リIリII
 max planck institut informatik

Complexity Theory of Polynomial-Time Problems

Lecture 7: 3SUM II

Sebastian Krinninger

Reminder: 3SUM

> given sets A, B, C of n integers
> are there $a \in A, b \in B, c \in C$ such that $a+b+c=0$?
well-known: $O\left(n^{2}\right)$

Conjecture: no $O\left(n^{2-\varepsilon}\right)$ algorithm
\rightarrow 3SUM-Hardness

Alternative algorithm: $O(|A| \cdot|B|+|C|)$ (store negated pairwise sums in hashmap)

Reminder: Hashing

Hash function $h:[U] \rightarrow[R]$

Goal: Distribute uniformly, avoid collisions, etc.

Magical hash functions

Desired properties for family of hash functions from $[U] \rightarrow[R]$
(i.e., for every h chosen from family)

Uniform difference: $\operatorname{Pr}[h(x)-h(y)=i]=1 / R$
(for any $x, y \in[U]$ s.t. $x \neq y$ and $i \in[R]$)

$$
\text { Balanced: } \quad|\{x \in S: h(x)=i\}| \leq 3 n / R
$$

(for any set $S=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq[U]$ and any $i \in[R]$)
Linear: $\quad h(x)+h(y)=h(x+y)(\bmod R)$
(for any $x, y \in[U]$)

But: We do not know such a family...

Almost magical hash functions

Desired properties for family of hash functions from $[U] \rightarrow[R]$
(i.e., for every h chosen from family)

Uniform difference: $\operatorname{Pr}[h(x)-h(y)=i]=1 / R$
(for any $x, y \in[U]$ s.t. $x \neq y$ and $i \in[R]$)
Almost balanced: Expected number of elements from S hashed to heavy values is $O(R)$, where value $i \in[R]$ is heavy if $|\{x \in S: h(x)=i\}|>3 n / R$
(for any set $S=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq[U]$ and any $i \in[R]$)
Almost linear: $\quad h(x)+h(y) \in h(x+y)+c_{h}+\{0,1\}(\bmod R)$
(for any $x, y \in[U]$ and some integer c_{h} depending only on h)

Definition of hash function

Set $r=k m$ for some $k \geq U / 2$ and U, R, r powers of 2

$$
\begin{gathered}
\mathcal{H}_{U, R, r}=\left\{h_{a, b}:[U] \rightarrow[R] \mid a \in[r] \text { odd integer and } b \in[r]\right\} \\
h_{a, b}(x)=(a x+b \bmod r) \operatorname{div}(r / R)
\end{gathered}
$$

Thm: Family $\mathcal{H}_{U, R, r}$ is has the uniform difference property, is almost balanced and almost linear with $c_{h_{a, b}}=(b-1 \bmod r) \operatorname{div}(r / R)$.
> (Pairwise independence [Dietzfelbinger '96] implies uniform difference (easy to check) and almost balanced [Baran et al. '08]. Almost linear: easy to check.)

Rest of this lecture: h picked randomly from this family

Hashing down the universe

Lem: If 3SUM on universe of size $O\left(n^{3}\right)$ solvable in exp. time $O\left(n^{2-\epsilon}\right)$, then 3SUM on arbitrary universe solvable in expect. time $O\left(n^{2-\epsilon}\right)$.

Follows from [Baran et al. '08]

Algorithm:

Repeat until output:

- Pick hash function $h:[1 \ldots U] \rightarrow\left[1 \ldots 6 n^{3}\right]$ at random
- $A^{\prime}=\{h(a) \mid a \in A\}, B^{\prime}=\{h(b) \mid b \in B\}, C^{\prime}=\left\{h(c)+c_{h} \mid c \in C\right\}$
- $A^{\prime \prime}=\{h(a) \mid a \in A\}, B^{\prime \prime}=\{h(b) \mid b \in B\}, C^{\prime \prime}=\left\{h(c)+c_{h}+1 \mid c \in C\right\}$
- Solve two 3SUM instances ($A^{\prime}, B^{\prime}, C^{\prime}$) and ($A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$)
- If algorithm reports no 3SUM witness: output 'no 3SUM'
- Consider first reported 3SUM witness $x^{\prime}, y^{\prime}, z^{\prime}$ for ($A^{\prime}, B^{\prime}, C^{\prime}$):
- If $h^{-1}\left(x^{\prime}\right), h^{-1}\left(y^{\prime}\right), h^{-1}\left(z^{\prime}-c_{h}\right)$ contains witness x, y, z : output x, y, z
- Consider first reported 3SUM witness $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$ for ($A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$):
- If $h^{-1}\left(x^{\prime \prime}\right), h^{-1}\left(y^{\prime \prime}\right), h^{-1}\left(z^{\prime \prime}-c_{h}-1\right)$ contains witness x, y, z : output x, y, z

No false negatives: If $x+y=z$, then $h(x)+h(y) \in h(z)+c_{h}+\{0,1\}$

Running Time

We need to bound:

- Number of iterations $O(1)$
- Number of candidate witnesses $O(1)$

Then: number of calls to 3SUM algorithm: O (1)

Number of iterations:

Triple x, y, z gives false positive if $x+y \neq z$ and one of

$$
h(x)+h(y)=h(z)+c_{h} \text { or } h(x)+h(y)=h(z)+c_{h}+1
$$

Linearity: $h(x)+h(y)=h(x+y)+c_{h}$ or $h(x)+h(y)=h(x+y)+c_{h}+1$
Thus, probability that fixed x, y, z (with $x+y \neq z$) gives false positive is:

$$
\operatorname{Pr}[h(x+y)-h(z) \in\{-1,0,1\}] \leq \frac{3}{6 n^{3}}=\frac{1}{2 n^{3}} \quad \text { (uniform difference) }
$$

Overall probability of false positive: $\leq n^{3} \cdot \frac{1}{2 n^{3}}=\frac{1}{2}$
In expectation: 2 iterations until no false positive
(waiting time bound)
(If no false positive, then algorithm certainly stops)

Running Time

We need to bound:

- Number of iterations $O(1)$
- Number of candidate witnesses $O(1)$

Then: number of calls to 3SUM algorithm: O (1)

Number of candidate witnesses:

Fix 3SUM witness $x^{\prime}, y^{\prime}, z^{\prime}$ of instance $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$
Let $x^{*} \in h^{-1}\left(x^{\prime}\right)$
For every $x \neq x^{*}: \operatorname{Pr}\left[h(x)=h\left(x^{*}\right)\right]=\frac{1}{6 n^{3}} \quad$ (uniform difference)
$E\left[\left|h^{-1}\left(x^{\prime}\right)\right|\right] \leq 1+\frac{n}{4 n^{3}} \leq 2$
Similarly: $E\left[\left|h^{-1}\left(y^{\prime}\right)\right|\right] \leq 2, E\left[\left|h^{-1}\left(z^{\prime}\right)\right|\right] \leq 2$
$E\left[\left|h^{-1}\left(x^{\prime}\right) \cup h^{-1}\left(y^{\prime}\right) \cup h^{-1}\left(z^{\prime}\right)\right|\right] \leq O(1) \quad$ (linearity of expectation)
In expectation, algorithm manually checks constant number of candidate witnesses per iteration

Convolution 3SUM

Given array $A[1 \ldots n]$ of integers are there i, j such that $A[i]+A[j]=A[i+j]$?

trivial algorithm: $O\left(n^{2}\right)$

Thm: There is no $O\left(n^{2-\epsilon}\right)$ algorithm for Convolution 3SUM unless the 3SUM Conjecture fails.
[Pătrașcu 2010]

Stepping stone towards hardness of other "structured" problems

Reduction from 3SUM

Given set $X \subseteq[U]$ of integers
are there $x, y, z \in X$ such that $x+y=z$?

Preprocessing: Check if there is a solution $2 x=z \quad O(n \log n)$
Pick random hash function $h:[U] \rightarrow[R] \quad$ (almost linear, etc.)
For this proof: assume h is almost balanced and linear (magically...)

In expectation: $O(R)$ elements in buckets with load $>3 n / R$ (almost bal.)
For each such x : check for 3SUM triple involving x $O(R n)$ (in exp.)

Convolution 3SUM instance

Number elements in each bucket from 0 to $\frac{3 n}{R}-1$
Iterate over all triples $i, j, k \in[3 n / R]$

For every bucket t :

- Put i-th element to $A[8 t+1]$
- Put j-th element to $A[8 t+3]$
- Put k-th element to $A[8 t+4]$

Set all other array entries to ∞ (sufficiently large number)
$\left(\frac{3 n}{R}\right)^{3}$ instances of Convolution 3SUM

Correctness

Assume $x+y=z$
Then $h(x)+h(y)=h(z)(\bmod R) \quad$ (linearity)
If $x=y$, triple found in preprocessing
If x, y, or z hashed to heavy bucket: triple found in second step
Either $h(x)+h(y)=h(z)$ or $h(x)+h(y)=h(z)+R$
Duplicate array for Convolution 3SUM instance

$A[8 h(x)+1]+A[8 h(y)+3]=A[8 h(z)+4]$ or
$A[8 h(x)+1]+A[8 h(y)+3]=A[8(h(z)+R)+4]$
Thus, no false negatives. Also no false positives:
Observation: $\quad A[i]+A[j]=A[i+j]$ only if $i=8 t_{1}+1$ and $j=8 t_{2}+3$
$(x+y=z(\bmod 8)$ has unique solution over $\{1,3,4\}$ and $A[i] \neq A[j])$

Running Time

Assumption：Convolution 3SUM in time $O\left(n^{2-\epsilon}\right)$
Total expected running time：$O\left(n \log n+n R+\left(\frac{n}{R}\right)^{3} n^{2-\epsilon}\right)$
Set $R=n^{1-\epsilon / 4}$
Total time：$O\left(n^{2-\epsilon / 4}\right)$
Contradicts 3SUM Conjecture

Set Disjointness Problem

1. Preprocess subsets $\mathcal{A}, \mathcal{B} \subseteq U$ over universe U
2. Answer queries: Given $A \in \mathcal{A}, B \in \mathcal{B}$, is $A \cap B \neq \emptyset$?

Repeated queries
(Static) data structure
Queries not known in advance

Goal: Lower bound on preprocessing and query time

Offline Set Disjointness: q queries known in advance (part of input)

Reduction to 3SUM [Kopelowitz et al]

Thm: Let $f(n)$ be such that 3SUM requires expected time $\Omega\left(n^{2} / f(n)\right)$. For any constant $0 \leq \gamma<1$, let ALG be an algorithm for offline Set Disjointness where $|\mathcal{A}|=|\mathcal{B}|=\Theta(n \log n),|U|=\Theta\left(n^{2-2 \gamma}\right)$, each set in $\mathcal{A} \cup \mathcal{B}$ has at most $O\left(n^{1-\gamma}\right)$ elements from U, and $q=$ $\Theta\left(n^{1+\gamma} \log n\right)$. Then ALG requires expected time $\Omega\left(n^{2} / f(n)\right)$.

Cor: Assuming the 3SUM conjecture, for any $0<\gamma<1$, any data structure for Set Disjointness has

$$
t_{p}+N^{\frac{1+\gamma}{2-\gamma}} t_{q}=\Omega\left(N^{\frac{2}{2-\gamma}-o(1)}\right)
$$

where N is the sum of the set sizes, t_{p} is the preprocessing time, and t_{q} is the time per query.
(From Thm: $N=\Theta\left(n^{2-\gamma} \log n\right)$)
Example: Data structures with constant query time
Make γ tend to 1 , need $t_{p}=\Omega\left(N^{2-o(1)}\right)$
Evidence that trivial preprocessing algorithm is optimal (for constant query)

3SUM version

Given set $X \subseteq[U]$ of integers
 are there $x, y, z \in X$ such that $x-y=z$ ？

In the following proof we use a balanced，linear hash function with uniform difference property．（magically．．．）

This can be modified for almost balanced，almost linear hash function with uniform difference property．

Crucial insight

Algorithm Overview

Set $R=n^{\gamma}, Q=\left(\frac{5 n}{R}\right)^{2}$
Pick random hash functions $h: U \rightarrow[R]$ and $g_{k}: U \rightarrow[Q]$ for $k=1$ to $10 \log n$ Initialize buckets $B[1], \ldots, B[R]$ s．t．$B[i]=\{x: h(x)=i\}$

For all $i \in[R], j \in[\sqrt{Q}]$ ，initialize buckets $B_{k}^{\uparrow}[i, j]$ and $B_{k}^{\downarrow}[i, j]$ s．t．

$$
\begin{aligned}
& B_{k}^{\uparrow}[i, j]=\left\{g_{k}(x)+j \cdot \sqrt{Q}(\bmod Q) \mid x \in B[i]\right\} \\
& B_{k}^{\downarrow}[i, j]=\left\{g_{k}(x)-j(\bmod Q) \mid x \in B[i]\right\}
\end{aligned}
$$

Initialize k set intersection problems with $B_{k}^{\uparrow}[i, j]$＇s and $B_{k}^{\downarrow}[i, j]$＇s
For every $z \in X$ and every $i=1$ to R
Check if $B_{k}^{\uparrow}\left[i, g_{k}^{\uparrow}(z)\right]$ and $B_{k}^{\downarrow}\left[i-h(z)(\bmod R), g_{k}^{\downarrow}(z)\right]$ intersect If intersection for all k ：

Search for $x \in B[i]$ and $y \in B[i-h(z)(\bmod R)]$ s．t． $x-y=z$ and output it if found

If nothing found：output＇no 3SUM＇
$g_{k}^{\uparrow}(z)$ ：higher order bits of $g_{k}(z)$
$g_{k}^{\downarrow}(z)$ ：higher order bits of $g_{k}(z)$

Correctness I

Algorithm verifies every triple before stopping Need to show：if $x-y=z$ ，then algorithm finds it

Claim 1：If $x-y=z$ ，then $B[i] \cap(B[j]+z) \neq \emptyset$ where $i=h(x), j=i-h(z)(\bmod R)$

Linear hash function：$h(x)-h(y)=h(x-y)=h(z)(\bmod R)$
Thus：$j=h(x)-h(z)=i-h(z)(\bmod R)$

$$
y \in B[j] \Rightarrow x=y+z \in B[j]+z
$$

$B[i]$

B［j］

Correctness II

Claim 1: If $x-y=z$, then $B[i] \cap(B[j]+z) \neq \varnothing$ where $i=h(x), j=i-h(z)(\bmod R)$

Claim 2: If $B[i] \cap B[j]+z \neq \emptyset$, then $B^{\uparrow}\left[i, g_{k}^{\uparrow}(z)\right] \cap B^{\downarrow}\left[j, g_{k}^{\downarrow}(z)\right] \neq \emptyset \forall k$.

$$
\begin{gathered}
B[i] \cap B[j]+z \neq \varnothing \\
\Downarrow \\
g_{k}(B[i]) \cap g_{k}(B[j]+z) \neq \emptyset \\
\mathbb{\Downarrow} \\
g_{k}(B[i]) \cap\left(g_{k}(B[j])+g_{k}(z)\right) \neq \emptyset \\
\mathbb{\Downarrow} \\
g_{k}(B[i]) \cap\left(g_{k}(B[j])+g_{k}^{\uparrow}(z)+g_{k}^{\downarrow}(z)\right) \neq \emptyset \\
\left(g_{k}(B[i])-g_{k}^{\uparrow}(z)\right) \cap\left(g_{k}(B[j])+g_{k}^{\downarrow}(z)\right) \neq \varnothing \\
B^{\uparrow}\left[i, g_{k}^{\uparrow}(z)\right] \cap B^{\downarrow}\left[j, g_{k}^{\downarrow}(z)\right] \neq \varnothing
\end{gathered}
$$

Conclusion: If $x-y=z$, then $B^{\uparrow}\left[i, g_{k}^{\uparrow}(z)\right] \cap B^{\downarrow}\left[j, g_{k}^{\downarrow}(z)\right] \neq \emptyset \forall k$.

Running time

Set intersection instance:

- Number of sets: $O(R \sqrt{Q} k)=O(n \log n)$
- Number of elements in each set: $O(\sqrt{Q})=O\left(n^{1-\gamma}\right)$
- Size of universe: $O(Q)=O\left(n^{2-2 \gamma}\right)$
- Number of set intersection queries: $O(n R k)=O\left(n^{1+\gamma} \log n\right)$

Finding witnesses:

- If $B_{k}^{\uparrow}\left[i, g_{k}^{\uparrow}(z)\right]$ and $B_{k}^{\downarrow}\left[j, g_{k}^{\downarrow}(z)\right]$ intersect, try to find $x \in B[i], y \in B[j]$ s.t. $x-y=z$
- Time $O\left(\frac{n}{R}\right)$ per witness check
- But: pair i, j could be false positive with no such $x \in B[i], y \in B[j]$
- Probability of false positive is small
- In expectation: $O(1)$ false positives (next slide)
- Total time: $O\left(\frac{n}{R}+(\#\right.$ false positives $\left.) \frac{n}{R}\right)=O\left(\frac{n}{R}\right)$

Bounding number of false positive

For a fixed z and any pair $x, y \in U$ s.t. $x-y \neq z$:

$$
\begin{aligned}
& \operatorname{Pr}\left[g_{k}(x)=g_{k}(y)+g_{k}(z)\right]=\operatorname{Pr}\left[g_{k}(x-y)=g_{k}(z)\right]=\frac{1}{Q} \\
& \quad \text { (linear and uniform difference) }
\end{aligned}
$$

Remember: Every bucket has size $\leq \frac{3 n}{R} \quad$ (balanced)
Prob. of false positive in buckets $B[i]$ and $B[j]$ for hash function g_{k} :

$$
\operatorname{Pr}\left[g_{k}(B[i])=g_{k}(B[j])+g_{k}(z)\right] \leq\left(\frac{3 n}{R}\right)^{2} \frac{1}{Q}=\frac{9}{25}
$$

Prob. of false positive in buckets $B[i]$ and $B[j]$ for all hash functions g_{k} :

$$
\leq \frac{1}{n^{c}}
$$

In expectation: total number of false positives is a constant.

