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Recall: Boolean Matrix Multiplication

given 𝑛×𝑛 matrices 𝐴, 𝐵 with entries in {0,1}
compute matrix 𝐶 with 𝐶+,, = ⋁ 𝐴+,/ ∧ 𝐵/,,1

/23

what we already know about BMM:

BMM is in time 𝑂(𝑛6/ log𝑛) (four Russians)

BMM is equivalent to computing the Transitive Closure of a given graph

BMM can be reduced to APSP 	→ 𝑂(𝑛6/2 ?@A 1)

⋮ ⋮
⋮𝑛 𝑛𝑛



𝜔 ≤ …
Strassen’69 2.81
Pan’78 2.79

Bini et al.’79 2.78

Schönhage’80 2.52

Romani’80 2.52

Coppersmith,Winograd’81 2.50

Strassen’86 2.48

Coppersmith,Winograd’90 2.376

Stothers’10 2.374

Vassilevska-Williams’11 2.37288

Le Gall’14 2.37287

Exponent of Matrix Multiplication

define 𝜔 as the infimum over all 𝑐 such that MM has an 𝑂(𝑛F ) algorithm

note:  MM is in time 𝑂(𝑛GHI) for any 𝜀 > 0

we will be sloppy and write:  MM is in time 𝑂(𝑛G)

Thm: 𝜔 < 3

this is very fast – in theory

all these algorithms have 
impractically large constant factors

(maybe except Strassen’69)

note:  MM is not in time 𝑂(𝑛GNI) for any 𝜀 > 0 𝜔 ≥ 2



Boolean Matrix Multiplication

Thm: BMM is in time 𝑂(𝑛G)

given 𝑛×𝑛 matrices 𝐴, 𝐵 with entries in {0,1}

compute standard matrix product 𝐶′ with 𝐶+,,Q = ∑ 𝐴+,/ ⋅ 𝐵/,,1
+23

define matrix 𝐶 with 𝐶+,, = [𝐶+,,Q > 0]

then 𝐶 is the Boolean matrix product of 𝐴 and 𝐵

Hypothesis: BMM is not in time 𝑂(𝑛GNI)



Combinatorial Algorithms

fast matrix multiplication uses algebraic techniques which are impractical

“combinatorial algorithms”: do not use algebraic techniques

not well defined!

Arlazarov,Dinic,Kronrod, 
Faradzhev‘70 (four russians) 

𝑂(𝑛6/logV𝑛)

Bansal,Williams’09 𝑂(𝑛6 log log 𝑛 V/logW/X𝑛)

Chan’15 𝑂(𝑛6 log log 𝑛 6/log6𝑛)
Yu’15 𝑂(𝑛6	poly log log 𝑛 /logX𝑛)

Hypothesis: BMM has no “combinatorial” algorithm in time 𝑂(𝑛6NI)



In this lecture you learn that...

…(B)MM is useful for designing theoretically fast algorithms

- Exercise: k-Clique in 𝑂(𝑛G//6)

no combinatorial 𝑂(𝑛6NI)

- Exercise: MaxCut in 𝑂(2G1/6	poly(𝑛))
- Node-Weighted Negative Triangle in 𝑂(𝑛G)

…BMM is an obstacle for practically fast / theoretically very fast algorithms

not faster than 𝑂(𝑛V.6\6)

- Exercise: pattern matching with 2 patterns

- Sliding Window Hamming Distance

- Transitive Closure has no 𝑂(𝑛GNI) / combinatorial 𝑂(𝑛6NI) algorithm

- context-free grammar problems



Outline

1) Relations to Subcubic Equivalences
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Corollaries from Subcubic Equivalences

given an unweighted graph 𝐺

does it contain a triangle?

BMM

⟺

Triangle

⟺

All-Pairs-
Triangle

given an unweighted graph 𝐺

vertices 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾

∀𝑖, 𝑗: are they in a triangle with some 𝑘?

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative 
Triangle

⟺

[Vassilevska-Williams,Williams’10]



Corollaries from Subcubic Equivalences

BMM

⟺

Triangle

⟺

All-Pairs-
Triangle

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative 
Triangle

⟺

⋮ ⋮
⋮𝑛 𝑛𝑛

𝐴 𝐵

𝐼 𝐾 𝐽



Corollaries from Subcubic Equivalences

BMM

⟺

Triangle

⟺

All-Pairs-
Triangle

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative 
Triangle

⟺
Given an unweighted undirected graph 𝐺

Adjacency matrix 𝐴, entries in {0,1}

1. Compute Boolean Product 𝐶 ≔ 𝐴 ∗ 𝐴:

𝐶+,, =k 𝐴+,/ ∧ 𝐴/,,
/

2. Compute ⋁ 𝐴+,, ∧ 𝐶+,,+,,

this equals k 𝐴+,, ∧ 𝐴+,/ ∧ 𝐴/,,
+,,,/

thus we solved triangle detection



Corollaries from Subcubic Equivalences

BMM

⟺

Triangle

⟺

All-Pairs-
Triangle

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative 
Triangle

⟺



All-Pairs-Triangle to Triangle All-Pairs-
Triangle

TriangleDecide whether there are vertices 𝑖, 𝑗, 𝑘 such that
𝑖, 𝑗, 𝑘 form a triangle

Triangle

All-Pairs-Triangle
Decide for every 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 whether there is a vertex 𝑘 ∈ 𝐾 such that

𝑖, 𝑗, 𝑘 form a triangle

Given graph 𝐺

Given graph 𝐺 with vertex set 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾

Split 𝐼, 𝐽, 𝐾 into 𝑛/𝑠 parts of size 𝑠:

For each of the (𝑛/𝑠)6	triples (𝐼n, 𝐽o,𝐾p):
consider graph 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]

𝐼3,… , 𝐼1/r,	𝐽3 , … , 𝐽1/r, 𝐾3,… , 𝐾1/r

𝐼n

𝐾p

𝐽o

𝐼

𝐾

𝐽



All-Pairs-Triangle to Triangle

For each of the (𝑛/𝑠)6	triples of parts (𝐼n, 𝐽o,𝐾p):

While 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]	contains a triangle:
Find a triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]

Initialize 𝐶 as 𝑛×𝑛 all-zeroes matrix

Set 𝐶 𝑖, 𝑗 ≔ 1
Delete edge (𝑖, 𝑗)

(𝑖, 𝑗) is in no more triangles

𝐼n

𝐾p

𝐽o

𝐼

𝐾

𝐽✔ guaranteed termination:

✔ correctness:

can delete ≤ 𝑛V edges

if (𝑖, 𝑗)	is in a triangle, 
we will find one

All-Pairs-
Triangle

Triangle



All-Pairs-Triangle to Triangle

Find a triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]

How to find a triangle
if we can only decide whether one exists?

Partition 𝐼n into 𝐼n(3), 𝐼n(V), 𝐽o into 𝐽o(3), 𝐽o(V),  𝐾p into 𝐾p(3),𝐾p(V)

𝐼n

𝐾p

𝐽o

Since 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p] contains a triangle,
at least one of the 26 subgraphs

𝐺[𝐼n(s) ∪ 𝐽o(t) ∪ 𝐾p(F)]
contains a triangle

Decide for each such subgraph whether
it contains a triangle

Recursively find a triangle in one subgraph

All-Pairs-
Triangle

Triangle



All-Pairs-Triangle to Triangle

Find a triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]

How to find a triangle
if we can only decide whether one exists?

Partition 𝐼n into 𝐼n(3), 𝐼n(V), 𝐽o into 𝐽o(3), 𝐽o(V),  𝐾p into 𝐾p(3),𝐾p(V)

Since 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p] contains a triangle,
at least one of the 26 subgraphs

𝐺[𝐼n(s) ∪ 𝐽o(t) ∪ 𝐾p(F)]
contains a triangle

Decide for each such subgraph whether
it contains a triangle

Recursively find a triangle in one subgraph

𝑇vwxyz{w|xA?} 𝑛 ≤

26 ⋅ 𝑇~}�wy}z{w|xA?}(𝑛)

+	𝑇vwxyz{w|xA?} 𝑛/2

= 𝑂(𝑇~}�wy}z{w|xA?} 𝑛 )

Running Time:

All-Pairs-
Triangle

Triangle



All-Pairs-Triangle to Triangle

For each of the (𝑛/𝑠)6	triples of parts (𝐼n, 𝐽o,𝐾p):

While 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]	contains a triangle:
Find a triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]

Initialize 𝐶 as 𝑛×𝑛 all-zeroes matrix

Set 𝐶 𝑖, 𝑗 ≔ 1
Delete edge (𝑖, 𝑗)

(∗) = 𝑂(𝑇vwxyz{w|xA?}(𝑠)) = 𝑂(𝑇~}�wy}z{w|xA?}(𝑠))
Running Time:

(∗)

Total time: #triples + #triangles	found ⋅ (∗)

≤ 𝑛/𝑠 6 + 𝑛V ⋅ 𝑇~}�wy}z{w|xA?}(𝑠)

Set 𝑠 = 𝑛3/6 and assume 𝑇~}�wy}z{w|xA?} 𝑛 = 𝑂(𝑛6NI)

Total time: 𝑂 𝑛V ⋅ 𝑛3NI/6 = 𝑂(𝑛6NI/6)

All-Pairs-
Triangle

Triangle



Corollaries from Subcubic Equivalences

BMM

⟺

Triangle

⟺

All-Pairs-
Triangle

APSP

Min-Plus 
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative 
Triangle

⟺
If BMM has (combinatorial)
𝑂(𝑛6NI) algorithm
then Triangle has (combinatorial) 
𝑂 𝑛6NI algorithm

If Triangle has (combinatorial) 
𝑂(𝑛6NI) algorithm
then BMM has (combinatorial) 
𝑂 𝑛6NI/6 algorithm

→ subcubic equivalent, 
but this mainly makes sense 
for combinatorial algorithms
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Strassen‘s Algorithm

shows 𝜔 ≤ 2.81
𝐴 𝐵 𝐶

⋅ =
𝐴3,3 𝐴3,V

𝐴V,3 𝐴V,V

𝐵3,3 𝐵3,V

𝐵V,3 𝐵V,V

𝐶3,3 𝐶3,V

𝐶V,3 𝐶V,V

𝐶3,3 = 𝐴3,3 ⋅ 𝐵3,3 + 𝐴3,V ⋅ 𝐵V,3
𝐶3,V = 𝐴3,3 ⋅ 𝐵3,V + 𝐴3,V ⋅ 𝐵V,V

𝐶V,3 = 𝐴V,3 ⋅ 𝐵3,3 + 𝐴V,V ⋅ 𝐵V,3
𝐶V,V = 𝐴V,3 ⋅ 𝐵3,V + 𝐴V,V ⋅ 𝐵V,V

𝑇 𝑛 ≤ 8	𝑇 𝑛/2 +𝑂(𝑛V )

𝑇 𝑛 ≤ 𝑂(𝑛6)



Strassen‘s Algorithm

shows 𝜔 ≤ 2.81
𝐴 𝐵 𝐶

⋅ =
𝐴3,3 𝐴3,V

𝐴V,3 𝐴V,V

𝐵3,3 𝐵3,V

𝐵V,3 𝐵V,V

𝐶3,3 𝐶3,V

𝐶V,3 𝐶V,V

𝐶3,3 = 𝑀3 +𝑀X −𝑀� + 𝑀\

𝐶3,V = 𝑀6 + 𝑀�

𝐶V,3 = 𝑀V +𝑀X

𝐶V,V = 𝑀3 − 𝑀V + 𝑀6 +𝑀�

𝑇 𝑛 ≤ 7	𝑇 𝑛/2 +𝑂(𝑛V )

𝑇 𝑛 ≤ 𝑂 𝑛?@A� \ = 𝑂(𝑛V.��\X)

𝑀3 = 𝐴3,3 + 𝐴V,V ⋅ 𝐵3,3 + 𝐵V,V
𝑀V = 𝐴V,3 + 𝐴V,V ⋅ 𝐵3,3
𝑀6 = 𝐴3,3 ⋅ 𝐵3,V − 𝐵V,V
𝑀X = 𝐴V,V ⋅ 𝐵V,3 − 𝐵3,3
𝑀� = 𝐴3,3 + 𝐴3,V ⋅ 𝐵V,V
𝑀� = 𝐴V,3 − 𝐴3,3 ⋅ 𝐵3,3 + 𝐵3,V
𝑀\ = 𝐴3,V − 𝐴V,V ⋅ 𝐵V,3 + 𝐵V,V



Faster Matrix Multiplication

matrix of rank 1:  outer product of two vectors

(𝑖, 𝑗)

(𝑖Q , 𝑘Q)

(𝑘QQ , 𝑗QQ)

tensor = 3-dimensional matrix

matrix multiplication tensor:
𝑛V rows/columns/...
entries in {0,1}
entry 𝑇 +,, , +� ,/� , /�� ,,�� = 1

iff 𝑖 = 𝑖′ and 𝑗 = 𝑗QQ and 𝑘Q = 𝑘QQ

i.e. 𝐴+�,/� ⋅ 𝐵/�� ,,�� appears in 𝐶+,,

matrix of rank 𝑟:  sum of 𝑟 rank-1-matrices

tensor of rank 1:  outer product of three vectors
tensor of rank 𝑟:  sum of 𝑟 rank-1-tensors

matrix rank is in P

tensor rank is not 
known to be in P



Faster Matrix Multiplication

(𝑖, 𝑗)

(𝑖Q , 𝑘Q)

(𝑘QQ , 𝑗QQ)

tensor = 3-dimensional matrix

matrix multiplication tensor:
𝑛V rows/columns/...
entries in {0,1}
entry 𝑇 +,, , +� ,/� , /�� ,,�� = 1

iff 𝑖 = 𝑖′ and 𝑗 = 𝑗QQ and 𝑘Q = 𝑘QQ

i.e. 𝐴+�,/� ⋅ 𝐵/�� ,,�� appears in 𝐶+,,

Strassen: rank of MM-tensor for 𝑛 = 2 is at most 7

any bound on rank of MM-tensor can be transformed into a MM-algorithm

thus search for faster MM-algorithms is a mathematical question

this is complete: one can find 𝜔	by analyzing tensor rank!
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Sliding Window Hamming Distance

given two strings:  text 𝑇 of length 𝑛 and pattern 𝑃 of length 𝑚 < 𝑛

compute for each 𝑖 the Hamming distance of 𝑃 and 𝑇[𝑖. . 𝑖 + 𝑚 − 1]

best known algorithm:

𝑂(𝑛	 𝑚	polylog	𝑛)

a b c b b c a a
b b c a

b b c a
b b c a

b b c a
b b c a

2
3
3
0
2

Thm: Sliding Window Hamming Distance has no
𝑂(𝑛G/VNI) algorithm or combinatorial 𝑂(𝑛3.�NI) algorithm 

unless the BMM-Hypothesis fails

≈ 𝑂(𝑛3.3�)

≤ 𝑂(𝑛3.���3)

Open Problem:  get rid of „combinatorial“
or design improved algorithm using MM

[Indyk,Porat,Clifford‘09]



Sliding Window Hamming Distance
given two strings:  text 𝑇 of length 𝑛 and pattern 𝑃 of length 𝑚 < 𝑛
compute for each 𝑖 the Hamming distance of 𝑃 and 𝑇[𝑖. . 𝑖 + 𝑚 − 1]

1 0 0
1 1 1
0 1 1

1 1 0
1 0 1
0 1 1

⋅ = ?

𝐴 𝐵

1 x x
1 2 3
x 2 3

1 1 y
2 y 2
y 3 3

pattern = concat rows:

$ $ $ $ $ $ 1 2 y $ 1 y 3 $ y 2 3 $ $ $ $ $ $

text = concat columns + padding:

1 x x 1 2 3 x 2 3

1 x x 1 2 3 x 2 3

alphabet: {1,2,...,𝑛,x,y,$}



Sliding Window Hamming Distance

$ $ $ $ $ $ 1 2 y $ 1 y 3 $ y 2 3 $ $ $ $ $ $
1 x x 1 2 3 x 2 3

1 x x 1 2 3 x 2 3
1 x x 1 2 3 x 2 3

1 x x 1 2 3 x 2 3
1 x x 1 2 3 x 2 3

1 x x 1 2 3 x 2 3
1 x x 1 2 3 x 2 3

1 x x 1 2 3 x 2 3
1 x x 1 2 3 x 2 3

1 0 0
1 1 1
0 1 1

1 1 0
1 0 1
0 1 1

⋅ =
1 1 0
1 1 1
1 1 1

put a 1 if there is
at least one match



Sliding Window Hamming Distance

given Boolean 𝑛×𝑛-matrices 𝐴, 𝐵

we construct text+pattern of length 𝑂(𝑛V) (in time 𝑂 𝑛V )

thus, an 𝑂(𝑛G/VNI) algorithm for Sliding Window Hamming Distance
would yield an 𝑂(𝑛GNVI) algorithm for BMM, contradicting BMM-Hypothesis

Thm: Sliding Window Hamming Distance has no
𝑂(𝑛G/VNI) algorithm or combinatorial 𝑂(𝑛3.�NI) algorithm 

unless the BMM-Hypothesis fails

and an 𝑂(𝑛3.�NI) combinatorial algorithm for Sliding Window Hamming Dist.
would yield an 𝑂(𝑛6NVI) combinatorial algorithm for BMM
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Node-Weighted Negative Triangle

given a directed graph with weights 𝑤+,, on edges, 
is there a triangle 𝑖, 𝑗, 𝑘:  𝑤, ,+ + 𝑤+,/ + 𝑤/,, < 0	?

(Edge-
Weighted) 
Negative 
Triangle

Node-
Weighted 
Negative 
Triangle

Triangle

given a directed graph with weights 𝑤+ on nodes, 
is there a triangle 𝑖, 𝑗, 𝑘:  𝑤+ +𝑤, + 𝑤/ < 0 ?

given an unweighted undirected graph,
is there a triangle?

𝑂(𝑛6)

𝑂(𝑛G)

𝑤+ ≔ −1



Node-Weighted Negative Triangle

(Edge-
Weighted) 
Negative 
Triangle

Node-
Weighted 
Negative 
Triangle

Triangle

𝑂(𝑛6)

𝑂(𝑛G)

find appropriate edge weights that
simulate the given node weights:

set 𝑤+,, ≔ (𝑤+ +𝑤, )/2

then for a triangle 𝑖, 𝑗, 𝑘:

𝑤,,+ + 𝑤+,/ + 𝑤/ ,, = 𝑤+ +𝑤, + 𝑤/



Node-Weighted Negative Triangle

(Edge-
Weighted) 
Negative 
Triangle

Node-
Weighted 
Negative 
Triangle

Triangle

𝑂(𝑛6)

𝑂(𝑛G)

𝑂(𝑛G) [Czumaj,Lingas’07]

actually for Node-Weighted Minimum Weight Triangle



Node-Weighted Minimum Weight Triangle

we can assume that the graph is tripartite:

𝐺:

𝑉

𝐺Q:

𝑉3

𝑢

𝑣 𝑉V

𝑉6

𝑢3

𝑣3

𝑢V

𝑣V 𝑢6

𝑣6

triangle 𝑖, 𝑗, 𝑘 triangle 𝑖3,𝑗V, 𝑘6⟺



Node-Weighted Minimum Weight Triangle
given graph 𝐺 = (𝑉, 𝐸)	with 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾 and node weights 𝑤� , 
compute minimum weight 𝑞 s.t. 
there are 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 with 𝑖, 𝑗 , 𝑗, 𝑘 , 𝑘, 𝑖 ∈ 𝐸 and 𝑤+ +𝑤, +𝑤/ = 𝑞

- parameter 𝑝 (=sufficiently large constant)
- assume	𝑛 ≔ 𝐼 = 𝐽 = 𝐾 = 𝑝ℓ for some ℓ ∈ ℕ

(add isolated dummy vertices)

- assume that 𝐼, 𝐽, 𝐾 are sorted by weight



Node-Weighted Minimum Weight Triangle
given graph 𝐺 = (𝑉, 𝐸)	with 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾 and node weights 𝑤� , 
compute minimum weight 𝑞 s.t. 
there are 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 with 𝑖, 𝑗 , 𝑗, 𝑘 , 𝑘, 𝑖 ∈ 𝐸 and 𝑤+ +𝑤, +𝑤/ = 𝑞

- parameter 𝑝 (=sufficiently large constant)
- assume	𝑛 ≔ 𝐼 = 𝐽 = 𝐾 = 𝑝ℓ for some ℓ ∈ ℕ

(add isolated dummy vertices)

- assume that 𝐼, 𝐽, 𝐾 are sorted by weight

ALG(G):

1) split 𝐼 = 𝐼3 ∪⋯∪ 𝐼¥, 𝐽 = 𝐽3 ∪⋯∪ 𝐽¥, 𝐾 = 𝐾3 ∪⋯∪ 𝐾¥
(in sorted order:  max𝑤(𝐼n) ≤ min𝑤(𝐼nH3) and so on)

2) 𝑅 ≔ 𝑥,𝑦, 𝑧 ∈ 1, … , 𝑝 6		 		𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p 	contains	a	triangle}		

3) for each 𝑥,𝑦, 𝑧

run ALG(𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p )

𝐼n

𝐼 𝐾p

𝐾

𝐽o

𝐽

0) if 𝑛 = 𝑂(1) then solve in constant time

3) for each 𝑥,𝑦, 𝑧 ∈ 𝑅 s.t. there is no 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅 with 𝑥Q < 𝑥, 𝑦Q < 𝑦, 𝑧Q < 𝑧



Node-Weighted Minimum Weight Triangle

Correctness:

3) for each 𝑥,𝑦, 𝑧 ∈ 𝑅 s.t. there is no 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅 with 𝑥Q < 𝑥, 𝑦Q < 𝑦, 𝑧Q < 𝑧

if there is no triangle in 𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p then we can ignore it

run ALG(𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p )

if 𝑥,𝑦, 𝑧 ∈ 𝑅 is dominated by 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅:

let 𝑖, 𝑗, 𝑘 be a triangle in 𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p , and 𝑖′, 𝑗′, 𝑘′ a triangle in 𝐺 𝐼n� ∪ 𝐽o� ∪ 𝐾p�

then 𝑤+ + 𝑤, + 𝑤/ 			 ≥ 	min𝑤(𝐼n) 	+	min𝑤(𝐽o)	+ 	min𝑤(𝐾p)

and 𝑤+� + 𝑤,� + 𝑤/� ≤ max𝑤(𝐼n� ) +max𝑤(𝐽o� ) + max𝑤(𝐾p� )

so we can safely ignore 𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p

≤≤ ≤



Node-Weighted Minimum Weight Triangle
given graph 𝐺 = (𝑉, 𝐸)	with 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾 and node weights 𝑤� , 
compute minimum weight 𝑞 s.t. 
there are 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 with 𝑖, 𝑗 , 𝑗, 𝑘 , 𝑘, 𝑖 ∈ 𝐸 and 𝑤+ +𝑤, +𝑤/ = 𝑞

- parameter 𝑝 (=sufficiently large constant)
- assume	𝑛 ≔ 𝐼 = 𝐽 = 𝐾 = 𝑝ℓ for some ℓ ∈ ℕ

(add isolated dummy vertices)

- assume that 𝐼, 𝐽, 𝐾 are sorted by weight

ALG(G):

1) split 𝐼 = 𝐼3 ∪⋯∪ 𝐼¥, 𝐽 = 𝐽3 ∪⋯∪ 𝐽¥, 𝐾 = 𝐾3 ∪⋯∪ 𝐾¥
(in sorted order:  max 𝐼n ≤ min 𝐼nH3 aso.)

2) 𝑅 ≔ 𝑥,𝑦, 𝑧 ∈ 1, … , 𝑝 6		 		𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p 	contains	a	triangle}		

3) for each 𝑥,𝑦, 𝑧 ∈ 𝑅 s.t. there is no 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅 with 𝑥Q < 𝑥, 𝑦Q < 𝑦, 𝑧Q < 𝑧

run ALG(𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p )

𝑂(𝑝6𝑛G)

size 𝑛/𝑝

how many iterations?

𝐼n

𝐼 𝐾p

𝐾

𝐽o

𝐽

0) if 𝑛 = 𝑂(1) then solve in constant time



Node-Weighted Minimum Weight Triangle

How many iterations?

3) for each 𝑥,𝑦, 𝑧 ∈ 𝑅 s.t. there is no 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅 with 𝑥Q < 𝑥, 𝑦Q < 𝑦, 𝑧Q < 𝑧

define Δ®,r ≔ 𝑥, 𝑦, 𝑧 ∈ 1,… ,𝑝 6		 		𝑥 − 𝑦 = 𝑟		and		𝑥 − 𝑧 = 𝑠}

for 𝑟, 𝑠 ∈ {−𝑝, … ,𝑝}

the sets Δ®,r cover 1, … ,𝑝 6

line 3) applies to at most one (𝑥,𝑦, 𝑧)	in Δ®,r for any 𝑟, 𝑠!

hence, there are at most (2𝑝)V= 4𝑝V recursive calls to ALG

= 1,1 − 𝑟,1 − 𝑠 , 2,2 − 𝑟,2 − 𝑠 , … , 𝑝,𝑝 − 𝑟, 𝑝 − 𝑠 ∩ 1, … , 𝑝 6

recursion: 𝑇 𝑛 ≤ 4𝑝V ⋅ 𝑇 𝑛/𝑝 + 𝑂(𝑝6𝑛G)



Node-Weighted Minimum Weight Triangle
given graph 𝐺 = (𝑉, 𝐸)	with 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾 and node weights 𝑤� , 
compute minimum weight 𝑞 s.t. 
there are 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 with 𝑖, 𝑗 , 𝑗, 𝑘 , 𝑘, 𝑖 ∈ 𝐸 and 𝑤+ +𝑤, +𝑤/ = 𝑞

- parameter 𝑝 (=sufficiently large constant)
- assume	𝑛 ≔ 𝐼 = 𝐽 = 𝐾 = 𝑝ℓ for some ℓ ∈ ℕ

(add isolated dummy vertices)

- assume that 𝐼, 𝐽, 𝐾 are sorted by weight

ALG(G):

1) split 𝐼 = 𝐼3 ∪⋯∪ 𝐼¥, 𝐽 = 𝐽3 ∪⋯∪ 𝐽¥, 𝐾 = 𝐾3 ∪⋯∪ 𝐾¥
(in sorted order:  max 𝐼n ≤ min 𝐼nH3 aso.)

2) 𝑅 ≔ 𝑥,𝑦, 𝑧 ∈ 1, … , 𝑝 6		 		𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p 	contains	a	triangle}		

3) for each 𝑥,𝑦, 𝑧 ∈ 𝑅 s.t. there is no 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅 with 𝑥Q < 𝑥, 𝑦Q < 𝑦, 𝑧Q < 𝑧

run ALG(𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p )

𝑂(𝑝6𝑛G)

size 𝑛/𝑝

𝐼n

𝐼 𝐾p

𝐾

𝐽o

𝐽

0) if 𝑛 = 𝑂(1) then solve in constant time

recursion: 𝑇 𝑛 ≤ 4𝑝V ⋅ 𝑇 𝑛/𝑝 + 𝑂(𝑝6𝑛G)



Node-Weighted Minimum Weight Triangle

recursion: 𝑇 𝑛 ≤ 4𝑝V ⋅ 𝑇 𝑛/𝑝 + 𝑂(𝑝6𝑛G)

𝑇 𝑛 ≤ 4𝑝V ⋅ 𝑇 𝑛/𝑝 + 𝛼	𝑝6𝑛G for some constant 𝛼

want to show: 𝑇 𝑛 ≤ 2𝛼	𝑝6𝑛G

plug in: 𝑇 𝑛 ≤ 4𝑝V ⋅ 2𝛼	𝑝6(𝑛/𝑝)G+𝛼	𝑝6𝑛G

= 𝛼	𝑝6𝑛G(1 + 8𝑝VNG)

assume 𝜔 > 2: ≤ 2𝛼	𝑝6𝑛G for a sufficiently large constant 𝑝

𝑇 𝑛 ≤ 𝑂(𝑛G)so we have:

(if 𝜔 = 2: show that 𝑇 𝑛 ≤ 2𝛼	𝑝6𝑛GHI)

in total:  𝑇 𝑛 ≤ 𝑂(𝑛G + 𝑛VHI) for any 𝜀 > 0



In this lecture you learned that...

…(B)MM is useful for designing theoretically fast algorithms

- Exercise: k-Clique in 𝑂(𝑛G//6)

no combinatorial 𝑂(𝑛6NI)

- Exercise: MaxCut in 𝑂(2G1/6	poly(𝑛))
- Node-Weighted Negative Triangle in 𝑂(𝑛G)

…BMM is an obstacle for practically fast / theoretically very fast algorithms

not faster than 𝑂(𝑛V.6\6)

- Exercise: pattern matching with 2 patterns

- Sliding Window Hamming Distance

- Transitive Closure has no 𝑂(𝑛GNI) / combinatorial 𝑂(𝑛6NI) algorithm

- context-free grammar problems


