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3SUM

given sets 𝐴,𝐵,𝐶 of 𝑛 integers

are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,𝑐 ∈ 𝐶 such that 𝑎 + 𝑏 + 𝑐 = 0?

(we assume that we can add/subtract/compare input integers in constant time)

trivial algorithm:  𝑂(𝑛/)

well-known:  𝑂(𝑛1)

Conjecture:  no 𝑂 𝑛123 algorithm

→	3SUM-Hardness [Gajentaan,Overmars’95]



More Known Algorithms

trivial:  𝑂(𝑛/)
well-known:  𝑂(𝑛1)

using Word RAM bit-tricks:  𝑂(𝑛1 ⋅ 789
:;
;

), 𝑂(𝑛1 ⋅ (789 789 <)
:

789:<
)

no bit-tricks:  𝑂(𝑛1 ⋅ (789 789 <)
:

789 <
)

[Baran,Demaine,Patrascu’05]

[Gronlund,Pettie’14]

we prove a simplified version:

Thm: Without bit-tricks, 3SUM is in time  𝑂(𝑛1 ⋅ =87> 789 789 <
789 <

)

using FFT:  𝑂(𝑛 +𝑈 polylog𝑈) for numbers in {−𝑈, … , 𝑈}

(cell size 𝑤 = Ω(log𝑛), 
each number fits in a cell)



Equivalent Variants

given sets 𝐴,𝐵,𝐶 of 𝑛 integers
are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,𝑐 ∈ 𝐶 such that 𝑎 + 𝑏 + 𝑐 = 0?

1)

given a set 𝑋 of 𝑛 integers
are there 𝑥, 𝑦, 𝑧 ∈ 𝑋	such that 𝑥 + 𝑦 + 𝑧 = 0?

4)

given sets 𝐴,𝐵,𝐶 of 𝑛 integers and target 𝑡
are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,𝑐 ∈ 𝐶 such that 𝑎 + 𝑏 + 𝑐 = 𝑡?

3)

given sets 𝐴,𝐵,𝐶 of 𝑛 integers
are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,𝑐 ∈ 𝐶 such that 𝑎 + 𝑏 = 𝑐?

2)

replace 𝐶 by 𝑐 − 𝑡	 	𝑐 ∈ 	𝐶}

⇔ 𝑎 + 𝑏 − 𝑐 = 0

⇔ 𝑎 + 𝑏 + (𝑐 − 𝑡) = 0

replace 𝐶 by −𝑐 	𝑐 ∈ 	𝐶}

↑: set 𝐴, 𝐵, 𝐶 ≔ 𝑋

↓: set 𝑋 ≔ 𝑎 + 4𝑈	|	𝑎 ∈ 𝐴 ∪ 𝐵 ∪ {𝑐 − 4𝑈	|	𝑐 ∈ 𝐶}

where 𝐴,𝐵,𝐶 ⊆ {−𝑈, . . , 𝑈}



Outline

1) algorithm for small universe

2) quadratic algorithm

3) small decision tree

4) logfactor improvement

5) some 3SUM-hardness results



Algorithm for Small Numbers

add 𝑈 to each number, then numbers are in {0, . . , 2𝑈}	and

𝑂(𝑛 +𝑈 polylog𝑈) for numbers in {−𝑈, … , 𝑈}

we want 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,𝑐 ∈ 𝐶 such that 𝑎 + 𝑏 + 𝑐 = 3𝑈

define polynomials 𝑝\ 𝑥 ≔ ∑ 𝑥^^∈\ and similarly 𝑝_ 𝑥 , 𝑝` 𝑥
have degree at most 2𝑈

compute 𝑞 𝑥 ≔ 𝑝\ 𝑥 ⋅ 𝑝_ 𝑥 ⋅ 𝑝` 𝑥 = (∑ 𝑥^^∈\ )(∑ 𝑥bb∈_ )(∑ 𝑥cc∈` )

what is the coefficient of 𝑥/d in 𝑞(𝑥)?

use efficient polynomial multiplication (via Fast Fourier Transform):
polynomials of degree 𝑑 can be multiplied in time 𝑂(𝑑 polylog𝑑)

(𝑥^ ⋅ 𝑥b ⋅ 𝑥c = 𝑥^fbfc)

it is the number of (𝑎, 𝑏, 𝑐)	summing to 3𝑈



Outline

1) algorithm for small universe

2) quadratic algorithm

3) small decision tree

4) logfactor improvement

5) some 3SUM-hardness results



Quadratic Algorithm
given a set 𝐴 of 𝑛 integers
are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0?

sort 𝐴 in increasing order: 𝐴 = {𝑎g,… , 𝑎<}

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

𝑎g 𝑎1 𝑎/ 𝑎<…
𝑎g
𝑎1
𝑎/

𝑎<

…

initialize 𝑖 = 𝑛, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛:

if 𝑎m + 𝑎n = −𝑐:  return (𝑎m, 𝑎n , 𝑐)
if 𝑎m + 𝑎n > −𝑐:  𝑖 ≔ 𝑖 − 1
if 𝑎m + 𝑎n < −𝑐:  𝑗 ≔ 𝑗 + 1

return “no solution”



Quadratic Algorithm

𝑎g 𝑎1 𝑎/ 𝑎<…initialize 𝑖 = 𝑛, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛:

return “no solution”

given a set 𝐴 of 𝑛 integers
are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0?

sort 𝐴 in increasing order: 𝐴 = {𝑎g,… , 𝑎<}

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

if 𝑎m + 𝑎n = −𝑐:  return (𝑎m, 𝑎n , 𝑐)
if 𝑎m + 𝑎n > −𝑐:  𝑖 ≔ 𝑖 − 1
if 𝑎m + 𝑎n < −𝑐:  𝑗 ≔ 𝑗 + 1

𝑎g
𝑎1
𝑎/

𝑎<

…



Quadratic Algorithm

𝑎g 𝑎1 𝑎/ 𝑎<…initialize 𝑖 = 𝑛, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛:

return “no solution”

given a set 𝐴 of 𝑛 integers
are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0?

sort 𝐴 in increasing order: 𝐴 = {𝑎g,… , 𝑎<}

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

if 𝑎m + 𝑎n = −𝑐:  return (𝑎m, 𝑎n , 𝑐)
if 𝑎m + 𝑎n > −𝑐:  𝑖 ≔ 𝑖 − 1
if 𝑎m + 𝑎n < −𝑐:  𝑗 ≔ 𝑗 + 1

𝑎g
𝑎1
𝑎/

𝑎<

…



Quadratic Algorithm

𝑎g 𝑎1 𝑎/ 𝑎<…initialize 𝑖 = 𝑛, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛:

return “no solution”

given a set 𝐴 of 𝑛 integers
are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0?

sort 𝐴 in increasing order: 𝐴 = {𝑎g,… , 𝑎<}

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

if 𝑎m + 𝑎n = −𝑐:  return (𝑎m, 𝑎n , 𝑐)
if 𝑎m + 𝑎n > −𝑐:  𝑖 ≔ 𝑖 − 1
if 𝑎m + 𝑎n < −𝑐:  𝑗 ≔ 𝑗 + 1

𝑎g
𝑎1
𝑎/

𝑎<

…



Quadratic Algorithm

𝑎g 𝑎1 𝑎/ 𝑎<…initialize 𝑖 = 𝑛, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛:

return “no solution”

given a set 𝐴 of 𝑛 integers
are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0?

sort 𝐴 in increasing order: 𝐴 = {𝑎g,… , 𝑎<}

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

if 𝑎m + 𝑎n = −𝑐:  return (𝑎m, 𝑎n , 𝑐)
if 𝑎m + 𝑎n > −𝑐:  𝑖 ≔ 𝑖 − 1
if 𝑎m + 𝑎n < −𝑐:  𝑗 ≔ 𝑗 + 1

𝑎g
𝑎1
𝑎/

𝑎<

…



Quadratic Algorithm

𝑎g 𝑎1 𝑎/ 𝑎<…initialize 𝑖 = 𝑛, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛:

return “no solution”

given a set 𝐴 of 𝑛 integers
are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0?

sort 𝐴 in increasing order: 𝐴 = {𝑎g,… , 𝑎<}

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

if 𝑎m + 𝑎n = −𝑐:  return (𝑎m, 𝑎n , 𝑐)
if 𝑎m + 𝑎n > −𝑐:  𝑖 ≔ 𝑖 − 1
if 𝑎m + 𝑎n < −𝑐:  𝑗 ≔ 𝑗 + 1

𝑎g
𝑎1
𝑎/

𝑎<

…



Quadratic Algorithm

𝑎g 𝑎1 𝑎/ 𝑎<…initialize 𝑖 = 𝑛, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛:

return “no solution”

given a set 𝐴 of 𝑛 integers
are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0?

sort 𝐴 in increasing order: 𝐴 = {𝑎g,… , 𝑎<}

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

if 𝑎m + 𝑎n = −𝑐:  return (𝑎m, 𝑎n , 𝑐)
if 𝑎m + 𝑎n > −𝑐:  𝑖 ≔ 𝑖 − 1
if 𝑎m + 𝑎n < −𝑐:  𝑗 ≔ 𝑗 + 1

𝑎g
𝑎1
𝑎/

𝑎<

…



Quadratic Algorithm

𝑎g 𝑎1 𝑎/ 𝑎<…initialize 𝑖 = 𝑛, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛:

return “no solution”

given a set 𝐴 of 𝑛 integers
are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0?

sort 𝐴 in increasing order: 𝐴 = {𝑎g,… , 𝑎<}

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

if 𝑎m + 𝑎n = −𝑐:  return (𝑎m, 𝑎n , 𝑐)
if 𝑎m + 𝑎n > −𝑐:  𝑖 ≔ 𝑖 − 1
if 𝑎m + 𝑎n < −𝑐:  𝑗 ≔ 𝑗 + 1

𝑎g
𝑎1
𝑎/

𝑎<

…



Quadratic Algorithm

𝑎g 𝑎1 𝑎/ 𝑎<…initialize 𝑖 = 𝑛, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛:

return “no solution”

given a set 𝐴 of 𝑛 integers
are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0?

sort 𝐴 in increasing order: 𝐴 = {𝑎g,… , 𝑎<}

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

if 𝑎m + 𝑎n = −𝑐:  return (𝑎m, 𝑎n , 𝑐)
if 𝑎m + 𝑎n > −𝑐:  𝑖 ≔ 𝑖 − 1
if 𝑎m + 𝑎n < −𝑐:  𝑗 ≔ 𝑗 + 1

𝑎g
𝑎1
𝑎/

𝑎<

…



Quadratic Algorithm

𝑎g 𝑎1 𝑎/ 𝑎<…initialize 𝑖 = 𝑛, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛:

return “no solution”

time 𝑂(𝑛) per 𝑐 ∈ 𝐴
time 𝑂(𝑛1)	overall

given a set 𝐴 of 𝑛 integers
are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0?

sort 𝐴 in increasing order: 𝐴 = {𝑎g,… , 𝑎<}

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

if 𝑎m + 𝑎n = −𝑐:  return (𝑎m, 𝑎n , 𝑐)
if 𝑎m + 𝑎n > −𝑐:  𝑖 ≔ 𝑖 − 1
otherwise:  𝑗 ≔ 𝑗 + 1

𝑎g
𝑎1
𝑎/

𝑎<

…



Outline

1) algorithm for small universe

2) quadratic algorithm

3) small decision tree

4) logfactor improvement

5) some 3SUM-hardness results



Decision Tree Complexity

Thm: 3SUM has a decision tree of depth  𝑂(𝑛//1 log𝑛)



Decision Tree Complexity

where you have seen this:

Thm:  Any decision tree for Sorting 𝑛 numbers has depth Ω(𝑛 log𝑛)
Thm:  Any comparison-based Sorting algorithm takes time Ω(𝑛 log 𝑛)

problem 𝑃 on input 𝑥g,… , 𝑥<

decision tree complexity of 𝑃 = minimal depth of any decision tree for 𝑃

Decision Tree: 

each inner node is a comparison:  𝑥m ≤ 𝑥n
more generally any linear combination:  ∑ 𝛼mm 𝑥m ≥ 0

all instances reaching the same leaf have the same result 𝑃(𝑥g,… ,𝑥<)

𝑥g ≤ 𝑥1

𝑥1 ≤ 𝑥/ 𝑥g ≤ 𝑥/

outgoing edges are labeled 1/0 = true/false

1 0

1 0
… … …

1 0

yields a lower bound for running time of any algorithm 
(that uses only comparisons, no bit-tricks)

0



Decision Tree Complexity

alternative interpretation:

think of 𝑥g,… ,𝑥< as physical entities

we may specify factors 𝛼m

we can perform experiments:

the outcome of the experiment tells us whether ∑ 𝛼mm 𝑥m ≥ 0

experiments are very costly, computation is cheap

what is the minimal number of experiments to decide 𝑃(𝑥g,… ,𝑥<)?

„experiment“ or
„costly comparison“

= decision tree complexity



Decision Tree Complexity

alternative interpretation II:

RAM with two types of cells:  special and standard
input numbers 𝑥g,… ,𝑥< are stored in special cells

special standard

Stores: e.g. real number 𝑂(log	𝑛) bit number

Operations: add, subtract, compare
(result of comparison can 
be stored in standard cell)

all standard arithmetic and 
logical operations and 

comparisons

usual RAM cost model: each operations takes constant time 

decision tree cost model: comparisons of special numbers cost 1
all other operations are for free



Decision Tree Complexity

Thm: 3SUM has a decision tree of depth  𝑂(𝑛//1 log𝑛)

why study decision tree upper bounds?

rules out quadratic lower bound in decision tree model

often small decision trees yield lower order improvements

Thm: Without bit-tricks, 3SUM is in time  𝑂(𝑛1 ⋅ =87> 789 789 <
789 <

)



Small Decision Tree

sort 𝐴 in increasing order
partition 𝐴 into 𝑛/𝑔 groups: 𝐴g, … , 𝐴</u

(all elements of 𝐴m are smaller than all elements of 𝐴mfg)

sort 𝐷 ≔ ⋃ 𝐴m − 𝐴m
</u
mxg = 𝑎 − 𝑏	 	∃𝑖: 𝑎, 𝑏 ∈ 𝐴m}

given a set 𝐴 of 𝑛 integers, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴	such that 𝑎 + 𝑏 + 𝑐 = 0?

write 𝐴m = {𝑎m,g,… , 𝑎m,u}

i.e., build a list 𝐿| containing all (𝑖, 𝑗, 𝑘) with 𝑖 ∈ 1,… , 𝑛/𝑔 , 𝑗, 𝑘	 ∈ {1, … ,𝑔}
sorted by 𝑎m,n − 𝑎m,~ ascendingly

this preprocessing allows to compare any 𝑎m,n − 𝑎m,~ and 𝑎m� ,n� − 𝑎m� ,~� without
any costly comparisons

Fredman’s trick:  𝑎m,n + 𝑎m� ,n� ≤ 𝑎m,~ + 𝑎m� ,~� 	⟺ 𝑎m�,n� − 𝑎m� ,~� ≤ 𝑎m,~ − 𝑎m,n
so this preprocessing allows to compare any 𝑎m,n + 𝑎m� ,n� and 𝑎m,~ + 𝑎m� ,~� without 
any costly comparisons:

𝑂 𝐷 log 𝐷 = 𝑂(𝑛𝑔 log(𝑛𝑔))
comparisons

𝑂(𝑛 log𝑛) comparisons

𝑎m,n + 𝑎m� ,n� ≤ 𝑎m,~ + 𝑎m� ,~� 	⟺ (𝑖�, 𝑗� , 𝑘�) appears before (𝑖, 𝑘, 𝑗) in 𝐿|

any numbers in 𝐴m,m� ≔ 𝐴m + 𝐴m� = 𝑎 + 𝑏	 	𝑎 ∈ 𝐴m, 𝑏 ∈ 𝐴m� }



Small Decision Tree

sort 𝐴 in increasing order

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

𝐴g 𝐴1 𝐴</u…

𝐴g

𝐴1

𝐴</u

…

initialize 𝑖 = 𝑛/𝑔, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛/𝑔:

if −𝑐 ∈ 𝐴m,n:  return “solution found”
if min 𝐴m + max	(𝐴n) 	> −𝑐:  𝑖 ≔ 𝑖 − 1
otherwise:  𝑗 ≔ 𝑗 + 1

return “no solution”

partition 𝐴 into 𝑛/𝑔 groups: 𝐴g, … , 𝐴</u
(all elements of 𝐴m are smaller than all elements of 𝐴mfg)

sort 𝐷 ≔ ⋃ 𝐴m − 𝐴m
</u
mxg = 𝑎 − 𝑏	 	∃𝑖: 𝑎, 𝑏 ∈ 𝐴m}

given a set 𝐴 of 𝑛 integers, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴	such that 𝑎 + 𝑏 + 𝑐 = 0?

for all 𝑖, 𝑖�: sort 𝐴m,m� ≔ 𝐴m + 𝐴m� = 𝑎 + 𝑏	 	𝑎 ∈ 𝐴m, 𝑏 ∈ 𝐴m� }

𝑂 𝐷 log 𝐷 = 𝑂(𝑛𝑔 log(𝑛𝑔))
comparisons

𝑂(𝑛 log𝑛) comparisons

no comparisons!



Small Decision Tree

sort 𝐴 in increasing order

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

𝐴g 𝐴1 𝐴</u…

𝐴g

𝐴1

𝐴</u

…

initialize 𝑖 = 𝑛/𝑔, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛/𝑔:

if −𝑐 ∈ 𝐴m,n:  return “solution found”
if min 𝐴m + max	(𝐴n) 	> −𝑐:  𝑖 ≔ 𝑖 − 1
otherwise:  𝑗 ≔ 𝑗 + 1

return “no solution”

partition 𝐴 into 𝑛/𝑔 groups: 𝐴g, … , 𝐴</u
(all elements of 𝐴m are smaller than all elements of 𝐴mfg)

sort 𝐷 ≔ ⋃ 𝐴m − 𝐴m
</u
mxg = 𝑎 − 𝑏	 	∃𝑖: 𝑎, 𝑏 ∈ 𝐴m}

given a set 𝐴 of 𝑛 integers, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴	such that 𝑎 + 𝑏 + 𝑐 = 0?

for all 𝑖, 𝑖�: sort 𝐴m,m� ≔ 𝐴m + 𝐴m� = 𝑎 + 𝑏	 	𝑎 ∈ 𝐴m, 𝑏 ∈ 𝐴m� }

𝑂 𝐷 log 𝐷 = 𝑂(𝑛𝑔 log(𝑛𝑔))
comparisons

𝑂(𝑛 log𝑛) comparisons

no comparisons!



Small Decision Tree

sort 𝐴 in increasing order

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

𝐴g 𝐴1 𝐴</u…

𝐴g

𝐴1

𝐴</u

…

initialize 𝑖 = 𝑛/𝑔, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛/𝑔:

if −𝑐 ∈ 𝐴m,n:  return “solution found”
if min 𝐴m + max	(𝐴n) 	> −𝑐:  𝑖 ≔ 𝑖 − 1
otherwise:  𝑗 ≔ 𝑗 + 1

return “no solution”

partition 𝐴 into 𝑛/𝑔 groups: 𝐴g, … , 𝐴</u
(all elements of 𝐴m are smaller than all elements of 𝐴mfg)

sort 𝐷 ≔ ⋃ 𝐴m − 𝐴m
</u
mxg = 𝑎 − 𝑏	 	∃𝑖: 𝑎, 𝑏 ∈ 𝐴m}

given a set 𝐴 of 𝑛 integers, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴	such that 𝑎 + 𝑏 + 𝑐 = 0?

for all 𝑖, 𝑖�: sort 𝐴m,m� ≔ 𝐴m + 𝐴m� = 𝑎 + 𝑏	 	𝑎 ∈ 𝐴m, 𝑏 ∈ 𝐴m� }

𝑂 𝐷 log 𝐷 = 𝑂(𝑛𝑔 log(𝑛𝑔))
comparisons

𝑂(𝑛 log𝑛) comparisons

no comparisons!



Small Decision Tree

sort 𝐴 in increasing order

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

initialize 𝑖 = 𝑛/𝑔, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛/𝑔:

if −𝑐 ∈ 𝐴m,n:  return “solution found”
if min 𝐴m + max	(𝐴n) 	> −𝑐:  𝑖 ≔ 𝑖 − 1
otherwise:  𝑗 ≔ 𝑗 + 1

return “no solution”

partition 𝐴 into 𝑛/𝑔 groups: 𝐴g, … , 𝐴</u
(all elements of 𝐴m are smaller than all elements of 𝐴mfg)

sort 𝐷 ≔ ⋃ 𝐴m − 𝐴m
</u
mxg = 𝑎 − 𝑏	 	∃𝑖: 𝑎, 𝑏 ∈ 𝐴m}

given a set 𝐴 of 𝑛 integers, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴	such that 𝑎 + 𝑏 + 𝑐 = 0?

for all 𝑖, 𝑖�: sort 𝐴m,m� ≔ 𝐴m + 𝐴m� = 𝑎 + 𝑏	 	𝑎 ∈ 𝐴m, 𝑏 ∈ 𝐴m� }

𝑂 𝐷 log 𝐷 = 𝑂(𝑛𝑔 log(𝑛𝑔))
comparisons

𝑂(𝑛 log𝑛) comparisons

no comparisons!

𝑂 𝑛/𝑔 iterations
𝑂 log(𝑔1) = 𝑂(log𝑛) comparisons

using binary search

𝑛 iterations

in total:  𝑂((𝑛𝑔 + 𝑛1/𝑔) log 𝑛) comparisons
= 𝑂(𝑛//1 log𝑛) for 𝑔 ≔ 𝑛



Decision Tree Complexity

Thm: 3SUM has a decision tree of depth  𝑂(𝑛//1 log𝑛)

Thm: Without bit-tricks, 3SUM is in time  𝑂(𝑛1 ⋅ =87> 789 789 <
789 <

)



Outline

1) algorithm for small universe

2) quadratic algorithm

3) small decision tree

4) logfactor improvement

5) some 3SUM-hardness results



Converting Decision Tree to Algorithm

sort 𝐴 in increasing order

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

initialize 𝑖 = 𝑛/𝑔, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛/𝑔:

if −𝑐 ∈ 𝐴m,n:  return “solution found”
if min 𝐴m + max	(𝐴n) 	> −𝑐:  𝑖 ≔ 𝑖 − 1
otherwise:  𝑗 ≔ 𝑗 + 1

return “no solution”

partition 𝐴 into 𝑛/𝑔 groups: 𝐴g, … , 𝐴</u
(all elements of 𝐴m are smaller than all elements of 𝐴mfg)

sort 𝐷 ≔ ⋃ 𝐴m − 𝐴m
</u
mxg = 𝑎 − 𝑏	 	∃𝑖: 𝑎, 𝑏 ∈ 𝐴m}

given a set 𝐴 of 𝑛 integers, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴	such that 𝑎 + 𝑏 + 𝑐 = 0?

for all 𝑖, 𝑖�: sort 𝐴m,m� ≔ 𝐴m + 𝐴m� = 𝑎 + 𝑏	 	𝑎 ∈ 𝐴m, 𝑏 ∈ 𝐴m� }

𝑂 𝐷 log 𝐷 = 𝑂(𝑛𝑔 log(𝑛𝑔))
comparisons and time

𝑂(𝑛 log𝑛) comparisons 
and time

no comparisons!
𝑂( 𝑛/𝑔 1 ⋅ 𝑔1 log(𝑔1)) time

𝑂 𝑛/𝑔 iterations
𝑂 log(𝑔1) = 𝑂(log𝑛) comparisons 

and time using binary search

𝑛 iterations

in total:  𝑂(𝑛1 log(𝑔1)) time ☹



Converting Decision Tree to Algorithm

for all 𝒊, 𝒊�: sort 𝑨𝒊,𝒊� ≔ 𝑨𝒊 + 𝑨𝒊� = 𝒂 + 𝒃	 	𝒂 ∈ 𝑨𝒊,𝒃 ∈ 𝑨𝒊�} write 𝐴m = {𝑎m,g,… , 𝑎m,u}

make 𝐴m,m� totally ordered:

replace 𝐴m by 𝑎m,n ⋅ 2𝑔 1 + 𝑗			 		1 ≤ 𝑗 ≤ 𝑔}

replace 𝐴m� by 𝑎m� ,n ⋅ 2𝑔 1 + 𝑗 ⋅ 2𝑔 			 			1 ≤ 𝑗 ≤ 𝑔}

then no 𝒂 ∈ 𝑨𝒊, 𝒃 ∈ 𝑨𝒊� and 𝒂′ ∈ 𝑨𝒊, 𝒃′ ∈ 𝑨𝒊� sum up to the same value

simplification:

and from the new 𝐴m + 𝐴m� we can recover the old 𝐴m + 𝐴m�

implement this step faster!



Converting Decision Tree to Algorithm

for all 𝒊, 𝒊�: sort 𝑨𝒊,𝒊� ≔ 𝑨𝒊 + 𝑨𝒊� = 𝒂 + 𝒃	 	𝒂 ∈ 𝑨𝒊,𝒃 ∈ 𝑨𝒊�} write 𝐴m = {𝑎m,g,… , 𝑎m,u}

consider any permutation 𝑃 = 𝜋g,𝜎g , 𝜋1,𝜎1 ,… , 𝜋u:,𝜎u: of 1, . . , 𝑔 ×{1, … , 𝑔}

this is the correct sorted ordering of 𝐴m,m� if and only if: 

𝑃 corresponds to this ordering of 𝐴m,m�:
(𝑎m,�� + 𝑎m� ,�� 							𝑎m,�: + 𝑎m� ,�: 						…						𝑎m ,�� + 𝑎m� ,�� )

𝑎m,�� + 𝑎m� ,�� 			 < 			𝑎m,���� + 𝑎m� ,���� for all 1 ≤ 𝑘 < 𝑔1

by Fredman‘s trick, this is equivalent to:
𝑎m� ,�� − 𝑎m� ,���� 		 < 			𝑎m,���� − 𝑎m,�� for all 1 ≤ 𝑘 < 𝑔1

construct vectors: (𝑎m� ,�� − 𝑎m� ,����)g�~�u:

(𝑎m ,���� − 𝑎m,��)g�~�u:

we say that vector 𝑥 dominates vector 𝑦 if 𝑥m > 𝑦m for all 𝑖



Dominance Reporting

Dominance Reporting problem:

given sets 𝐴,𝐵 of (integer-valued) vectors in ℝ� ,  𝐴 + 𝐵 = 𝑚

report all pairs 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 where 𝑏 dominates 𝑎

Thm: Dominance Reporting is in time 𝑂 𝑚	 log𝑚 � 	+ 	outputsize



Converting Decision Tree to Algorithm

for all 𝒊, 𝒊�: sort 𝑨𝒊,𝒊� ≔ 𝑨𝒊 + 𝑨𝒊� = 𝒂 + 𝒃	 	𝒂 ∈ 𝑨𝒊,𝒃 ∈ 𝑨𝒊�} write 𝐴m = {𝑎m,g,… , 𝑎m,u}

for each permutation 𝑃 = 𝜋g,𝜎g , 𝜋1,𝜎1 ,… , 𝜋u:,𝜎u: of 1, . . , 𝑔 ×{1, … , 𝑔}:

construct sets: (𝑎m� ,�� − 𝑎m� ,����)g�~�u:

(𝑎m ,���� − 𝑎m,��)g�~�u:

𝐴 = {

𝐵 = {

|	1 ≤ 𝑖� ≤ 𝑛/𝑔	}

|	1 ≤ 𝑖 ≤ 𝑛/𝑔	}

solve Dominance Reporting on 𝐴,𝐵

for each reported pair (𝑖, 𝑖�):
the sorted ordering of 𝐴m,m� is given by 𝑃:

(𝑎m,�� + 𝑎m� ,�� 							𝑎m,�: + 𝑎m� ,�: 						…						𝑎m ,�� + 𝑎m� ,�� )

time for sorting all 𝐴m,m�: 𝑂 𝑔1 ! ⋅ (𝑛/𝑔)(log𝑛/𝑔)u:	+ 𝑛/𝑔 1

one vector 
for each of
𝑛/𝑔 groups

𝑔1 ! iterations vectors have 
dimension 𝑔1

total
outputsize
𝑛/𝑔 1

time 𝑂(𝑚	 log𝑚 � + outputsize)



Converting Decision Tree to Algorithm

for all 𝒊, 𝒊�: sort 𝑨𝒊,𝒊� ≔ 𝑨𝒊 + 𝑨𝒊� = 𝒂 + 𝒃	 	𝒂 ∈ 𝑨𝒊,𝒃 ∈ 𝑨𝒊�} write 𝐴m = {𝑎m,g,… , 𝑎m,u}

for each permutation 𝑃 = 𝜋g,𝜎g , 𝜋1,𝜎1 ,… , 𝜋u:,𝜎u: of 1, . . , 𝑔 ×{1, … , 𝑔}:

construct sets: (𝑎m� ,�� − 𝑎m� ,����)g�~�u:

(𝑎m ,���� − 𝑎m,��)g�~�u:

𝐴 = {

𝐵 = {

|	1 ≤ 𝑖� ≤ 𝑛/𝑔	}

|	1 ≤ 𝑖 ≤ 𝑛/𝑔	}

solve Dominance Reporting on 𝐴,𝐵

for each reported pair (𝑖, 𝑖�):
the sorted ordering of 𝐴m,m� is given by 𝑃:

(𝑎m,�� + 𝑎m� ,�� 							𝑎m,�: + 𝑎m� ,�: 						…						𝑎m ,�� + 𝑎m� ,�� )

time for sorting all 𝐴m,m�: 𝑂 𝑔1 ! ⋅ (𝑛/𝑔)(log𝑛/𝑔)u:	+ 𝑛/𝑔 1

time 𝑂(𝑚	 log𝑚 � + outputsize)

setting 𝑔 ≔ 0.1 ⋅ log 𝑛/ log log 𝑛

𝑔1 ! ≤ 𝑔1 u: ≤ (log𝑛)u:≤ log𝑛 ( . g	789	<)/789	789	<		 = 𝑛 . g

(log𝑛/𝑔)u:≤ log𝑛 u: ≤ 𝑛 . g

= 𝑂 𝑛/𝑔 1



Converting Decision Tree to Algorithm

sort 𝐴 in increasing order

for each 𝑐 ∈ 𝐴:   check whether there are 𝑎, 𝑏 ∈ 𝐴 s.t. 𝑎 + 𝑏 + 𝑐 = 0

initialize 𝑖 = 𝑛/𝑔, 𝑗 = 1

while 𝑖 > 0 and 𝑗 ≤ 𝑛/𝑔:

if −𝑐 ∈ 𝐴m,n:  return “solution found”
if min 𝐴m + max	(𝐴n) 	> −𝑐:  𝑖 ≔ 𝑖 − 1
otherwise:  𝑗 ≔ 𝑗 + 1

return “no solution”

partition 𝐴 into 𝑛/𝑔 groups: 𝐴g, … , 𝐴</u
(all elements of 𝐴m are smaller than all elements of 𝐴mfg)

sort 𝐷 ≔ ⋃ 𝐴m − 𝐴m
</u
mxg = 𝑎 − 𝑏	 	∃𝑖: 𝑎, 𝑏 ∈ 𝐴m}

given a set 𝐴 of 𝑛 integers, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴	such that 𝑎 + 𝑏 + 𝑐 = 0?

for all 𝑖, 𝑖�: sort 𝐴m,m� ≔ 𝐴m + 𝐴m� = 𝑎 + 𝑏	 	𝑎 ∈ 𝐴m, 𝑏 ∈ 𝐴m� }

𝑂 𝐷 log 𝐷 = 𝑂(𝑛𝑔 log(𝑛𝑔))
comparisons and time

𝑂(𝑛 log𝑛) comparisons 
and time

no comparisons!
𝑂( 𝑛/𝑔 1 ⋅ 𝑔1 log(𝑔1)) time

𝑂 𝑛/𝑔 iterations
𝑂 log(𝑔1) = 𝑂(log𝑛) comparisons 

and time using binary search

𝑛 iterations

in total:  𝑂(𝑛1 log(𝑔)/𝑔) time

for 𝑔 ≔ 0.1 ⋅ log 𝑛/ log log 𝑛: 𝑂(𝑛1 =87>	789	789 <
789 <

) time



Decision Tree Complexity

Thm: 3SUM has a decision tree of depth  𝑂(𝑛//1 log𝑛)

Thm: Without bit-tricks, 3SUM is in time  𝑂(𝑛1 ⋅ =87> 789 789 <
789 <

)



Dominance Reporting

Dominance Reporting problem:

given sets 𝐴,𝐵 of (integer-valued) vectors in ℝ� ,  𝐴 + 𝐵 = 𝑚

report all pairs 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 where 𝑏 dominates 𝑎

Thm:

deciding whether there is a dominating pair (𝑎, 𝑏) is OV-hard

so we do not expect an 𝑂(poly 𝑑 	𝑚123) algorithm

OV is in time 𝑂(2�𝑚)

the theorem „generalizes“ this OV-algorithm to Dominance Reporting

Dominance Reporting is in time 𝑂 𝑚	 log𝑚 � 	+ 	outputsize



Dominance Reporting

Dominance Reporting problem:

given sets 𝐴,𝐵 of (integer-valued) vectors in ℝ� ,  𝐴 + 𝐵 = 𝑚

report all pairs 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 where 𝑏 dominates 𝑎

if 𝑑 = 0: report all pairs 𝐴×𝐵
otherwise:

find median 𝑥 of 𝑑-th coordinates of all points in 𝐴 ∪ 𝐵 - time 𝑂(𝑚)

assume all coordinates to be different

𝐴¡ ≔ 𝑎 ∈ 𝐴	 	𝑎� < 𝑥} and 𝐴¢ ≔ 𝐴\𝐴¡
𝐵¡ ≔ 𝑏 ∈ 𝐵	 	𝑏� < 𝑥} and 𝐵¢ ≔ 𝐵\𝐵¡
recursively solve 𝐴¢, 𝐵¢ , (𝐴¡ , 𝐵¡ ), and (𝐴¡ ,𝐵¢ )

remove 𝑑-th coordinates!

𝑇� 𝑚 ≤ 2𝑇� 𝑚/2 + 𝑇�2g 𝑚 +𝑚

Thm: Dominance Reporting is in time 𝑂 𝑚	 log𝑚 � 	+ 	outputsize



Dominance Reporting

𝑇� 𝑚 ≤ 2𝑇� 𝑚/2 + 𝑇�2g 𝑚 + 𝑚

𝑇  𝑚 = 𝑇� 1 = 0Excluding cost of output:

𝑇� 𝑚 ≤ 𝑚	 log2𝑚 � − 𝑚Inductively prove that: 

𝑇� 𝑚 ≤ 2
𝑚
2 	 log𝑚

� −
𝑚
2 + 𝑚	 log2𝑚 �2g −𝑚 +𝑚

= 𝑚	 (log2𝑚) − 1 � +𝑚	(log2𝑚)�2g−𝑚

= 𝑚	(log 2𝑚)� 1 − 1/ log2𝑚 � +𝑚	(log2𝑚)�2g−𝑚

≤ 𝑚	(log 2𝑚)� 1 − 1/ log2𝑚 + 𝑚	(log2𝑚)�2g−𝑚

= 𝑚	(log 2𝑚)� − 𝑚



Dominance Reporting

Dominance Reporting problem:

given sets 𝐴,𝐵 of (integer-valued) vectors in ℝ� ,  𝐴 + 𝐵 = 𝑚

report all pairs 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 where 𝑏 dominates 𝑎

Thm: Dominance Reporting is in time 𝑂 𝑚	 log𝑚 � 	+ 	outputsize

Thm: Without bit-tricks, 3SUM is in time  𝑂(𝑛1 ⋅ =87> 789 789 <
789 <

)

this finishes the proof of:



Outline

1) algorithm for small universe

2) quadratic algorithm

3) small decision tree

4) logfactor improvement

5) some 3SUM-hardness results



GeomBase

given a set of 𝑛 points on three horinzontal lines 𝑦 = 0,𝑦 = 1, 𝑦 = 2, determine 
whether there exists a non-horizontal line containing three of the points

GeomBase is even equivalent to 3SUM

Thm: GeomBase is 3SUM-hard.

Given an instance	(𝐴, 𝐵, 𝐶) of 3SUM

𝑦 = 0

𝑦 = 1

𝑦 = 2

construct points:
(𝑎, 0) for any 𝑎 ∈ 𝐴
(𝑏,2) for any 𝑏 ∈ 𝐵
(𝑐/2,1) for any 𝑐 ∈ 𝐶

they lie on a line if  𝑐/2 − 𝑎 = 𝑏 − 𝑐/2		 ⇔ 		𝑎 + 𝑏 = 𝑐



3-Points-on-line / Collinear

given a set of 𝑛 points in the plane, 
is there a line containing at least 3 of the points?

Thm: 3-Points-on-line is 3SUM-hard.

Given an instance 𝐴 of 3SUM

construct points:
(𝑎, 𝑎/) for any 𝑎 ∈ 𝐴

then 𝑎, 𝑎/ , 𝑐, 𝑐/ , 𝑐 , 𝑐/ are collinear if and only if 𝑎 + 𝑏 + 𝑐 = 0

(without proof)



3-Points-on-line / Collinear

given a set of 𝑛 possibly half-infinite, closed horizontal line segments, 
is there a non-horizontal separator?

Thm: Separator is 3SUM-hard.



Planar Motion Planning

given a set of line segment obstacles 
in the plane and a line segment robot, 
decide whether the robot can be 
moved (allowing translation and 
rotation) from a given source to a 
given goal configuration without 
colliding with the obstacles.

Thm: PlanarMotionPlanning
is 3SUM-hard.


