informatik

Complexity Theory of Polynomial-Time Problems

Lecture 6: 3SUM Part I

Karl Bringmann

3SUM

```
given sets }A,B,C\mathrm{ of }n\mathrm{ integers
are there a\inA,b\inB,c\inC such that }a+b+c=0\mathrm{ ?
```

（we assume that we can add／subtract／compare input integers in constant time）
trivial algorithm：$O\left(n^{3}\right)$
well－known：$O\left(n^{2}\right)$

Conjecture：no $O\left(n^{2-\varepsilon}\right)$ algorithm
\rightarrow 3SUM－Hardness

More Known Algorithms

trivial: $O\left(n^{3}\right)$
well-known: $O\left(n^{2}\right)$
using FFT: $O(n+U$ polylog $U)$ for numbers in $\{-U, \ldots, U\}$
using Word RAM bit-tricks: $O\left(n^{2} \cdot \frac{\log ^{2} w}{w}\right), O\left(n^{2} \cdot \frac{(\log \log n)^{2}}{\log ^{2} n}\right)$
(cell size $w=\Omega(\log n)$,
each number fits in a cell)
[Baran,Demaine,Patrascu'05]
no bit-tricks: $O\left(n^{2} \cdot \frac{(\log \log n)^{2}}{\log n}\right)$
[Gronlund,Pettie'14]
we prove a simplified version:
Thm: Without bit-tricks, 3SUM is in time $O\left(n^{2} \cdot \frac{\text { poly } \log \log n}{\sqrt{\log n}}\right)$

Equivalent Variants

1) given sets A, B, C of n integers are there $a \in A, b \in B, c \in C$ such that $a+b+c=0$?
2) given sets A, B, C of n integers replace C by $\{-c \mid c \in C\}$ are there $a \in A, b \in B, c \in C$ such that $a+b=c$?

$$
\Leftrightarrow a+b-c=0
$$

3) given sets A, B, C of n integers and target $t \quad$ replace C by $\{c-t \mid c \in C\}$ are there $a \in A, b \in B, c \in C$ such that $a+b+c=t$?

$$
\Leftrightarrow a+b+(c-t)=0
$$

4) given a set X of n integers are there $x, y, z \in X$ such that $x+y+z=0$?
$\uparrow:$ set $A, B, C:=X$
\downarrow : set $X:=\{a+4 U \mid a \in A\} \cup B \cup\{c-4 U \mid c \in C\}$

Outline

1) algorithm for small universe
2) quadratic algorithm
3) small decision tree
4) logfactor improvement
5) some 3SUM-hardness results

Algorithm for Small Numbers

$O(n+U$ polylog $U)$ for numbers in $\{-U, \ldots, U\}$

add U to each number, then numbers are in $\{0, . ., 2 U\}$ and
we want $a \in A, b \in B, c \in C$ such that $a+b+c=3 U$
define polynomials $p_{A}(x):=\sum_{a \in A} x^{a}$ and similarly $p_{B}(x), p_{C}(x)$ have degree at most $2 U$
compute $q(x):=p_{A}(x) \cdot p_{B}(x) \cdot p_{C}(x)=\left(\sum_{a \in A} x^{a}\right)\left(\sum_{b \in B} x^{b}\right)\left(\sum_{c \in C} x^{c}\right)$
what is the coefficient of $x^{3 U}$ in $q(x)$?

$$
\left(x^{a} \cdot x^{b} \cdot x^{c}=x^{a+b+c}\right)
$$

it is the number of (a, b, c) summing to $3 U$
use efficient polynomial multiplication (via Fast Fourier Transform): polynomials of degree d can be multiplied in time $O(d$ polylog $d)$

Outline

1) algorithm for small universe
2) quadratic algorithm
3) small decision tree
4) logfactor improvement
5) some 3SUM-hardness results

Quadratic Algorithm

given a set A of n integers
are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$

$$
\begin{aligned}
& \text { initialize } i=n, j=1 \\
& \text { while } i>0 \text { and } j \leq n \text { : } \\
& \text { if } a_{i}+a_{j}=-c: \text { return }\left(a_{i}, a_{j}, c\right) \\
& \text { if } a_{i}+a_{j}>-c: i:=i-1 \\
& \text { if } a_{i}+a_{j}<-c: j:=j+1
\end{aligned}
$$

return "no solution"

	a_{1}	a_{2}	a_{3}		...		a_{n}
a_{1}							
a_{2}							
a_{3}							
\ldots							
a_{n}							

Quadratic Algorithm

given a set A of n integers
are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$

$$
\begin{aligned}
& \text { initialize } i=n, j=1 \\
& \text { while } i>0 \text { and } j \leq n \text { : } \\
& \qquad \begin{array}{l}
\text { if } a_{i}+a_{j}=-c: \text { return }\left(a_{i}, a_{j}, c\right) \\
\text { if } a_{i}+a_{j}>-c: i:=i-1 \\
\text { if } a_{i}+a_{j}<-c: j:=j+1
\end{array}
\end{aligned}
$$

return "no solution"

	a_{1}	a_{2}	a_{3}		...		a_{n}
a_{1}							\bigcirc
a_{2}							
a_{3}							
...							
a_{n}							

Quadratic Algorithm

given a set A of n integers
are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$

$$
\begin{aligned}
& \text { initialize } i=n, j=1 \\
& \text { while } i>0 \text { and } j \leq n \text { : } \\
& \text { if } a_{i}+a_{j}=-c: \text { return }\left(a_{i}, a_{j}, c\right) \\
& \text { if } a_{i}+a_{j}>-c: i:=i-1 \\
& \text { if } a_{i}+a_{j}<-c: j:=j+1
\end{aligned}
$$

return "no solution"

	a_{1}	a_{2}	a_{3}		...		a_{n}
a_{1}						7	\bigcirc
a_{2}							
a							
...							
a_{n}							

Quadratic Algorithm

given a set A of n integers
are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$

$$
\begin{aligned}
& \text { initialize } i=n, j=1 \\
& \text { while } i>0 \text { and } j \leq n \text { : } \\
& \text { if } a_{i}+a_{j}=-c: \text { return }\left(a_{i}, a_{j}, c\right) \\
& \text { if } a_{i}+a_{j}>-c: i:=i-1 \\
& \text { if } a_{i}+a_{j}<-c: j:=j+1
\end{aligned}
$$

return "no solution"

	a_{1}	a_{2}	a_{3}		...		a_{n}
a_{1}							\bigcirc
a_{2}							
a_{3}							
...							
a_{n}							

Quadratic Algorithm

given a set A of n integers
are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$

$$
\begin{aligned}
& \text { initialize } i=n, j=1 \\
& \text { while } i>0 \text { and } j \leq n \text { : } \\
& \text { if } a_{i}+a_{j}=-c: \text { return }\left(a_{i}, a_{j}, c\right) \\
& \text { if } a_{i}+a_{j}>-c: i:=i-1 \\
& \text { if } a_{i}+a_{j}<-c: j:=j+1
\end{aligned}
$$

return "no solution"

Quadratic Algorithm

given a set A of n integers
are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$

$$
\begin{aligned}
& \text { initialize } i=n, j=1 \\
& \text { while } i>0 \text { and } j \leq n \text { : } \\
& \text { if } a_{i}+a_{j}=-c: \text { return }\left(a_{i}, a_{j}, c\right) \\
& \text { if } a_{i}+a_{j}>-c: i:=i-1 \\
& \text { if } a_{i}+a_{j}<-c: j:=j+1
\end{aligned}
$$

return "no solution"

Quadratic Algorithm

given a set A of n integers
are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$

$$
\begin{aligned}
& \text { initialize } i=n, j=1 \\
& \text { while } i>0 \text { and } j \leq n \text { : } \\
& \qquad \text { if } a_{i}+a_{j}=-c: \text { return }\left(a_{i}, a_{j}, c\right) \\
& \text { if } a_{i}+a_{j}>-c: i:=i-1 \\
& \text { if } a_{i}+a_{j}<-c: j:=j+1
\end{aligned}
$$

return "no solution"

Quadratic Algorithm

given a set A of n integers
are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$

$$
\begin{aligned}
& \text { initialize } i=n, j=1 \\
& \text { while } i>0 \text { and } j \leq n \text { : } \\
& \qquad \begin{array}{l}
\text { if } a_{i}+a_{j}=-c: \text { return }\left(a_{i}, a_{j}, c\right) \\
\text { if } a_{i}+a_{j}>-c: i:=i-1 \\
\text { if } a_{i}+a_{j}<-c: j:=j+1
\end{array}
\end{aligned}
$$

return "no solution"

Quadratic Algorithm

given a set A of n integers
are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$

$$
\begin{aligned}
& \text { initialize } i=n, j=1 \\
& \text { while } i>0 \text { and } j \leq n \text { : } \\
& \qquad \begin{array}{l}
\text { if } a_{i}+a_{j}=-c: \text { return }\left(a_{i}, a_{j}, c\right) \\
\text { if } a_{i}+a_{j}>-c: i:=i-1 \\
\text { if } a_{i}+a_{j}<-c: j:=j+1
\end{array}
\end{aligned}
$$

return "no solution"

Quadratic Algorithm

given a set A of n integers
are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order: $A=\left\{a_{1}, \ldots, a_{n}\right\}$
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$
initialize $i=n, j=1$
while $i>0$ and $j \leq n$:

$$
\begin{aligned}
& \text { if } a_{i}+a_{j}=-c: \text { return }\left(a_{i}, a_{j}, c\right) \\
& \text { if } a_{i}+a_{j}>-c: i:=i-1 \\
& \text { otherwise: } j:=j+1
\end{aligned}
$$

return "no solution"
time $O(n)$ per $c \in A$ time $O\left(n^{2}\right)$ overall

Outline

1) algorithm for small universe
2) quadratic algorithm
3) small decision tree
4) logfactor improvement
5) some 3SUM-hardness results

Decision Tree Complexity

Thm：\quad 3SUM has a decision tree of depth $O\left(n^{3 / 2} \log n\right)$

Decision Tree Complexity

problem P on input x_{1}, \ldots, x_{n}
Decision Tree:
each inner node is a comparison: $x_{i} \leq x_{j}$

more generally any linear combination: $\sum_{i} \alpha_{i} x_{i} \geq 0$
outgoing edges are labeled $1 / 0=$ true/false
all instances reaching the same leaf have the same result $P\left(x_{1}, \ldots, x_{n}\right)$
decision tree complexity of $P=$ minimal depth of any decision tree for P
yields a lower bound for running time of any algorithm (that uses only comparisons, no bit-tricks)
where you have seen this:
Thm: Any decision tree for Sorting n numbers has depth $\Omega(n \log n)$
Thm: Any comparison-based Sorting algorithm takes time $\Omega(n \log n)$

Decision Tree Complexity

alternative interpretation:
think of x_{1}, \ldots, x_{n} as physical entities
we can perform experiments:
we may specify factors α_{i}
the outcome of the experiment tells us whether $\sum_{i} \alpha_{i} x_{i} \geq 0$
experiments are very costly, computation is cheap
what is the minimal number of experiments to decide $P\left(x_{1}, \ldots, x_{n}\right)$?
= decision tree complexity

Decision Tree Complexity

alternative interpretation II:

RAM with two types of cells: special and standard
input numbers x_{1}, \ldots, x_{n} are stored in special cells
special
e.g. real number
add, subtract, compare (result of comparison can be stored in standard cell)
standard
$O(\log n)$ bit number
all standard arithmetic and logical operations and comparisons
usual RAM cost model: each operations takes constant time
decision tree cost model: comparisons of special numbers cost 1 all other operations are for free

Decision Tree Complexity

Thm: \quad SSUM has a decision tree of depth $O\left(n^{3 / 2} \log n\right)$
why study decision tree upper bounds?
rules out quadratic lower bound in decision tree model
often small decision trees yield lower order improvements

Thm: Without bit-tricks, 3SUM is in time $O\left(n^{2} \cdot \frac{\text { poly } \log \log n}{\sqrt{\log n}}\right)$

Small Decision Tree

given a set A of n integers, are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order
partition A into n / g groups: $A_{1}, \ldots, A_{n / g}$
(all elements of A_{i} are smaller than all elements of A_{i+1})
sort $D:=\cup_{i=1}^{n / g} A_{i}-A_{i}=\left\{a-b \mid \exists i: a, b \in A_{i}\right\} \quad O(|D| \log |D|)=O(n g \log (n g))$
i.e., build a list L_{D} containing all (i, j, k) with $i \in\{1, \ldots, n / g\}, j, k \in\{1, \ldots, g\}$ sorted by $a_{i, j}-a_{i, k}$ ascendingly
this preprocessing allows to compare any $a_{i, j}-a_{i, k}$ and $a_{i^{\prime}, j^{\prime}}-a_{i^{\prime}, k^{\prime}}$ without any costly comparisons

Fredman's trick: $a_{i, j}+a_{i^{\prime}, j^{\prime}} \leq a_{i, k}+a_{i^{\prime}, k^{\prime}} \Leftrightarrow a_{i^{\prime}, j^{\prime}}-a_{i^{\prime}, k^{\prime}} \leq a_{i, k}-a_{i, j}$
so this preprocessing allows to compare any $a_{i, j}+a_{i^{\prime}, j^{\prime}}$ and $a_{i, k}+a_{i^{\prime}, k^{\prime}}$ without any costly comparisons:

Small Decision Tree

given a set A of n integers, are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order
$O(n \log n)$ comparisons
partition A into n / g groups: $A_{1}, \ldots, A_{n / g}$
(all elements of A_{i} are smaller than all elements of A_{i+1})
sort $D:=\bigcup_{i=1}^{n / g} A_{i}-A_{i}=\left\{a-b \mid \exists i: a, b \in A_{i}\right\} \quad O(|D| \log |D|)=O(n g \log (n g))$
for all $i, i^{\prime}:$ sort $A_{i, i^{\prime}}:=A_{i}+A_{i^{\prime}}=\left\{a+b \mid a \in A_{i}, b \in A_{i^{\prime}}\right\}$
no comparisons!
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$
initialize $i=n / g, j=1$
while $i>0$ and $j \leq n / g$:
if $-c \in A_{i, j}$: return "solution found"
if $\min \left(A_{i}\right)+\max \left(A_{j}\right)>-c: i:=i-1$
otherwise: $j:=j+1$
return "no solution"

Small Decision Tree

given a set A of n integers, are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order
$O(n \log n)$ comparisons
partition A into n / g groups: $A_{1}, \ldots, A_{n / g}$
(all elements of A_{i} are smaller than all elements of A_{i+1})
sort $D:=\bigcup_{i=1}^{n / g} A_{i}-A_{i}=\left\{a-b \mid \exists i: a, b \in A_{i}\right\} \quad O(|D| \log |D|)=O(n g \log (n g))$
for all $i, i^{\prime}:$ sort $A_{i, i^{\prime}}:=A_{i}+A_{i^{\prime}}=\left\{a+b \mid a \in A_{i}, b \in A_{i^{\prime}}\right\}$
no comparisons!
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$
initialize $i=n / g, j=1$
while $i>0$ and $j \leq n / g$:
if $-c \in A_{i, j}$: return "solution found"
if $\min \left(A_{i}\right)+\max \left(A_{j}\right)>-c: i:=i-1$
otherwise: $j:=j+1$
return "no solution"

Small Decision Tree

given a set A of n integers, are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order
$O(n \log n)$ comparisons
partition A into n / g groups: $A_{1}, \ldots, A_{n / g}$
(all elements of A_{i} are smaller than all elements of A_{i+1})
sort $D:=\cup_{i=1}^{n / g} A_{i}-A_{i}=\left\{a-b \mid \exists i: a, b \in A_{i}\right\} \quad O(|D| \log |D|)=O(n g \log (n g))$
for all $i, i^{\prime}:$ sort $A_{i, i^{\prime}}:=A_{i}+A_{i^{\prime}}=\left\{a+b \mid a \in A_{i}, b \in A_{i^{\prime}}\right\}$
no comparisons!
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0$
initialize $i=n / g, j=1$
while $i>0$ and $j \leq n / g$:
if $-c \in A_{i, j}$: return "solution found"
if $\min \left(A_{i}\right)+\max \left(A_{j}\right)>-c: i:=i-1$
otherwise: $j:=j+1$
return "no solution"
IIIUII

Small Decision Tree

given a set A of n integers, are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order
$O(n \log n)$ comparisons
partition A into n / g groups: $A_{1}, \ldots, A_{n / g}$
(all elements of A_{i} are smaller than all elements of A_{i+1})
sort $D:=\bigcup_{i=1}^{n / g} A_{i}-A_{i}=\left\{a-b \mid \exists i: a, b \in A_{i}\right\} \quad O(|D| \log |D|)=O(n g \log (n g))$
for all $i, i^{\prime}:$ sort $A_{i, i^{\prime}}:=A_{i}+A_{i^{\prime}}=\left\{a+b \mid a \in A_{i}, b \in A_{i^{\prime}}\right\}$
no comparisons!
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0 \quad n$ iterations initialize $i=n / g, j=1$
while $i>0$ and $j \leq n / g$:
$O(n / g)$ iterations
if $-c \in A_{i, j}$: return "solution found"
if $\min \left(A_{i}\right)+\max \left(A_{j}\right)>-c: i:=i-1$
$O\left(\log \left(g^{2}\right)\right)=O(\log n)$ comparisons using binary search
otherwise: $j:=j+1$
return "no solution"
in total: $O\left(\left(n g+n^{2} / g\right) \log n\right)$ comparisons

$$
=O\left(n^{3 / 2} \log n\right) \text { for } g:=\sqrt{n}
$$

Decision Tree Complexity

Thm: \quad 3SUM has a decision tree of depth $O\left(n^{3 / 2} \log n\right)$

Thm: Without bit-tricks, 3SUM is in time $O\left(n^{2} \cdot \frac{\text { poly } \log \log n}{\sqrt{\log n}}\right)$

Outline

1) algorithm for small universe
2) quadratic algorithm
3) small decision tree
4) logfactor improvement
5) some 3SUM-hardness results

Converting Decision Tree to Algorithm

given a set A of n integers, are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order
$O(n \log n)$ comparisons and time
partition A into n / g groups: $A_{1}, \ldots, A_{n / g}$
(all elements of A_{i} are smaller than all elements of A_{i+1})
sort $D:=\bigcup_{i=1}^{n / g} A_{i}-A_{i}=\left\{a-b \mid \exists i: a, b \in A_{i}\right\} \quad O(|D| \log |D|)=O(n g \log (n g))$
for all i, i^{\prime} : sort $A_{i, i^{\prime}}:=A_{i}+A_{i^{\prime}}=\left\{a+b \mid a \in A_{i}, b \in A_{i^{\prime}}\right\} \quad$ no comparisons! $O\left((n / g)^{2} \cdot g^{2} \log \left(g^{2}\right)\right)$ time
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0 \quad n$ iterations
initialize $i=n / g, j=1$
while $i>0$ and $j \leq n / g$:
$O(n / g)$ iterations
if $-c \in A_{i, j}$: return "solution found"
if $\min \left(A_{i}\right)+\max \left(A_{j}\right)>-c: i:=i-1$
$O\left(\log \left(g^{2}\right)\right)=O(\log n)$ comparisons and time using binary search
otherwise: $j:=j+1$
return "no solution"
in total: $O\left(n^{2} \log \left(g^{2}\right)\right)$ time ${ }^{(\cdot)}$

Converting Decision Tree to Algorithm

for all $\boldsymbol{i}, \boldsymbol{i}^{\prime}:$ sort $\boldsymbol{A}_{\boldsymbol{i}, \boldsymbol{i}^{\prime}}:=\boldsymbol{A}_{\boldsymbol{i}}+\boldsymbol{A}_{\boldsymbol{i}^{\prime}}=\left\{\boldsymbol{a}+\boldsymbol{b} \mid \boldsymbol{a} \in \boldsymbol{A}_{\boldsymbol{i}}, \boldsymbol{b} \in \boldsymbol{A}_{\boldsymbol{i}^{\prime}}\right\} \quad$ write $A_{i}=\left\{a_{i, 1}, \ldots, a_{i, g}\right\}$ implement this step faster!
simplification:
make $A_{i, i^{\prime}}$ totally ordered:
replace A_{i} by $\left\{a_{i, j} \cdot(2 g)^{2}+j \mid 1 \leq j \leq g\right\}$
replace $A_{i^{\prime}}$ by $\left\{a_{i^{\prime}, j} \cdot(2 g)^{2}+j \cdot(2 g) \mid 1 \leq j \leq g\right\}$
then no $a \in A_{i}, b \in A_{i^{\prime}}$ and $a^{\prime} \in A_{i}, b^{\prime} \in A_{i^{\prime}}$ sum up to the same value
and from the new $A_{i}+A_{i^{\prime}}$ we can recover the old $A_{i}+A_{i^{\prime}}$

Converting Decision Tree to Algorithm

for all $\boldsymbol{i}, \boldsymbol{i}^{\prime}:$ sort $\boldsymbol{A}_{\boldsymbol{i}, \boldsymbol{i}^{\prime}}:=\boldsymbol{A}_{\boldsymbol{i}}+\boldsymbol{A}_{\boldsymbol{i}^{\prime}}=\left\{\boldsymbol{a}+\boldsymbol{b} \mid \boldsymbol{a} \in \boldsymbol{A}_{\boldsymbol{i}}, \boldsymbol{b} \in \boldsymbol{A}_{\boldsymbol{i}^{\prime}}\right\} \quad$ write $A_{i}=\left\{a_{i, 1}, \ldots, a_{i, g}\right\}$ consider any permutation $P=\left(\left(\pi_{1}, \sigma_{1}\right),\left(\pi_{2}, \sigma_{2}\right), \ldots,\left(\pi_{g^{2}}, \sigma_{g^{2}}\right)\right)$ of $\{1, \ldots, g\} \times\{1, \ldots, g\}$ P corresponds to this ordering of $A_{i, i^{\prime}}$:

$$
\left(a_{i, \pi_{1}}+a_{i^{\prime}, \sigma_{1}} \quad a_{i, \pi_{2}}+a_{i^{\prime}, \sigma_{2}} \quad \ldots \quad a_{i, \pi_{n}}+a_{i^{\prime}, \sigma_{n}}\right)
$$

this is the correct sorted ordering of $A_{i, i^{\prime}}$ if and only if:

$$
a_{i, \pi_{k}}+a_{i^{\prime}, \sigma_{k}}<a_{i, \pi_{k+1}}+a_{i^{\prime}, \sigma_{k+1}} \quad \text { for all } 1 \leq k<g^{2}
$$

by Fredman's trick, this is equivalent to:

$$
a_{i^{\prime}, \sigma_{k}}-a_{i^{\prime}, \sigma_{k+1}}<a_{i, \pi_{k+1}}-a_{i, \pi_{k}} \quad \text { for all } 1 \leq k<g^{2}
$$

construct vectors:

$$
\begin{gathered}
\left(a_{i^{\prime}, \sigma_{k}}-a_{i^{\prime}, \sigma_{k+1}}\right)_{1 \leq k<g^{2}} \\
\left(a_{i, \pi_{k+1}}-a_{i, \pi_{k}}\right)_{1 \leq k<g^{2}}
\end{gathered}
$$

we say that vector x dominates vector y if $x_{i}>y_{i}$ for all i

Dominance Reporting

Dominance Reporting problem:
given sets A, B of (integer-valued) vectors in $\mathbb{R}^{d},|A|+|B|=m$
report all pairs $a \in A, b \in B$ where b dominates a

Thm: Dominance Reporting is in time $O\left(m(\log m)^{d}+\right.$ outputsize $)$

Converting Decision Tree to Algorithm

for all $\boldsymbol{i}, \boldsymbol{i}^{\prime}:$ sort $\boldsymbol{A}_{\boldsymbol{i}, \boldsymbol{i}^{\prime}}:=\boldsymbol{A}_{\boldsymbol{i}}+\boldsymbol{A}_{\boldsymbol{i}^{\prime}}=\left\{\boldsymbol{a}+\boldsymbol{b} \mid \boldsymbol{a} \in \boldsymbol{A}_{\boldsymbol{i}}, \boldsymbol{b} \in \boldsymbol{A}_{\boldsymbol{i}^{\prime}}\right\} \quad$ write $A_{i}=\left\{a_{i, 1}, \ldots, a_{i, g}\right\}$
for each permutation $P=\left(\left(\pi_{1}, \sigma_{1}\right),\left(\pi_{2}, \sigma_{2}\right), \ldots,\left(\pi_{g^{2}}, \sigma_{g^{2}}\right)\right)$ of $\{1, \ldots, g\} \times\{1, \ldots, g\}$:
construct sets: $\quad A=\left\{\left(a_{i^{\prime}, \sigma_{k}}-a_{i^{\prime}, \sigma_{k+1}}\right)_{1 \leq k<g^{2}} \mid 1 \leq i^{\prime} \leq n / g\right\}$

$$
B=\left\{\quad\left(a_{i, \pi_{k+1}}-a_{i, \pi_{k}}\right)_{1 \leq k<g^{2}} \quad \mid 1 \leq i \leq n / g\right\}
$$

solve Dominance Reporting on $A, B \quad$ time $O\left(m(\log m)^{d}+\right.$ outputsize $)$
for each reported pair $\left(i, i^{\prime}\right)$:
the sorted ordering of $A_{i, i}$ is given by P :

$$
\left(a_{i, \pi_{1}}+a_{i^{\prime}, \sigma_{1}} \quad a_{i, \pi_{2}}+a_{i^{\prime}, \sigma_{2}} \quad \ldots \quad a_{i, \pi_{n}}+a_{i^{\prime}, \sigma_{n}}\right)
$$

time for sorting all $A_{i, i^{\prime}}$:

Converting Decision Tree to Algorithm

for all $\boldsymbol{i}, \boldsymbol{i}^{\prime}:$ sort $\boldsymbol{A}_{\boldsymbol{i}, \boldsymbol{i}^{\prime}}:=\boldsymbol{A}_{\boldsymbol{i}}+\boldsymbol{A}_{\boldsymbol{i}^{\prime}}=\left\{\boldsymbol{a}+\boldsymbol{b} \mid \boldsymbol{a} \in \boldsymbol{A}_{\boldsymbol{i}}, \boldsymbol{b} \in \boldsymbol{A}_{\boldsymbol{i}^{\prime}}\right\} \quad$ write $A_{i}=\left\{a_{i, 1}, \ldots, a_{i, g}\right\}$
for each permutation $P=\left(\left(\pi_{1}, \sigma_{1}\right),\left(\pi_{2}, \sigma_{2}\right), \ldots,\left(\pi_{g^{2}}, \sigma_{g^{2}}\right)\right)$ of $\{1, . ., g\} \times\{1, \ldots, g\}$:
construct sets: $\quad A=\left\{\left(a_{i^{\prime}, \sigma_{k}}-a_{i^{\prime}, \sigma_{k+1}}\right)_{1 \leq k<g^{2}} \mid 1 \leq i^{\prime} \leq n / g\right\}$

$$
B=\left\{\quad\left(a_{i, \pi_{k+1}}-a_{i, \pi_{k}}\right)_{1 \leq k<g^{2}} \quad \mid 1 \leq i \leq n / g\right\}
$$

solve Dominance Reporting on $A, B \quad$ time $O\left(m(\log m)^{d}+\right.$ outputsize $)$
for each reported pair (i, i^{\prime}):
the sorted ordering of $A_{i, i^{\prime}}$ is given by P :

$$
\left(a_{i, \pi_{1}}+a_{i^{\prime}, \sigma_{1}} \quad a_{i, \pi_{2}}+a_{i^{\prime}, \sigma_{2}} \quad \ldots \quad a_{i, \pi_{n}}+a_{i^{\prime}, \sigma_{n}}\right)
$$

time for sorting all $A_{i, i}: \quad O\left(\left(g^{2}\right)!\cdot(n / g)(\log n / g)^{g^{2}}+(n / g)^{2}\right) \quad=O\left((n / g)^{2}\right)$
setting $g:=0.1 \cdot \sqrt{\log n / \log \log n}$
$\left(g^{2}\right)!\leq\left(g^{2}\right)^{g^{2}} \leq(\log n)^{g^{2}} \leq(\log n)^{(0.01 \log n) / \log \log n}=n^{0.01}$
IIリII
$(\log n / g)^{g^{2}} \leq(\log n)^{g^{2}} \leq n^{0.01}$

Converting Decision Tree to Algorithm

given a set A of n integers, are there $a, b, c \in A$ such that $a+b+c=0$?
sort A in increasing order
$O(n \log n)$ comparisons
and time
partition A into n / g groups: $A_{1}, \ldots, A_{n / g}$
(all elements of A_{i} are smaller than all elements of A_{i+1})
sort $D:=\cup_{i=1}^{n / g} A_{i}-A_{i}=\left\{a-b \mid \exists i: a, b \in A_{i}\right\} \quad O(|D| \log |D|)=O(n g \log (n g))$ for all $i, i^{\prime}:$ sort $A_{i, i^{\prime}}:=A_{i}+A_{i^{\prime}}=\left\{a+b \mid a \in A_{i}, b \in A_{i^{\prime}}\right\} \quad$ no comparisons! $O\left((n / g)^{2} \cdot g^{2}\right)$ time
for each $c \in A$: check whether there are $a, b \in A$ s.t. $a+b+c=0 \quad n$ iterations
initialize $i=n / g, j=1$
while $i>0$ and $j \leq n / g$:
$O(n / g)$ iterations
if $-c \in A_{i, j}$: return "solution found"
if $\min \left(A_{i}\right)+\max \left(A_{j}\right)>-c: i:=i-1$
otherwise: $j:=j+1$
return "no solution"
in total: $O\left(n^{2} \log (g) / g\right)$ time

Decision Tree Complexity

Thm: \quad 3SUM has a decision tree of depth $O\left(n^{3 / 2} \log n\right)$

Thm: Without bit-tricks, 3SUM is in time $O\left(n^{2} \cdot \frac{\text { poly } \log \log n}{\sqrt{\log n}}\right)$

Dominance Reporting

Dominance Reporting problem:

given sets A, B of (integer-valued) vectors in $\mathbb{R}^{d},|A|+|B|=m$
report all pairs $a \in A, b \in B$ where b dominates a
Thm: Dominance Reporting is in time $O\left(m(\log m)^{d}+\right.$ outputsize $)$
deciding whether there is a dominating pair (a, b) is OV-hard so we do not expect an $O\left(\operatorname{poly}(d) m^{2-\varepsilon}\right)$ algorithm

OV is in time $O\left(2^{d} m\right)$
the theorem „generalizes" this OV-algorithm to Dominance Reporting

Dominance Reporting

Dominance Reporting problem:

given sets A, B of (integer-valued) vectors in $\mathbb{R}^{d},|A|+|B|=m$
report all pairs $a \in A, b \in B$ where b dominates a
Thm: Dominance Reporting is in time $O\left(m(\log m)^{d}+\right.$ outputsize $)$
assume all coordinates to be different
if $d=0$: report all pairs $A \times B$

$$
T_{d}(m) \leq 2 T_{d}(m / 2)+T_{d-1}(m)+m
$$

otherwise:
find median x of d-th coordinates of all points in $A \cup B$ - time $O(m)$

$$
\begin{aligned}
& A_{S}:=\left\{a \in A \mid a_{d}<x\right\} \text { and } A_{L}:=A \backslash A_{S} \\
& B_{S}:=\left\{b \in B \mid b_{d}<x\right\} \text { and } B_{L}:=B \backslash B_{S}
\end{aligned}
$$

recursively solve $\left(A_{L}, B_{L}\right),\left(A_{S}, B_{S}\right)$, and $\left(A_{S}, B_{L}\right)$

Dominance Reporting

$T_{d}(m) \leq 2 T_{d}(m / 2)+T_{d-1}(m)+m$

Excluding cost of output: $\quad T_{0}(m)=T_{d}(1)=0$

Inductively prove that: $\quad T_{d}(m) \leq m(\log 2 m)^{d}-m$

$$
\begin{aligned}
T_{d}(m) & \leq 2\left(\frac{m}{2}(\log m)^{d}-\frac{m}{2}\right)+\left(m(\log 2 m)^{d-1}-m\right)+m \\
& =m((\log 2 m)-1)^{d}+m(\log 2 m)^{d-1}-m \\
& =m(\log 2 m)^{d}(1-1 / \log 2 m)^{d}+m(\log 2 m)^{d-1}-m \\
& \leq m(\log 2 m)^{d}(1-1 / \log 2 m)+m(\log 2 m)^{d-1}-m \\
& =m(\log 2 m)^{d}-m
\end{aligned}
$$

Dominance Reporting

Dominance Reporting problem:

given sets A, B of (integer-valued) vectors in $\mathbb{R}^{d},|A|+|B|=m$
report all pairs $a \in A, b \in B$ where b dominates a
Thm: Dominance Reporting is in time $O\left(m(\log m)^{d}+\right.$ outputsize $)$
this finishes the proof of:

Thm: Without bit-tricks, 3SUM is in time $O\left(n^{2} \cdot \frac{\text { poly } \log \log n}{\sqrt{\log n}}\right)$

Outline

1) algorithm for small universe
2) quadratic algorithm
3) small decision tree
4) logfactor improvement
5) some 3SUM-hardness results

GeomBase

given a set of n points on three horinzontal lines $y=0, y=1, y=2$, determine whether there exists a non-horizontal line containing three of the points

Thm: GeomBase is 3SUM-hard.

Given an instance (A, B, C) of 3SUM construct points:
$(a, 0)$ for any $a \in A$

$(b, 2)$ for any $b \in B$
$(c / 2,1)$ for any $c \in C$
they lie on a line if $c / 2-a=b-c / 2 \Leftrightarrow a+b=c$

3-Points-on-line / Collinear

given a set of n points in the plane, is there a line containing at least 3 of the points?

Thm: 3-Points-on-line is 3SUM-hard.

Given an instance A of 3SUM
construct points:

$$
\left(a, a^{3}\right) \text { for any } a \in A
$$

then $\left(a, a^{3}\right),\left(c, c^{3}\right),\left(c, c^{3}\right)$ are collinear if and only if $a+b+c=0$ (without proof)

3-Points-on-line / Collinear

given a set of n possibly half-infinite, closed horizontal line segments, is there a non-horizontal separator?

Thm: Separator is 3SUM-hard.

Planar Motion Planning

given a set of line segment obstacles in the plane and a line segment robot, decide whether the robot can be moved (allowing translation and rotation) from a given source to a given goal configuration without colliding with the obstacles.

Thm: PlanarMotionPlanning is 3SUM-hard.

