

Complexity Theory of Polynomial-Time Problems

Lecture 7: 3SUM II

Sebastian Krinninger

Reminder: 3SUM

given sets A, B, C of n integers

are there $a \in A, b \in B, c \in C$ such that a + b + c = 0?

well-known: $O(n^2)$

Conjecture: no $O(n^{2-\varepsilon})$ algorithm

 \rightarrow 3SUM-Hardness

Alternative algorithm: $O(|A| \cdot |B| + |C|)$ (store negated pairwise sums in hashmap)

Reminder: Hashing

Hash function $h: [U] \rightarrow [R]$ $\boldsymbol{\chi}$ h(x)2 R 1

Goal: Distribute uniformly, avoid collisions, etc.

Magical hash functions

Desired properties for family of hash functions from $[U] \rightarrow [R]$ (i.e., for every *h* chosen from family)

Uniform difference: Pr[h(x) - h(y) = i] = 1/R

(for any $x, y \in [U]$ s.t. $x \neq y$ and $i \in [R]$)

Balanced: $|\{x \in S : h(x) = i\}| \le 3n/R$

(for any set $S = \{x_1, \dots, x_n\} \subseteq [U]$ and any $i \in [R]$)

Linear: $h(x) + h(y) = h(x + y) \pmod{R}$

(for any $x, y \in [U]$)

But: We do not know such a family...

Almost magical hash functions

Desired properties for family of hash functions from $[U] \rightarrow [R]$ (i.e., for every *h* chosen from family)

Uniform difference: Pr[h(x) - h(y) = i] = 1/R

(for any $x, y \in [U]$ s.t. $x \neq y$ and $i \in [R]$)

Almost balanced:	Expected number of elements from S hashed to
	heavy values is $O(R)$, where value $i \in [R]$ is heavy if
	$ \{x \in S : h(x) = i\} > 3n/R$

(for any set $S = \{x_1, ..., x_n\} \subseteq [U]$ and any $i \in [R]$)

Almost linear: $h(x) + h(y) \in h(x + y) + c_h + \{0,1\} \pmod{R}$

(for any $x, y \in [U]$ and some integer c_h depending only on h)

Definition of hash function

Set r = km for some $k \ge U/2$ and U, R, r powers of 2

 $\mathcal{H}_{U,R,r} = \{h_{a,b} \colon [U] \to [R] \mid a \in [r] \text{ odd integer and } b \in [r]\}$

$$h_{a,b}(x) = (ax + b \bmod r) \operatorname{div} (r/R)$$

Thm: Family $\mathcal{H}_{U,R,r}$ is has the uniform difference property, is almost balanced and almost linear with $c_{h_{a,b}} = (b - 1 \mod r) \operatorname{div} (r/R)$.

(Pairwise independence [Dietzfelbinger '96] implies uniform difference (easy to check) and almost balanced [Baran et al. '08]. Almost linear: easy to check.)

Rest of this lecture: h picked randomly from this family

Hashing down the universe

Lem: If 3SUM on universe of size $O(n^3)$ solvable in exp. time $O(n^{2-\epsilon})$, then 3SUM on arbitrary universe solvable in expect. time $O(n^{2-\epsilon})$.

Follows from [Baran et al. '08]

Algorithm:

Repeat until output:

- Pick hash function $h: [1 \dots U] \rightarrow [1 \dots 6n^3]$ at random
- $A' = \{h(a) \mid a \in A\}, B' = \{h(b) \mid b \in B\}, C' = \{h(c) + c_h \mid c \in C\}$
- $A'' = \{h(a) \mid a \in A\}, B'' = \{h(b) \mid b \in B\}, C'' = \{h(c) + c_h + 1 \mid c \in C\}$
- Solve two 3SUM instances (A', B', C') and (A'', B'', C'')
- If algorithm reports no 3SUM witness: output 'no 3SUM'
- Consider first reported 3SUM witness x', y', z' for (A', B', C'):
 - If $h^{-1}(x')$, $h^{-1}(y')$, $h^{-1}(z' c_h)$ contains witness *x*, *y*, *z*: output *x*, *y*, *z*
- Consider first reported 3SUM witness x'', y'', z'' for (A'', B'', C''):
 - If $h^{-1}(x'')$, $h^{-1}(y'')$, $h^{-1}(z'' c_h 1)$ contains witness *x*, *y*, *z*: output *x*, *y*, *z*

No false negatives: If x + y = z, then $h(x) + h(y) \in h(z) + c_h + \{0,1\}$

Running Time

We need to bound:

- Number of iterations O(1)
- Number of candidate witnesses 0(1)

Then: number of calls to 3SUM algorithm: O(1)

Number of iterations:

Triple x, y, z gives false positive if $x + y \neq z$ and one of $h(x) + h(y) = h(z) + c_h$ or $h(x) + h(y) = h(z) + c_h + 1$ Linearity: $h(x) + h(y) = h(x + y) + c_h$ or $h(x) + h(y) = h(x + y) + c_h + 1$ Thus, probability that fixed x, y, z (with $x + y \neq z$) gives false positive is: $\Pr[h(x + y) - h(z) \in \{-1, 0, 1\}] \leq \frac{3}{6n^3} = \frac{1}{2n^3}$ (uniform difference) Overall probability of false positive: $\leq n^3 \cdot \frac{1}{2n^3} = \frac{1}{2}$ In expectation: 2 iterations until no false positive (waiting time bound)

(If no false positive, then algorithm certainly stops)

9/19

Running Time

We need to bound:

- Number of iterations O(1)
- Number of candidate witnesses 0(1)

Then: number of calls to 3SUM algorithm: 0(1)

Number of candidate witnesses: Fix 3SUM witness x', y', z' of instance (A', B', C')Let $x^* \in h^{-1}(x')$ For every $x \neq x^*$: $\Pr[h(x) = h(x^*)] = \frac{1}{6n^3}$ (uniform difference)

 $E[|h^{-1}(x')|] \le 1 + \frac{n}{4n^3} \le 2$ Similarly: $E[|h^{-1}(y')|] \le 2, E[|h^{-1}(z')|] \le 2$

 $E[|h^{-1}(x') \cup h^{-1}(y') \cup h^{-1}(z')|] \le O(1)$ (linearity of expectation) In expectation, algorithm manually checks constant number of candidate witnesses per iteration

max planck institut

Convolution 3SUM

Given array A[1 ... n] of integers are there *i*, *j* such that A[i] + A[j] = A[i + j]?

trivial algorithm: $O(n^2)$

Thm: There is no $O(n^{2-\epsilon})$ algorithm for Convolution 3SUM unless the 3SUM Conjecture fails.

[Pătrașcu 2010]

Stepping stone towards hardness of other "structured" problems

Reduction from 3SUM

Given set $X \subseteq [U]$ of integers

max planck institut informatik

are there $x, y, z \in X$ such that x + y = z?

Preprocessing: Check if there is a solution 2x = z $O(n \log n)$

Pick random hash function $h: [U] \rightarrow [R]$ (almost linear, etc.)

For this proof: assume h is almost balanced and linear (magically...)

In expectation: O(R) elements in buckets with load > 3n/R (almost bal.) For each such *x*: check for 3SUM triple involving *x* O(Rn) (in exp.)

Convolution 3SUM instance

Number elements in each bucket from 0 to $\frac{3n}{R} - 1$ Iterate over all triples $i, j, k \in [3n/R]$

For every bucket *t*:

- Put *i*-th element to A[8t + 1]
- Put *j*-th element to A[8t + 3]
- Put k-th element to A[8t + 4]

Set all other array entries to ∞ (sufficiently large number)

Correctness

Assume x + y = z

0

00

Then $h(x) + h(y) = h(z) \pmod{R}$ (linearity)

If x = y, triple found in preprocessing

If *x*, *y*, or *z* hashed to heavy bucket: triple found in second step

Either h(x) + h(y) = h(z) or h(x) + h(y) = h(z) + R

Duplicate array for Convolution 3SUM instance

A[8h(x) + 1] + A[8h(y) + 3] = A[8h(z) + 4] orA[8h(x) + 1] + A[8h(y) + 3] = A[8(h(z) + R) + 4]

Thus, no false negatives. Also no false positives:

Observation: A[i] + A[j] = A[i + j] only if $i = 8t_1 + 1$ and $j = 8t_2 + 3$

 $(x + y = z \pmod{8})$ has unique solution over $\{1,3,4\}$ and $A[i] \neq A[j]$)

Running Time

Assumption: Convolution 3SUM in time $O(n^{2-\epsilon})$

Total expected running time: $O\left(n\log n + nR + \left(\frac{n}{R}\right)^3 n^{2-\epsilon}\right)$

Set $R = n^{1-\epsilon/4}$

Total time: $O(n^{2-\epsilon/4})$

Contradicts 3SUM Conjecture

Set Disjointness Problem

1. **Preprocess** subsets $\mathcal{A}, \mathcal{B} \subseteq U$ over universe U

2. Answer **queries**: Given $A \in \mathcal{A}, B \in \mathcal{B}$, is $A \cap B \neq \emptyset$?

Repeated queries

(Static) data structure

Queries not known in advance

Goal: Lower bound on preprocessing and query time

Offline Set Disjointness: q queries known in advance (part of input)

Reduction to 3SUM [Kopelowitz et al]

Thm: Let f(n) be such that 3SUM requires expected time $\Omega(n^2/f(n))$. For any constant $0 \le \gamma < 1$, let ALG be an algorithm for offline Set Disjointness where $|\mathcal{A}| = |\mathcal{B}| = \Theta(n \log n)$, $|U| = \Theta(n^{2-2\gamma})$, each set in $\mathcal{A} \cup \mathcal{B}$ has at most $O(n^{1-\gamma})$ elements from U, and $q = \Theta(n^{1+\gamma} \log n)$. Then ALG requires expected time $\Omega(n^2/f(n))$.

Cor: Assuming the 3SUM conjecture, for any $0 < \gamma < 1$, any data structure for Set Disjointness has

$$t_p + N^{\frac{1+\gamma}{2-\gamma}} t_q = \Omega\left(N^{\frac{2}{2-\gamma}-o(1)}\right)$$

where *N* is the sum of the set sizes, t_p is the preprocessing time, and t_q is the time per query.

(From Thm: $N = \Theta(n^{2-\gamma} \log n)$)

Example: Data structures with constant query time Make γ tend to 1, need $t_p = \Omega(N^{2-o(1)})$ Evidence that *trivial preprocessing algorithm is optimal (for constant query)*

max planck institut informatik

3SUM version

Given set $X \subseteq [U]$ of integers

are there $x, y, z \in X$ such that x - y = z?

In the following proof we use a balanced, linear hash function with uniform difference property. *(magically...)*

This can be modified for almost balanced, almost linear hash function with uniform difference property.

Crucial insight

Algorithm Overview

Set $R = n^{\gamma}$, $Q = \left(\frac{5n}{R}\right)^2$ Pick random hash functions $h: U \to [R]$ and $g_k: U \to [Q]$ for k = 1 to $10 \log n$ Initialize buckets B[1], ..., B[R] s.t. $B[i] = \{x : h(x) = i\}$

For all
$$i \in [R], j \in [\sqrt{Q}]$$
, initialize buckets $B_k^{\uparrow}[i, j]$ and $B_k^{\downarrow}[i, j]$ s.t.
 $B_k^{\uparrow}[i, j] = \{g_k(x) + j \cdot \sqrt{Q} \pmod{Q} \mid x \in B[i]\}$
 $B_k^{\downarrow}[i, j] = \{g_k(x) - j \pmod{Q} \mid x \in B[i]\}$

Initialize k set intersection problems with $B_k^{\uparrow}[i, j]$'s and $B_k^{\downarrow}[i, j]$'s

```
For every z \in X and every i = 1 to R

Check if B_k^{\uparrow}[i, g_k^{\uparrow}(z)] and B_k^{\downarrow}[i - h(z) \pmod{R}, g_k^{\downarrow}(z)] intersect

If intersection for all k:

Search for x \in B[i] and y \in B[i - h(z) \pmod{R}] s.t.

x - y = z and output it if found
```

If nothing found: output 'no 3SUM'

max planck institut informatik

 $g_k^{\uparrow}(z)$: higher order bits of $g_k(z)$ $g_k^{\downarrow}(z)$: higher order bits of $g_k(z)$

Correctness I

Algorithm verifies every triple before stopping Need to show: if x - y = z, then algorithm finds it

Claim 1: If x - y = z, then $B[i] \cap (B[j] + z) \neq \emptyset$ where $i = h(x), j = i - h(z) \pmod{R}$

Linear hash function: $h(x) - h(y) = h(x - y) = h(z) \pmod{R}$ Thus: $j = h(x) - h(z) = i - h(z) \pmod{R}$ $y \in B[j] \Rightarrow x = y + z \in B[j] + z$

Correctness II

Claim 1: If x - y = z, then $B[i] \cap (B[j] + z) \neq \emptyset$ where $i = h(x), j = i - h(z) \pmod{R}$

> max planck institut informatik

Claim 2: If $B[i] \cap B[j] + z \neq \emptyset$, then $B^{\uparrow}[i, g_k^{\uparrow}(z)] \cap B^{\downarrow}[j, g_k^{\downarrow}(z)] \neq \emptyset \forall k$.

$$B[i] \cap B[j] + z \neq \emptyset$$

$$\downarrow$$

$$g_k(B[i]) \cap g_k(B[j] + z) \neq \emptyset$$

$$\downarrow$$

$$g_k(B[i]) \cap (g_k(B[j]) + g_k(z)) \neq \emptyset$$

$$\downarrow$$

$$g_k(B[i]) \cap (g_k(B[j]) + g_k^{\uparrow}(z) + g_k^{\downarrow}(z)) \neq \emptyset$$

$$\downarrow$$

$$(g_k(B[i]) - g_k^{\uparrow}(z)) \cap (g_k(B[j]) + g_k^{\downarrow}(z)) \neq \emptyset$$

$$\downarrow$$

$$B^{\uparrow}[i, g_k^{\uparrow}(z)] \cap B^{\downarrow}[j, g_k^{\downarrow}(z)] \neq \emptyset$$

Conclusion: If x - y = z, then $B^{\uparrow}[i, g_k^{\uparrow}(z)] \cap B^{\downarrow}[j, g_k^{\downarrow}(z)] \neq \emptyset \forall k$.

Running time

Set intersection instance:

- Number of sets: $O(R\sqrt{Q}k) = O(n\log n)$
- Number of elements in each set: $O(\sqrt{Q}) = O(n^{1-\gamma})$
- Size of universe: $O(Q) = O(n^{2-2\gamma})$
- Number of set intersection queries: $O(nRk) = O(n^{1+\gamma} \log n)$

Finding witnesses:

- If $B_k^{\uparrow}[i, g_k^{\uparrow}(z)]$ and $B_k^{\downarrow}[j, g_k^{\downarrow}(z)]$ intersect, try to find $x \in B[i], y \in B[j]$ s.t. x - y = z
- Time $O\left(\frac{n}{R}\right)$ per witness check
- But: pair *i*, *j* could be **false positive** with no such $x \in B[i], y \in B[j]$
- Probability of false positive is small
- In expectation: O(1) false positives (next slide)
- Total time: $O\left(\frac{n}{R} + (\# \text{false positives})\frac{n}{R}\right) = O\left(\frac{n}{R}\right)$

Bounding number of false positive

For a fixed z and any pair $x, y \in U$ s.t. $x - y \neq z$: $\Pr[g_k(x) = g_k(y) + g_k(z)] = \Pr[g_k(x - y) = g_k(z)] = \frac{1}{Q}$ *(linear and uniform difference)*

Remember: Every bucket has size $\leq \frac{3n}{R}$ (balanced) Prob. of false positive in buckets B[i] and B[j] for hash function g_k : $\Pr[g_k(B[i]) = g_k(B[j]) + g_k(z)] \leq \left(\frac{3n}{R}\right)^2 \frac{1}{Q} = \frac{9}{25}$ Prob. of false positive in buckets B[i] and B[j] for **all** hash functions g_k : $\leq \frac{1}{n^c}$

In expectation: total number of false positives is a constant.

