ steps

T(n) algorithm for All-Pairs-Neg-Triangle yields $O(T(n) \log n)$ algorithm for Min-Plus Product

In particular: $O(n^{3-\varepsilon})$ algorithm for All-Pairs-Neg-Triangle for some $\varepsilon > 0$ implies $O(n^{3-\varepsilon})$ algorithm for Min-Plus Product for some $\varepsilon > 0$

 \rightarrow subcubic reduction

Subcubic Equivalences

max planck institut informatik

Negative Triangle Given graph *G* Decide whether there are vertices *i*, *j*, *k* such that w(j,i) + w(i,k) + w(k,j) < 0

All-Pairs-Negative-Triangle Given graph *G* with vertex set $V = I \cup J \cup K$ Decide for every $i \in I, j \in J$ whether there is a vertex $k \in K$ such that w(j,i) + w(i,k) + w(k,j) < 0

Split I, J, K into n/s parts of size s: $I_1, \dots, I_{n/s}, J_1, \dots, J_{n/s}, K_1, \dots, K_{n/s}$

For each of the $(n/s)^3$ triples (I_x, J_y, K_z) : consider graph $G[I_x \cup J_y \cup K_z]$

> max planck institut informatik

All-Pairs-

Negative-

Triangle

Negative

Triangle

Initialize C as $n \times n$ all-zeroes matrix

For each of the $(n/s)^3$ triples of parts (I_x, J_y, K_z) :

While $G[I_x \cup J_y \cup K_z]$ contains a negative triangle:

Find a negative triangle (i, j, k) in $G[I_x \cup J_y \cup K_z]$

Set $C[i, j] \coloneqq 1$

Set
$$w(i, j) \coloneqq \infty$$

(i, j) is in no more negative triangles

✓ guaranteed termination: can set $\leq n^2$ weights to ∞

max planck institut

✓ correctness:

if (i, j) is in negative triangle, we will find one

All-Pairs-Negative-Triangle

Negative

Triangle

All-Pairs-

Negative-

Triangle

Negative

Triangle

 J_y

 K_{Z}

Find a negative triangle (i, j, k) in $G[I_x \cup J_y \cup K_z]$

How to **find** a negative triangle if we can only **decide** whether one exists?

Partition I_x into $I_x^{(1)}, I_x^{(2)}, J_y$ into $J_y^{(1)}, J_y^{(2)}, K_z$ into $K_z^{(1)}, K_z^{(2)}$

Since $G[I_x \cup J_y \cup K_z]$ contains a negative triangle, at least one of the 2³ subgraphs $G[I_x^{(a)} \cup J_v^{(b)} \cup K_z^{(c)}]$

contains a negative triangle

Decide for each such subgraph whether it contains a negative triangle

max planck institut informatik

Recursively find a triangle in one subgraph

Find a negative triangle (i, j, k) in $G[I_x \cup J_y \cup K_z]$

How to **find** a negative triangle if we can only **decide** whether one exists?

Partition I_x into $I_x^{(1)}, I_x^{(2)}, J_y$ into $J_y^{(1)}, J_y^{(2)}, K_z$ into $K_z^{(1)}, K_z^{(2)}$

Since $G[I_x \cup J_y \cup K_z]$ contains a negative triangle, at least one of the 2³ subgraphs $G[I_x^{(a)} \cup J_y^{(b)} \cup K_z^{(c)}]$ Running

contains a negative triangle

Decide for each such subgraph whether it contains a negative triangle

Recursively find a triangle in one subgraph

Running Time: $T_{\text{FindNegTriangle}}(n) \leq$

 $2^3 \cdot T_{\text{DecideNegTriangle}}(n)$

All-Pairs-

Negative-

Triangle

Negative

Triangle

 $+ T_{\text{FindNegTriangle}}(n/2)$

 $= O(T_{\text{DecideNegTriangle}}(n))$

Initialize C as $n \times n$ all-zeroes matrix

For each of the $(n/s)^3$ triples of parts (I_x, J_y, K_z) :

While $G[I_x \cup J_y \cup K_z]$ contains a negative triangle:

Find a negative triangle (i, j, k) in $G[I_x \cup J_y \cup K_z]$

Set
$$C[i, j] \coloneqq 1$$

Set
$$w(i, j) \coloneqq \infty$$

 $(*) = O(T_{\text{FindNegTriangle}}(s)) = O(T_{\text{DecideNegTriangle}}(s))$ Total time: $((\#\text{triples}) + (\#\text{triangles found})) \cdot (*)$ $\leq ((n/s)^3 + n^2) \cdot T_{\text{DecideNegTriangle}}(s)$ Set $s = n^{1/3}$ and assume $T_{\text{DecideNegTriangle}}(n) = O(n^{3-\varepsilon})$ Total time: $O(n^2 \cdot n^{1-\varepsilon/3}) = O(n^{3-\varepsilon/3})$

All-Pairs-Negative-Triangle

Negative Triangle

Subcubic Equivalences

Radius

G is a weighted directed graph d(u, v) is the distance from *u* to *v* in *G*

Radius: $\min_{u} \max_{v} d(u, v)$

u is in some sense the *most central vertex*

Radius — APSP

compute all pairwise distances, then evaluate definition of radius in time $O(n^2)$

 \rightarrow subcubic reduction

 \Rightarrow Radius is in time $O\left(n^3/2^{\Omega(\log n)^{1/2}}\right)$

Negative Triangle instance: graph *G* with *n* nodes, edge-weights in $\{-n^c, ..., n^c\}$

1) Make four layers with *n* nodes 2) For any edge (i, j): Add (i_A, j_B) , $(i_B, j_C), (i_C, j_D)$ with weight M + w(i, j) Radius instance:

graph H with O(n) nodes, edge-weights in {0, ..., O(n^c)}

 $M := 3n^{c}$

max planck institut informatik

Negative Triangle instance: graph *G* with *n* nodes, edge-weights in $\{-n^c, ..., n^c\}$

(i, j, k) has weight W

1) Make four layers with *n* nodes 2) For any edge (i, j): Add (i_A, j_B) , $(i_B, j_C), (i_C, j_D)$ with weight M + w(i, j) Radius instance:

graph H with O(n) nodes, edge-weights in {0, ..., O(n^c)}

 \Leftrightarrow path has length 3M + W

→ $\exists i_A, j_B, k_C, i_D$ -path of length $\leq 3M - 1$?

Radius

Negative

Triangle

 $M := 3n^{c}$

Negative Triangle instance: graph *G* with *n* nodes, edge-weights in $\{-n^c, ..., n^c\}$

(i, j, k) has weight W

 Make four layers with *n* nodes
 For any edge (*i*, *j*): Add (*i*_A, *j*_B), (*i*_B, *j*_C),(*i*_C, *j*_D) with weight *M* + *w*(*i*, *j*)
 Add edges of weight 3*M* - 1 from any *i*_A to all nodes except *i*_D (and *i*_A)

Radius instance:

graph H with O(n) nodes, edge-weights in {0, ..., O(n^c)}

 \Leftrightarrow path has length 3M + W

→ $\exists i_A, j_B, k_C, i_D$ -path of length $\leq 3M - 1$?

Claim: Radius of *H* is $\leq 3M - 1$ iff there is a negative triangle in *G*

 $M := 3n^c$

Claim: Radius of *H* is $\leq 3M - 1$ iff there is a negative triangle in *G*

Proof:

If there is a negative triangle (i, j, k) then i_A is in distance $\leq 3M - 1$ to i_D (by (2)), and in distance $\leq 3M - 1$ to any other vertex (by (3)), so the radius is $\leq \max_{v} d(i_A, v) \leq 3M - 1$

If there is no negative triangle (i, j, k):

Any node u of the form $i_B/i_C/i_D$ cannot reach A, so it has $\max_v d(u, v) = \infty$ Any i_A is in distance $\geq 3M$ to i_D , since there is no i_A, j_B, k_C, i_D -path of length $\leq 3M - 1$ (note that the edges added in (3) also do not help)

Hence, for all u, $\max_{v} d(u, v) \ge 3M$, and thus the radius is at least 3M

Subcubic Equivalences

MaxSubmatrix

MaxSubmatrix:

given an $n \times n$ matrix A with entries in $\{-n^c, ..., n^c\}$

 $\Sigma(B) \coloneqq$ sum of all entries of matrix *B*

compute maximum $\Sigma(B)$ over all **submatrices** B of A

Thm: MaxSubmatrix is subcubic equivalent to APSP

[Tamaki,Tokuyama'98] [Backurs,Dikkala,Tzamos'16]

there are $O(n^4)$ possible submatrices *B* computing $\Sigma(B)$: $O(n^2)$ trivial running time: $O(n^6)$

Exercise: design an $O(n^3)$ algorithm

MaxSubmatrix

MaxSubmatrix:

given an $n \times n$ matrix A with entries in $\{-n^c, ..., n^c\}$

 $\Sigma(B) \coloneqq$ sum of all entries of matrix *B*

compute maximum $\Sigma(B)$ over all **submatrices** B of A

Thm: MaxSubmatrix is subcubic equivalent to APSP

[Tamaki,Tokuyama'98] [Backurs,Dikkala,Tzamos'16]

MaxCenteredSubmatrix:

compute maximum $\Sigma(B)$ over all **submatrices** *B* of *A* **containing the center** of *A* i.e. we require $x_1 \le n/2 < x_2$ and $y_1 \le n/2 < y_2$

Thm: MaxCenteredSubmatrix is subcubic equ. to APSP

we only prove: NegativeTriangle < MaxCenteredSubmatrix

Exercise: MaxCenteredSubmatrix ≤ APSP

NegTriangle to MaxCentSubmatrix

Positive Triangle instance: graph G with n nodes, edge-weights in $\{-n^c, ..., n^c\}$

 $\sum \sum A_{y,x} = w(k,i)$

max planck institut informatik

MaxCenteredSubmatrix: $\longrightarrow 2n \times 2n$ -matrix A entries in $\{-n^{O(c)}, ..., n^{O(c)}\}$

 $M \coloneqq 2n^{c+3}$

v = k x =

this is satisfied by defining:

 $A_{k,i} \coloneqq w(k,i) - w(k+1,i)$

Ш $y_1 = k$ In quadrant II we want for any k, i: $\Sigma(B^{II})$ $\Sigma(B^{I})$ = w(k,i)= w(j,k)М $\Sigma(B^{IV})$ М 0 = w(i, j) $y_2 - n = i$ M -w(k, i+1) + w(k+1, i+1)М $-M^2$ М (where $w(x, y) \coloneqq 0$ for x > n or y > n) ۱V Ш M $x_2 - n = j_1$ $x_1 = i$

NegTriangle to MaxCentSubmatrix

Positive Triangle instance: graph *G* with *n* nodes, edge-weights in $\{-n^c, ..., n^c\}$

In quadrant II we want for any k, i:

$$\sum_{y=k}\sum_{x=i}A_{y,x}=w(k,i)$$

this is satisfied by defining:

$$A_{k,i} \coloneqq w(k,i) - w(k+1,i) -w(k,i+1) + w(k+1,i+1)$$

(where $w(x, y) \coloneqq 0$ for x > n or y > n)

max planck institut informatik MaxCenteredSubmatrix: $\rightarrow 2n \times 2n$ -matrix A entries in $\{-n^{O(c)}, \dots, n^{O(c)}\}$

$$A$$

$$y_1$$

$$B$$

$$y_2$$

$$x_1$$

$$x_2$$

 $M \coloneqq 2n^{c+3}$

With this definition of A, for any
$$1 \le k, i \le n$$
:

$$\sum_{y=k}^{n} \sum_{x=i}^{n} A_{y,x} = \sum_{y=k}^{n} \sum_{x=i}^{n} w(y,x) - w(y+1,x)$$

$$-w(y,x+1)$$

$$+w(y+1,x+1)$$

where any w(y,x) with $k < y \le n$ and $i < x \le n$ appears with factors +1 - 1 - 1 + 1 = 0

and any w(y, x), s.t. exactly one of y = k or y = n + 1 or x = i or x = n + 1 holds, appears with factors +1 - 1 = 0

and since w(y, n + 1) = w(n + 1, x) = 0, the only remaining summand is w(k, i)

NegTriangle to MaxCentSubmatrix

Summary

