

Complexity Theory of Polynomial-Time Problems

Lecture 6: 3SUM Part I

Karl Bringmann

3SUM

given sets A, B, C of n integers

are there $a \in A, b \in B, c \in C$ such that a + b + c = 0?

(we assume that we can add/subtract/compare input integers in constant time)

```
trivial algorithm: O(n^3)
```

```
well-known: O(n^2)
```

Conjecture: no $O(n^{2-\varepsilon})$ algorithm

 \rightarrow 3SUM-Hardness

[Gajentaan, Overmars'95]

More Known Algorithms

trivial: $O(n^3)$ well-known: $O(n^2)$

using FFT: $O(n + U \operatorname{polylog} U)$ for numbers in $\{-U, \dots, U\}$

using Word RAM bit-tricks:
$$O(n^2 \cdot \frac{\log^2 w}{w})$$
, $O(n^2 \cdot \frac{(\log \log n)^2}{\log^2 n})$
(cell size $w = \Omega(\log n)$,
each number fits in a cell) [Baran

[Baran, Demaine, Patrascu'05]

no bit-tricks: $O(n^2 \cdot \frac{(\log \log n)^2}{\log n})$

[Gronlund,Pettie'14]

we prove a simplified version:

Thm: Without bit-tricks, 3SUM is in time $O(n^2 \cdot \frac{\operatorname{poly} \log \log n}{\sqrt{\log n}})$

Equivalent Variants

- 1) given sets A, B, C of n integers are there $a \in A, b \in B, c \in C$ such that a + b + c = 0?
- 2) given sets *A*, *B*, *C* of *n* integers replace *C* by $\{-c | c \in C\}$ are there $a \in A, b \in B, c \in C$ such that a + b = c? $\Leftrightarrow a + b - c = 0$
- 3) given sets *A*, *B*, *C* of *n* integers and target *t* replace *C* by $\{c t \mid c \in C\}$ are there $a \in A, b \in B, c \in C$ such that a + b + c = t? $\Leftrightarrow a + b + (c - t) = 0$
- 4) given a set *X* of *n* integers are there $x, y, z \in X$ such that x + y + z = 0?

 \uparrow : set *A*, *B*, *C* := *X*

max planck institut informatik

 $\downarrow: set X \coloneqq \{a + 4U \mid a \in A\} \cup B \cup \{c - 4U \mid c \in C\}$

where $A, B, C \subseteq \{-U, \dots, U\}$

Outline

1) algorithm for small universe

- 2) quadratic algorithm
- 3) small decision tree
- 4) logfactor improvement
- 5) some 3SUM-hardness results

Algorithm for Small Numbers

 $O(n + U \operatorname{polylog} U)$ for numbers in $\{-U, \dots, U\}$

add *U* to each number, then numbers are in $\{0, ..., 2U\}$ and we want $a \in A, b \in B, c \in C$ such that a + b + c = 3U

define polynomials $p_A(x) \coloneqq \sum_{a \in A} x^a$ and similarly $p_B(x)$, $p_C(x)$ have degree at most 2U

compute $q(x) \coloneqq p_A(x) \cdot p_B(x) \cdot p_C(x) = (\sum_{a \in A} x^a) (\sum_{b \in B} x^b) (\sum_{c \in C} x^c)$

what is the coefficient of x^{3U} in q(x)? $(x^a \cdot x^b \cdot x^c = x^{a+b+c})$ it is the number of (a, b, c) summing to 3U

use efficient polynomial multiplication (via Fast Fourier Transform): polynomials of degree d can be multiplied in time $O(d \operatorname{polylog} d)$

Outline

- 1) algorithm for small universe
- 2) quadratic algorithm
- 3) small decision tree
- 4) logfactor improvement
- 5) some 3SUM-hardness results

given a set *A* of *n* integers are there *a*, *b*, $c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

given a set *A* of *n* integers are there *a*, *b*, $c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

given a set *A* of *n* integers are there *a*, *b*, $c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

given a set *A* of *n* integers are there *a*, *b*, $c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

given a set *A* of *n* integers are there *a*, *b*, $c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

given a set *A* of *n* integers are there *a*, *b*, $c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

given a set *A* of *n* integers are there $a, b, c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

given a set *A* of *n* integers are there *a*, *b*, $c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

given a set *A* of *n* integers are there *a*, *b*, $c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

given a set *A* of *n* integers are there *a*, *b*, $c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

max planck institut

informatik

...

 a_n

Outline

- 1) algorithm for small universe
- 2) quadratic algorithm
- 3) small decision tree
- 4) logfactor improvement
- 5) some 3SUM-hardness results

Thm: 3SUM has a decision tree of depth $O(n^{3/2} \log n)$

problem P on input x_1, \ldots, x_n

Decision Tree:

each **inner node** is a **comparison**: $x_i \le x_j$

more generally any linear combination: $\sum_i \alpha_i x_i \ge 0$

outgoing edges are labeled 1/0 = true/false

all instances reaching the same **leaf** have the same result $P(x_1, ..., x_n)$

decision tree complexity of P = minimal depth of any decision tree for P

yields a **lower bound for running time** of any algorithm (that uses only comparisons, no bit-tricks)

where you have seen this:

Thm: Any decision tree for Sorting *n* numbers has depth $\Omega(n \log n)$ Thm: Any comparison-based Sorting algorithm takes time $\Omega(n \log n)$

"experiment" or

"costly comparison"

alternative interpretation:

think of $x_1, ..., x_n$ as physical entities we can perform **experiments**:

we may specify factors α_i

the outcome of the experiment tells us whether $\sum_i \alpha_i x_i \ge 0$

experiments are very costly, computation is cheap

what is the **minimal number of experiments** to decide $P(x_1, ..., x_n)$?

= decision tree complexity

alternative interpretation II:

RAM with two types of cells: **special** and **standard** input numbers x_1, \dots, x_n are stored in special cells

	special	standard
Stores:	e.g. real number	$O(\log n)$ bit number
Operations:	add, subtract, compare (result of comparison can be stored in standard cell)	all standard arithmetic and logical operations and comparisons

usual RAM cost model: each operations takes constant time

max planck institut

decision tree cost model: comparisons of special numbers cost 1 all other operations are for free

Thm: 3SUM has a decision tree of depth $O(n^{3/2} \log n)$

why study decision tree *upper bounds*?

rules out quadratic lower bound in decision tree model

often small decision trees yield lower order improvements

Thm: Without bit-tricks, 3SUM is in time $O(n^2 \cdot \frac{\operatorname{poly} \log \log n}{\sqrt{\log n}})$

given a set A of n integers, are there a, b, $c \in A$ such that a + b + c = 0?

 $O(n \log n)$ comparisons sort A in increasing order write $A_i = \{a_{i,1}, ..., a_{i,q}\}$ partition A into n/g groups: $A_1, \dots, A_{n/q}$ (all elements of A_i are smaller than all elements of A_{i+1}) $O(|D|\log|D|) = O(ng\log(ng))$ sort $D \coloneqq \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i : a, b \in A_i\}$ comparisons i.e., build a list L_D containing all (i, j, k) with $i \in \{1, ..., n/g\}, j, k \in \{1, ..., g\}$ sorted by $a_{i,i} - a_{i,k}$ ascendingly this preprocessing allows to compare any $a_{i,i} - a_{i,k}$ and $a_{i',i'} - a_{i',k'}$ without any costly comparisons Fredman's trick: $a_{i,j} + a_{i',j'} \leq a_{i,k} + a_{i',k'} \iff a_{i',j'} - a_{i',k'} \leq a_{i,k} - a_{i,j}$

so this preprocessing allows to compare any $a_{i,j} + a_{i',j'}$ and $a_{i,k} + a_{i',k'}$ without any costly comparisons:

 $a_{i,j} + a_{i',j'} \leq a_{i,k} + a_{i',k'} \Leftrightarrow (i',j',k') \text{ appears before } (i,k,j) \text{ in } L_D$ $a_{i,j} + a_{i',j'} \leq a_{i,k} + a_{i',k'} \Leftrightarrow (i',j',k') \text{ appears before } (i,k,j) \text{ in } L_D$ $a_{i,j} + a_{i',j'} \leq a_{i,k} + a_{i',k'} \Leftrightarrow (i',j',k') \text{ appears before } (i,k,j) \text{ in } L_D$ $a_{i,j} + a_{i',j'} \leq a_{i,k} + a_{i',k'} \Leftrightarrow (i',j',k') \text{ appears before } (i,k,j) \text{ in } L_D$

given a set A of n integers, are there a, b, $c \in A$ such that a + b + c = 0?

sort A in increasing order $O(n \log n)$ comparisonspartition A into n/g groups: $A_1, \dots, A_{n/g}$
(all elements of A_i are smaller than all elements of A_{i+1})sort $D \coloneqq \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i: a, b \in A_i\}$ $O(|D| \log |D|) = O(ng \log(ng))$
comparisonsfor all i, i': sort $A_{i,i'} \coloneqq A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ no comparisons!

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize i = n/g, j = 1while i > 0 and $j \le n/g$: if $-c \in A_{i,j}$: return "solution found" if $\min(A_i) + \max(A_j) > -c$: $i \coloneqq i - 1$ otherwise: $j \coloneqq j + 1$ return "no solution"

given a set A of n integers, are there a, b, $c \in A$ such that a + b + c = 0?

sort A in increasing order $O(n \log n)$ comparisonspartition A into n/g groups: $A_1, \dots, A_{n/g}$
(all elements of A_i are smaller than all elements of A_{i+1})sort $D \coloneqq \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i: a, b \in A_i\}$ $O(|D| \log |D|) = O(ng \log(ng))$
comparisonsfor all i, i': sort $A_{i,i'} \coloneqq A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ no comparisons!

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize i = n/g, j = 1while i > 0 and $j \le n/g$: if $-c \in A_{i,j}$: return "solution found" if $\min(A_i) + \max(A_j) > -c$: $i \coloneqq i - 1$ otherwise: $j \coloneqq j + 1$ return "no solution"

given a set A of n integers, are there a, b, $c \in A$ such that a + b + c = 0?

sort A in increasing order $O(n \log n)$ comparisonspartition A into n/g groups: $A_1, \dots, A_{n/g}$
(all elements of A_i are smaller than all elements of A_{i+1})(all elements of A_i are smaller than all elements of A_{i+1})sort $D := \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i: a, b \in A_i\}$ $O(|D| \log |D|) = O(ng \log(ng))$
comparisonsfor all i, i': sort $A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ no comparisons!

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize i = n/g, j = 1while i > 0 and $j \le n/g$: if $-c \in A_{i,j}$: return "solution found" if $\min(A_i) + \max(A_j) > -c$: $i \coloneqq i - 1$ otherwise: $j \coloneqq j + 1$ return "no solution"

> max planck institut informatik

given a set A of n integers, are there a, b, $c \in A$ such that a + b + c = 0?

sort A in increasing order $O(n \log n)$ comparisonspartition A into n/g groups: $A_1, ..., A_{n/g}$
(all elements of A_i are smaller than all elements of A_{i+1})sort $D := \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i: a, b \in A_i\}$ $O(|D| \log |D|) = O(ng \log(ng))$
comparisonsfor all i, i': sort $A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ no comparisons!for each $c \in A$:check whether there are $a, b \in A$ s.t. a + b + c = 0n iterationsinitialize i = n/g, j = 1 $A_i = A_i + A_i = A_i$ $A_i = A_i + A_i = A_i$

while i > 0 and $j \le n/g$: if $-c \in A_{i,j}$: return "solution found" if $\min(A_i) + \max(A_j) > -c$: $i \coloneqq i - 1$ otherwise: $j \coloneqq j + 1$ return "no solution" $0(\log(g^2)) = 0(\log n) \text{ comparisons}$ using binary search in total: $0((ng + n^2/g)\log n) \text{ comparisons}$ $= 0(n^{3/2}\log n) \text{ for } g \coloneqq \sqrt{n}$

Thm: 3SUM has a decision tree of depth $O(n^{3/2} \log n)$

Thm: Without bit-tricks, 3SUM is in time $O(n^2 \cdot \frac{\operatorname{poly} \log \log n}{\sqrt{\log n}})$

Outline

- 1) algorithm for small universe
- 2) quadratic algorithm
- 3) small decision tree
- 4) logfactor improvement
- 5) some 3SUM-hardness results

given a set A of n integers, are there a, b, $c \in A$ such that a + b + c = 0?

 $O(n \log n)$ comparisons sort A in increasing order and time partition A into n/g groups: $A_1, \dots, A_{n/q}$ (all elements of A_i are smaller than all elements of A_{i+1}) $O(|D|\log|D|) = O(ng\log(ng))$ sort $D \coloneqq \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i: a, b \in A_i\}$ comparisons and time for all *i*, *i*': sort $A_{i,i'} \coloneqq A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ no comparisons! $O((n/q)^2 \cdot q^2 \log(q^2))$ time for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0 n iterations initialize i = n/g, j = 1O(n/g) iterations while i > 0 and $j \le n/g$: $O(\log(q^2)) = O(\log n)$ comparisons if $-c \in A_{i,i}$: return "solution found" and time using binary search if $\min(A_i) + \max(A_i) > -c$: $i \coloneqq i - 1$ otherwise: $i \coloneqq i + 1$

return "no solution"

max planck institut informatik in total: $O(n^2 \log(g^2))$ time \cong

for all *i*, *i*': sort $A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ write $A_i = \{a_{i,1}, ..., a_{i,g}\}$

implement this step faster!

simplification:

make $A_{i,i'}$ totally ordered: replace A_i by $\{a_{i,j} \cdot (2g)^2 + j \mid 1 \le j \le g\}$ replace $A_{i'}$ by $\{a_{i',j} \cdot (2g)^2 + j \cdot (2g) \mid 1 \le j \le g\}$

then no $a \in A_i$, $b \in A_{i'}$ and $a' \in A_i$, $b' \in A_{i'}$ sum up to the same value

and from the new $A_i + A_{i'}$ we can recover the old $A_i + A_{i'}$

for all *i*, *i*': sort $A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ write $A_i = \{a_{i,1}, ..., a_{i,g}\}$

consider any permutation $P = ((\pi_1, \sigma_1), (\pi_2, \sigma_2), \dots, (\pi_{g^2}, \sigma_{g^2}))$ of $\{1, \dots, g\} \times \{1, \dots, g\}$

P corresponds to this ordering of $A_{i,i'}$:

$$(a_{i,\pi_1} + a_{i',\sigma_1} \quad a_{i,\pi_2} + a_{i',\sigma_2} \quad \dots \quad a_{i,\pi_n} + a_{i',\sigma_n})$$

this is the correct sorted ordering of $A_{i,i'}$ if and only if:

$$a_{i,\pi_k} + a_{i',\sigma_k} < a_{i,\pi_{k+1}} + a_{i',\sigma_{k+1}}$$
 for all $1 \le k < g^2$

by Fredman's trick, this is equivalent to:

 $a_{i',\sigma_k} - a_{i',\sigma_{k+1}} < a_{i,\pi_{k+1}} - a_{i,\pi_k}$ for all $1 \le k < g^2$

construct vectors:

$$(a_{i',\sigma_k} - a_{i',\sigma_{k+1}})_{1 \le k < g^2}$$

$$(a_{i,\pi_{k+1}} - a_{i,\pi_k})_{1 \le k < g^2}$$

we say that vector x **dominates** vector y if $x_i > y_i$ for all i

Dominance Reporting problem:

given sets *A*, *B* of (integer-valued) vectors in \mathbb{R}^d , |A| + |B| = m

report all pairs $a \in A, b \in B$ where b dominates a

Thm: Dominance Reporting is in time $O(m (\log m)^d + \text{outputsize})$

for all *i*, *i*': sort $A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ write $A_i = \{a_{i,1}, ..., a_{i,g}\}$

for each permutation
$$P = ((\pi_1, \sigma_1), (\pi_2, \sigma_2), \dots, (\pi_{g^2}, \sigma_{g^2}))$$
 of $\{1, \dots, g\} \times \{1, \dots, g\}$:

construct sets:
$$A = \{ (a_{i',\sigma_k} - a_{i',\sigma_{k+1}})_{1 \le k < g^2} \mid 1 \le i' \le n/g \}$$

 $B = \{ (a_{i,\pi_{k+1}} - a_{i,\pi_k})_{1 \le k < g^2} \mid 1 \le i \le n/g \}$

solve Dominance Reporting on A, B

time $O(m (\log m)^d + \text{outputsize})$

for each reported pair (i, i'):

the sorted ordering of $A_{i,i'}$ is given by *P*:

 $(a_{i,\pi_1} + a_{i',\sigma_1} \quad a_{i,\pi_2} + a_{i',\sigma_2} \quad \dots \quad a_{i,\pi_n} + a_{i',\sigma_n})$

for all *i*, *i*': sort $A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ write $A_i = \{a_{i,1}, ..., a_{i,g}\}$

for each permutation $P = ((\pi_1, \sigma_1), (\pi_2, \sigma_2), \dots, (\pi_{g^2}, \sigma_{g^2}))$ of $\{1, \dots, g\} \times \{1, \dots, g\}$:

construct sets:
$$A = \{ (a_{i',\sigma_k} - a_{i',\sigma_{k+1}})_{1 \le k < g^2} \mid 1 \le i' \le n/g \}$$

 $B = \{ (a_{i,\pi_{k+1}} - a_{i,\pi_k})_{1 \le k < g^2} \mid 1 \le i \le n/g \}$

solve Dominance Reporting on *A*, *B*

time $O(m (\log m)^d + \text{outputsize})$

for each reported pair (i, i'):

the sorted ordering of $A_{i,i'}$ is given by *P*:

 $(a_{i,\pi_1} + a_{i',\sigma_1} \quad a_{i,\pi_2} + a_{i',\sigma_2} \quad \dots \quad a_{i,\pi_n} + a_{i',\sigma_n})$

time for sorting all $A_{i,i'}$: $O((g^2)! \cdot (n/g)(\log n/g)^{g^2} + (n/g)^2) = O((n/g)^2)$

setting $g \coloneqq 0.1 \cdot \sqrt{\log n / \log \log n}$ $(g^2)! \le (g^2)^{g^2} \le (\log n)^{g^2} \le (\log n)^{(0.01 \log n) / \log \log n} = n^{0.01}$ $(\log n/g)^{g^2} \le (\log n)^{g^2} \le n^{0.01}$

given a set A of n integers, are there a, b, $c \in A$ such that a + b + c = 0?

 $O(n \log n)$ comparisons sort A in increasing order and time partition A into n/g groups: $A_1, \dots, A_{n/q}$ (all elements of A_i are smaller than all elements of A_{i+1}) $O(|D|\log|D|) = O(ng\log(ng))$ sort $D \coloneqq \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i : a, b \in A_i\}$ comparisons and time for all *i*, *i*': sort $A_{i,i'} \coloneqq A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ no comparisons! $O((n/g)^2 \cdot g^2 \log(g^2))$ time for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0 n iterations initialize i = n/g, j = 1O(n/g) iterations while i > 0 and $j \le n/g$: $O(\log(q^2)) = O(\log n)$ comparisons if $-c \in A_{i,i}$: return "solution found" and time using binary search if $\min(A_i) + \max(A_i) > -c$: $i \coloneqq i - 1$ otherwise: $i \coloneqq i + 1$ in total: $O(n^2 \log(g)/g)$ time return "no solution" $\underset{\text{informatik}}{\text{max planck institut}} \text{ for } g \coloneqq 0.1 \cdot \sqrt{\log n / \log \log n}: \quad O(n^2 \frac{\operatorname{poly} \log \log(n)}{\sqrt{\log n}}) \text{ time}$

Thm: 3SUM has a decision tree of depth $O(n^{3/2} \log n)$

Thm: Without bit-tricks, 3SUM is in time $O(n^2 \cdot \frac{\operatorname{poly} \log \log n}{\sqrt{\log n}})$

Dominance Reporting problem:

given sets A, B of (integer-valued) vectors in \mathbb{R}^d , |A| + |B| = m

report all pairs $a \in A, b \in B$ where b dominates a

Thm: Dominance Reporting is in time $O(m (\log m)^d + \text{outputsize})$

deciding whether there is a dominating pair (a, b) is OV-hard so we do not expect an $O(\text{poly}(d) m^{2-\varepsilon})$ algorithm

OV is in time $O(2^d m)$

the theorem "generalizes" this OV-algorithm to Dominance Reporting

Dominance Reporting problem:

given sets A, B of (integer-valued) vectors in \mathbb{R}^d , |A| + |B| = m

report all pairs $a \in A, b \in B$ where b dominates a

Thm: Dominance Reporting is in time $O(m (\log m)^d + \text{outputsize})$

assume all coordinates to be different

if d = 0: report all pairs $A \times B$ otherwise: $T_d(m) \le 2T_d(m/2) + T_{d-1}(m) + m$

find median *x* of *d*-th coordinates of all points in $A \cup B$ - time O(m) $A_{s} \coloneqq \{a \in A \mid a_{d} < x\}$ and $A_{I} \coloneqq A \setminus A_{s}$

 $B_S \coloneqq \{b \in B \mid b_d < x\} \text{ and } B_L \coloneqq B \setminus B_S$

max planck institut

recursively solve $(A_L, B_L), (A_S, B_S)$, and (A_S, B_L)

remove *d*-th coordinates!

 $T_{d}(m) \leq 2T_{d}(m/2) + T_{d-1}(m) + m$

Excluding cost of output: $T_0(m) = T_d(1) = 0$

Inductively prove that: $T_d(m) \le m (\log 2m)^d - m$

$$\begin{split} T_d(m) &\leq 2 \left(\frac{m}{2} \; (\log m)^d - \frac{m}{2} \right) + \left(m \; (\log 2m)^{d-1} - m \right) + m \\ &= m \; ((\log 2m) - 1)^d + m \; (\log 2m)^{d-1} - m \\ &= m \; (\log 2m)^d (1 - 1/\log 2m)^d + m \; (\log 2m)^{d-1} - m \\ &\leq m \; (\log 2m)^d (1 - 1/\log 2m) + m \; (\log 2m)^{d-1} - m \\ &= m \; (\log 2m)^d - m \end{split}$$

Dominance Reporting problem:

given sets A, B of (integer-valued) vectors in \mathbb{R}^d , |A| + |B| = m

report all pairs $a \in A, b \in B$ where b dominates a

Thm: Dominance Reporting is in time $O(m (\log m)^d + \text{outputsize})$

this finishes the proof of:

Thm: Without bit-tricks, 3SUM is in time $O(n^2 \cdot \frac{\operatorname{poly} \log \log n}{\sqrt{\log n}})$

Outline

- 1) algorithm for small universe
- 2) quadratic algorithm
- 3) small decision tree
- 4) logfactor improvement
- 5) some 3SUM-hardness results

GeomBase

given a set of *n* points on three horinzontal lines y = 0, y = 1, y = 2, determine whether there exists a non-horizontal line containing three of the points

Thm: GeomBase is 3SUM-hard.

Given an instance (A, B, C) of 3SUM

construct points:

(a, 0) for any $a \in A$ (b, 2) for any $b \in B$ (c/2, 1) for any $c \in C$

they lie on a line if $c/2 - a = b - c/2 \iff a + b = c$

GeomBase is even equivalent to 3SUM

3-Points-on-line / Collinear

given a set of n points in the plane, is there a line containing at least 3 of the points?

Thm: 3-Points-on-line is 3SUM-hard.

Given an instance A of 3SUM

construct points:

$$(a, a^3)$$
 for any $a \in A$

then (a, a^3) , (c, c^3) , (c, c^3) are collinear if and only if a + b + c = 0(without proof)

3-Points-on-line / Collinear

given a set of n possibly half-infinite, closed horizontal line segments, is there a non-horizontal separator?

Thm: Separator is 3SUM-hard.

Planar Motion Planning

given a set of line segment obstacles in the plane and a line segment robot, decide whether the robot can be moved (allowing translation and rotation) from a given source to a given goal configuration without colliding with the obstacles.

Thm: PlanarMotionPlanning is 3SUM-hard.

