
Complexity Theory of
Polynomial-Time Problems

Karl Bringmann

Lecture 8: (Boolean) Matrix Multiplication

Recall: Boolean Matrix Multiplication

given 𝑛×𝑛 matrices 𝐴, 𝐵 with entries in {0,1}
compute matrix 𝐶 with 𝐶+,, = ⋁ 𝐴+,/ ∧ 𝐵/,,1

/23

what we already know about BMM:

BMM is in time 𝑂(𝑛6/ log𝑛) (four Russians)

BMM is equivalent to computing the Transitive Closure of a given graph

BMM can be reduced to APSP 	→ 𝑂(𝑛6/2 ?@A 1)

⋮ ⋮
⋮𝑛 𝑛𝑛

𝜔 ≤ …
Strassen’69 2.81
Pan’78 2.79

Bini et al.’79 2.78

Schönhage’80 2.52

Romani’80 2.52

Coppersmith,Winograd’81 2.50

Strassen’86 2.48

Coppersmith,Winograd’90 2.376

Stothers’10 2.374

Vassilevska-Williams’11 2.37288

Le Gall’14 2.37287

Exponent of Matrix Multiplication

define 𝜔 as the infimum over all 𝑐 such that MM has an 𝑂(𝑛F) algorithm

note: MM is in time 𝑂(𝑛GHI) for any 𝜀 > 0

we will be sloppy and write: MM is in time 𝑂(𝑛G)

Thm: 𝜔 < 3

this is very fast – in theory

all these algorithms have
impractically large constant factors

(maybe except Strassen’69)

note: MM is not in time 𝑂(𝑛GNI) for any 𝜀 > 0 𝜔 ≥ 2

Boolean Matrix Multiplication

Thm: BMM is in time 𝑂(𝑛G)

given 𝑛×𝑛 matrices 𝐴, 𝐵 with entries in {0,1}

compute standard matrix product 𝐶′ with 𝐶+,,Q = ∑ 𝐴+,/ ⋅ 𝐵/,,1
+23

define matrix 𝐶 with 𝐶+,, = [𝐶+,,Q > 0]

then 𝐶 is the Boolean matrix product of 𝐴 and 𝐵

Hypothesis: BMM is not in time 𝑂(𝑛GNI)

Combinatorial Algorithms

fast matrix multiplication uses algebraic techniques which are impractical

“combinatorial algorithms”: do not use algebraic techniques

not well defined!

Arlazarov,Dinic,Kronrod,
Faradzhev‘70 (four russians)

𝑂(𝑛6/logV𝑛)

Bansal,Williams’09 𝑂(𝑛6 log log 𝑛 V/logW/X𝑛)

Chan’15 𝑂(𝑛6 log log 𝑛 6/log6𝑛)
Yu’15 𝑂(𝑛6	poly log log 𝑛 /logX𝑛)

Hypothesis: BMM has no “combinatorial” algorithm in time 𝑂(𝑛6NI)

In this lecture you learn that...

…(B)MM is useful for designing theoretically fast algorithms

- Exercise: k-Clique in 𝑂(𝑛G//6)

no combinatorial 𝑂(𝑛6NI)

- Exercise: MaxCut in 𝑂(2G1/6	poly(𝑛))
- Node-Weighted Negative Triangle in 𝑂(𝑛G)

…BMM is an obstacle for practically fast / theoretically very fast algorithms

not faster than 𝑂(𝑛V.6\6)

- Exercise: pattern matching with 2 patterns

- Sliding Window Hamming Distance

- Transitive Closure has no 𝑂(𝑛GNI) / combinatorial 𝑂(𝑛6NI) algorithm

- context-free grammar problems

Outline

1) Relations to Subcubic Equivalences

2) Strassen’s Algorithm

3) Sliding Window Hamming Distance

4) Node-Weighted Negative Triangle

5) Context-Free Grammars

Corollaries from Subcubic Equivalences

given an unweighted graph 𝐺

does it contain a triangle?

BMM

⟺

Triangle

⟺

All-Pairs-
Triangle

given an unweighted graph 𝐺

vertices 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾

∀𝑖, 𝑗: are they in a triangle with some 𝑘?

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative
Triangle

⟺

[Vassilevska-Williams,Williams’10]

Corollaries from Subcubic Equivalences

BMM

⟺

Triangle

⟺

All-Pairs-
Triangle

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative
Triangle

⟺

⋮ ⋮
⋮𝑛 𝑛𝑛

𝐴 𝐵

𝐼 𝐾 𝐽

Corollaries from Subcubic Equivalences

BMM

⟺

Triangle

⟺

All-Pairs-
Triangle

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative
Triangle

⟺
Given an unweighted undirected graph 𝐺

Adjacency matrix 𝐴, entries in {0,1}

1. Compute Boolean Product 𝐶 ≔ 𝐴 ∗ 𝐴:

𝐶+,, =k 𝐴+,/ ∧ 𝐴/,,
/

2. Compute ⋁ 𝐴+,, ∧ 𝐶+,,+,,

this equals k 𝐴+,, ∧ 𝐴+,/ ∧ 𝐴/,,
+,,,/

thus we solved triangle detection

Corollaries from Subcubic Equivalences

BMM

⟺

Triangle

⟺

All-Pairs-
Triangle

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative
Triangle

⟺

All-Pairs-Triangle to Triangle All-Pairs-
Triangle

TriangleDecide whether there are vertices 𝑖, 𝑗, 𝑘 such that
𝑖, 𝑗, 𝑘 form a triangle

Triangle

All-Pairs-Triangle
Decide for every 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 whether there is a vertex 𝑘 ∈ 𝐾 such that

𝑖, 𝑗, 𝑘 form a triangle

Given graph 𝐺

Given graph 𝐺 with vertex set 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾

Split 𝐼, 𝐽, 𝐾 into 𝑛/𝑠 parts of size 𝑠:

For each of the (𝑛/𝑠)6	triples (𝐼n, 𝐽o,𝐾p):
consider graph 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]

𝐼3,… , 𝐼1/r,	𝐽3 , … , 𝐽1/r, 𝐾3,… , 𝐾1/r

𝐼n

𝐾p

𝐽o

𝐼

𝐾

𝐽

All-Pairs-Triangle to Triangle

For each of the (𝑛/𝑠)6	triples of parts (𝐼n, 𝐽o,𝐾p):

While 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]	contains a triangle:
Find a triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]

Initialize 𝐶 as 𝑛×𝑛 all-zeroes matrix

Set 𝐶 𝑖, 𝑗 ≔ 1
Delete edge (𝑖, 𝑗)

(𝑖, 𝑗) is in no more triangles

𝐼n

𝐾p

𝐽o

𝐼

𝐾

𝐽✔ guaranteed termination:

✔ correctness:

can delete ≤ 𝑛V edges

if (𝑖, 𝑗)	is in a triangle,
we will find one

All-Pairs-
Triangle

Triangle

All-Pairs-Triangle to Triangle

Find a triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]

How to find a triangle
if we can only decide whether one exists?

Partition 𝐼n into 𝐼n(3), 𝐼n(V), 𝐽o into 𝐽o(3), 𝐽o(V), 𝐾p into 𝐾p(3),𝐾p(V)

𝐼n

𝐾p

𝐽o

Since 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p] contains a triangle,
at least one of the 26 subgraphs

𝐺[𝐼n(s) ∪ 𝐽o(t) ∪ 𝐾p(F)]
contains a triangle

Decide for each such subgraph whether
it contains a triangle

Recursively find a triangle in one subgraph

All-Pairs-
Triangle

Triangle

All-Pairs-Triangle to Triangle

Find a triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]

How to find a triangle
if we can only decide whether one exists?

Partition 𝐼n into 𝐼n(3), 𝐼n(V), 𝐽o into 𝐽o(3), 𝐽o(V), 𝐾p into 𝐾p(3),𝐾p(V)

Since 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p] contains a triangle,
at least one of the 26 subgraphs

𝐺[𝐼n(s) ∪ 𝐽o(t) ∪ 𝐾p(F)]
contains a triangle

Decide for each such subgraph whether
it contains a triangle

Recursively find a triangle in one subgraph

𝑇vwxyz{w|xA?} 𝑛 ≤

26 ⋅ 𝑇~}�wy}z{w|xA?}(𝑛)

+	𝑇vwxyz{w|xA?} 𝑛/2

= 𝑂(𝑇~}�wy}z{w|xA?} 𝑛)

Running Time:

All-Pairs-
Triangle

Triangle

All-Pairs-Triangle to Triangle

For each of the (𝑛/𝑠)6	triples of parts (𝐼n, 𝐽o,𝐾p):

While 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]	contains a triangle:
Find a triangle (𝑖, 𝑗, 𝑘) in 𝐺[𝐼n ∪ 𝐽o ∪ 𝐾p]

Initialize 𝐶 as 𝑛×𝑛 all-zeroes matrix

Set 𝐶 𝑖, 𝑗 ≔ 1
Delete edge (𝑖, 𝑗)

(∗) = 𝑂(𝑇vwxyz{w|xA?}(𝑠)) = 𝑂(𝑇~}�wy}z{w|xA?}(𝑠))
Running Time:

(∗)

Total time: #triples + #triangles	found ⋅ (∗)

≤ 𝑛/𝑠 6 + 𝑛V ⋅ 𝑇~}�wy}z{w|xA?}(𝑠)

Set 𝑠 = 𝑛3/6 and assume 𝑇~}�wy}z{w|xA?} 𝑛 = 𝑂(𝑛6NI)

Total time: 𝑂 𝑛V ⋅ 𝑛3NI/6 = 𝑂(𝑛6NI/6)

All-Pairs-
Triangle

Triangle

Corollaries from Subcubic Equivalences

BMM

⟺

Triangle

⟺

All-Pairs-
Triangle

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative
Triangle

⟺
If BMM has (combinatorial)
𝑂(𝑛6NI) algorithm
then Triangle has (combinatorial)
𝑂 𝑛6NI algorithm

If Triangle has (combinatorial)
𝑂(𝑛6NI) algorithm
then BMM has (combinatorial)
𝑂 𝑛6NI/6 algorithm

→ subcubic equivalent,
but this mainly makes sense
for combinatorial algorithms

Outline

1) Relations to Subcubic Equivalences

2) Strassen’s Algorithm

3) Sliding Window Hamming Distance

4) Node-Weighted Negative Triangle

5) Context-Free Grammars

Strassen‘s Algorithm

shows 𝜔 ≤ 2.81
𝐴 𝐵 𝐶

⋅ =
𝐴3,3 𝐴3,V

𝐴V,3 𝐴V,V

𝐵3,3 𝐵3,V

𝐵V,3 𝐵V,V

𝐶3,3 𝐶3,V

𝐶V,3 𝐶V,V

𝐶3,3 = 𝐴3,3 ⋅ 𝐵3,3 + 𝐴3,V ⋅ 𝐵V,3
𝐶3,V = 𝐴3,3 ⋅ 𝐵3,V + 𝐴3,V ⋅ 𝐵V,V

𝐶V,3 = 𝐴V,3 ⋅ 𝐵3,3 + 𝐴V,V ⋅ 𝐵V,3
𝐶V,V = 𝐴V,3 ⋅ 𝐵3,V + 𝐴V,V ⋅ 𝐵V,V

𝑇 𝑛 ≤ 8	𝑇 𝑛/2 +𝑂(𝑛V)

𝑇 𝑛 ≤ 𝑂(𝑛6)

Strassen‘s Algorithm

shows 𝜔 ≤ 2.81
𝐴 𝐵 𝐶

⋅ =
𝐴3,3 𝐴3,V

𝐴V,3 𝐴V,V

𝐵3,3 𝐵3,V

𝐵V,3 𝐵V,V

𝐶3,3 𝐶3,V

𝐶V,3 𝐶V,V

𝐶3,3 = 𝑀3 +𝑀X −𝑀� + 𝑀\

𝐶3,V = 𝑀6 + 𝑀�

𝐶V,3 = 𝑀V +𝑀X

𝐶V,V = 𝑀3 − 𝑀V + 𝑀6 +𝑀�

𝑇 𝑛 ≤ 7	𝑇 𝑛/2 +𝑂(𝑛V)

𝑇 𝑛 ≤ 𝑂 𝑛?@A� \ = 𝑂(𝑛V.��\X)

𝑀3 = 𝐴3,3 + 𝐴V,V ⋅ 𝐵3,3 + 𝐵V,V
𝑀V = 𝐴V,3 + 𝐴V,V ⋅ 𝐵3,3
𝑀6 = 𝐴3,3 ⋅ 𝐵3,V − 𝐵V,V
𝑀X = 𝐴V,V ⋅ 𝐵V,3 − 𝐵3,3
𝑀� = 𝐴3,3 + 𝐴3,V ⋅ 𝐵V,V
𝑀� = 𝐴V,3 − 𝐴3,3 ⋅ 𝐵3,3 + 𝐵3,V
𝑀\ = 𝐴3,V − 𝐴V,V ⋅ 𝐵V,3 + 𝐵V,V

Faster Matrix Multiplication

matrix of rank 1: outer product of two vectors

(𝑖, 𝑗)

(𝑖Q , 𝑘Q)

(𝑘QQ , 𝑗QQ)

tensor = 3-dimensional matrix

matrix multiplication tensor:
𝑛V rows/columns/...
entries in {0,1}
entry 𝑇 +,, , +� ,/� , /�� ,,�� = 1

iff 𝑖 = 𝑖′ and 𝑗 = 𝑗QQ and 𝑘Q = 𝑘QQ

i.e. 𝐴+�,/� ⋅ 𝐵/�� ,,�� appears in 𝐶+,,

matrix of rank 𝑟: sum of 𝑟 rank-1-matrices

tensor of rank 1: outer product of three vectors
tensor of rank 𝑟: sum of 𝑟 rank-1-tensors

matrix rank is in P

tensor rank is not
known to be in P

Faster Matrix Multiplication

(𝑖, 𝑗)

(𝑖Q , 𝑘Q)

(𝑘QQ , 𝑗QQ)

tensor = 3-dimensional matrix

matrix multiplication tensor:
𝑛V rows/columns/...
entries in {0,1}
entry 𝑇 +,, , +� ,/� , /�� ,,�� = 1

iff 𝑖 = 𝑖′ and 𝑗 = 𝑗QQ and 𝑘Q = 𝑘QQ

i.e. 𝐴+�,/� ⋅ 𝐵/�� ,,�� appears in 𝐶+,,

Strassen: rank of MM-tensor for 𝑛 = 2 is at most 7

any bound on rank of MM-tensor can be transformed into a MM-algorithm

thus search for faster MM-algorithms is a mathematical question

this is complete: one can find 𝜔	by analyzing tensor rank!

Outline

1) Relations to Subcubic Equivalences

2) Strassen’s Algorithm

3) Sliding Window Hamming Distance

4) Node-Weighted Negative Triangle

5) Context-Free Grammars

Sliding Window Hamming Distance

given two strings: text 𝑇 of length 𝑛 and pattern 𝑃 of length 𝑚 < 𝑛

compute for each 𝑖 the Hamming distance of 𝑃 and 𝑇[𝑖. . 𝑖 + 𝑚 − 1]

best known algorithm:

𝑂(𝑛	 𝑚	polylog	𝑛)

a b c b b c a a
b b c a

b b c a
b b c a

b b c a
b b c a

2
3
3
0
2

Thm: Sliding Window Hamming Distance has no
𝑂(𝑛G/VNI) algorithm or combinatorial 𝑂(𝑛3.�NI) algorithm

unless the BMM-Hypothesis fails

≈ 𝑂(𝑛3.3�)

≤ 𝑂(𝑛3.���3)

Open Problem: get rid of „combinatorial“
or design improved algorithm using MM

[Indyk,Porat,Clifford‘09]

Sliding Window Hamming Distance
given two strings: text 𝑇 of length 𝑛 and pattern 𝑃 of length 𝑚 < 𝑛
compute for each 𝑖 the Hamming distance of 𝑃 and 𝑇[𝑖. . 𝑖 + 𝑚 − 1]

1 0 0
1 1 1
0 1 1

1 1 0
1 0 1
0 1 1

⋅ = ?

𝐴 𝐵

1 x x
1 2 3
x 2 3

1 1 y
2 y 2
y 3 3

pattern = concat rows:

$ $ $ $ $ $ 1 2 y $ 1 y 3 $ y 2 3 $ $ $ $ $ $

text = concat columns + padding:

1 x x 1 2 3 x 2 3

1 x x 1 2 3 x 2 3

alphabet: {1,2,...,𝑛,x,y,$}

Sliding Window Hamming Distance

$ $ $ $ $ $ 1 2 y $ 1 y 3 $ y 2 3 $ $ $ $ $ $
1 x x 1 2 3 x 2 3

1 x x 1 2 3 x 2 3
1 x x 1 2 3 x 2 3

1 x x 1 2 3 x 2 3
1 x x 1 2 3 x 2 3

1 x x 1 2 3 x 2 3
1 x x 1 2 3 x 2 3

1 x x 1 2 3 x 2 3
1 x x 1 2 3 x 2 3

1 0 0
1 1 1
0 1 1

1 1 0
1 0 1
0 1 1

⋅ =
1 1 0
1 1 1
1 1 1

put a 1 if there is
at least one match

Sliding Window Hamming Distance

given Boolean 𝑛×𝑛-matrices 𝐴, 𝐵

we construct text+pattern of length 𝑂(𝑛V) (in time 𝑂 𝑛V)

thus, an 𝑂(𝑛G/VNI) algorithm for Sliding Window Hamming Distance
would yield an 𝑂(𝑛GNVI) algorithm for BMM, contradicting BMM-Hypothesis

Thm: Sliding Window Hamming Distance has no
𝑂(𝑛G/VNI) algorithm or combinatorial 𝑂(𝑛3.�NI) algorithm

unless the BMM-Hypothesis fails

and an 𝑂(𝑛3.�NI) combinatorial algorithm for Sliding Window Hamming Dist.
would yield an 𝑂(𝑛6NVI) combinatorial algorithm for BMM

Outline

1) Relations to Subcubic Equivalences

2) Strassen’s Algorithm

3) Sliding Window Hamming Distance

4) Node-Weighted Negative Triangle

5) Context-Free Grammars

Node-Weighted Negative Triangle

given a directed graph with weights 𝑤+,, on edges,
is there a triangle 𝑖, 𝑗, 𝑘: 𝑤, ,+ + 𝑤+,/ + 𝑤/,, < 0	?

(Edge-
Weighted)
Negative
Triangle

Node-
Weighted
Negative
Triangle

Triangle

given a directed graph with weights 𝑤+ on nodes,
is there a triangle 𝑖, 𝑗, 𝑘: 𝑤+ +𝑤, + 𝑤/ < 0 ?

given an unweighted undirected graph,
is there a triangle?

𝑂(𝑛6)

𝑂(𝑛G)

𝑤+ ≔ −1

Node-Weighted Negative Triangle

(Edge-
Weighted)
Negative
Triangle

Node-
Weighted
Negative
Triangle

Triangle

𝑂(𝑛6)

𝑂(𝑛G)

find appropriate edge weights that
simulate the given node weights:

set 𝑤+,, ≔ (𝑤+ +𝑤,)/2

then for a triangle 𝑖, 𝑗, 𝑘:

𝑤,,+ + 𝑤+,/ + 𝑤/ ,, = 𝑤+ +𝑤, + 𝑤/

Node-Weighted Negative Triangle

(Edge-
Weighted)
Negative
Triangle

Node-
Weighted
Negative
Triangle

Triangle

𝑂(𝑛6)

𝑂(𝑛G)

𝑂(𝑛G) [Czumaj,Lingas’07]

actually for Node-Weighted Minimum Weight Triangle

Node-Weighted Minimum Weight Triangle

we can assume that the graph is tripartite:

𝐺:

𝑉

𝐺Q:

𝑉3

𝑢

𝑣 𝑉V

𝑉6

𝑢3

𝑣3

𝑢V

𝑣V 𝑢6

𝑣6

triangle 𝑖, 𝑗, 𝑘 triangle 𝑖3,𝑗V, 𝑘6⟺

Node-Weighted Minimum Weight Triangle
given graph 𝐺 = (𝑉, 𝐸)	with 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾 and node weights 𝑤� ,
compute minimum weight 𝑞 s.t.
there are 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 with 𝑖, 𝑗 , 𝑗, 𝑘 , 𝑘, 𝑖 ∈ 𝐸 and 𝑤+ +𝑤, +𝑤/ = 𝑞

- parameter 𝑝 (=sufficiently large constant)
- assume	𝑛 ≔ 𝐼 = 𝐽 = 𝐾 = 𝑝ℓ for some ℓ ∈ ℕ

(add isolated dummy vertices)

- assume that 𝐼, 𝐽, 𝐾 are sorted by weight

Node-Weighted Minimum Weight Triangle
given graph 𝐺 = (𝑉, 𝐸)	with 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾 and node weights 𝑤� ,
compute minimum weight 𝑞 s.t.
there are 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 with 𝑖, 𝑗 , 𝑗, 𝑘 , 𝑘, 𝑖 ∈ 𝐸 and 𝑤+ +𝑤, +𝑤/ = 𝑞

- parameter 𝑝 (=sufficiently large constant)
- assume	𝑛 ≔ 𝐼 = 𝐽 = 𝐾 = 𝑝ℓ for some ℓ ∈ ℕ

(add isolated dummy vertices)

- assume that 𝐼, 𝐽, 𝐾 are sorted by weight

ALG(G):

1) split 𝐼 = 𝐼3 ∪⋯∪ 𝐼¥, 𝐽 = 𝐽3 ∪⋯∪ 𝐽¥, 𝐾 = 𝐾3 ∪⋯∪ 𝐾¥
(in sorted order: max𝑤(𝐼n) ≤ min𝑤(𝐼nH3) and so on)

2) 𝑅 ≔ 𝑥,𝑦, 𝑧 ∈ 1, … , 𝑝 6		 		𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p 	contains	a	triangle}		

3) for each 𝑥,𝑦, 𝑧

run ALG(𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p)

𝐼n

𝐼 𝐾p

𝐾

𝐽o

𝐽

0) if 𝑛 = 𝑂(1) then solve in constant time

3) for each 𝑥,𝑦, 𝑧 ∈ 𝑅 s.t. there is no 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅 with 𝑥Q < 𝑥, 𝑦Q < 𝑦, 𝑧Q < 𝑧

Node-Weighted Minimum Weight Triangle

Correctness:

3) for each 𝑥,𝑦, 𝑧 ∈ 𝑅 s.t. there is no 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅 with 𝑥Q < 𝑥, 𝑦Q < 𝑦, 𝑧Q < 𝑧

if there is no triangle in 𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p then we can ignore it

run ALG(𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p)

if 𝑥,𝑦, 𝑧 ∈ 𝑅 is dominated by 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅:

let 𝑖, 𝑗, 𝑘 be a triangle in 𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p , and 𝑖′, 𝑗′, 𝑘′ a triangle in 𝐺 𝐼n� ∪ 𝐽o� ∪ 𝐾p�

then 𝑤+ + 𝑤, + 𝑤/ 			 ≥ 	min𝑤(𝐼n) 	+	min𝑤(𝐽o)	+ 	min𝑤(𝐾p)

and 𝑤+� + 𝑤,� + 𝑤/� ≤ max𝑤(𝐼n�) +max𝑤(𝐽o�) + max𝑤(𝐾p�)

so we can safely ignore 𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p

≤≤ ≤

Node-Weighted Minimum Weight Triangle
given graph 𝐺 = (𝑉, 𝐸)	with 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾 and node weights 𝑤� ,
compute minimum weight 𝑞 s.t.
there are 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 with 𝑖, 𝑗 , 𝑗, 𝑘 , 𝑘, 𝑖 ∈ 𝐸 and 𝑤+ +𝑤, +𝑤/ = 𝑞

- parameter 𝑝 (=sufficiently large constant)
- assume	𝑛 ≔ 𝐼 = 𝐽 = 𝐾 = 𝑝ℓ for some ℓ ∈ ℕ

(add isolated dummy vertices)

- assume that 𝐼, 𝐽, 𝐾 are sorted by weight

ALG(G):

1) split 𝐼 = 𝐼3 ∪⋯∪ 𝐼¥, 𝐽 = 𝐽3 ∪⋯∪ 𝐽¥, 𝐾 = 𝐾3 ∪⋯∪ 𝐾¥
(in sorted order: max 𝐼n ≤ min 𝐼nH3 aso.)

2) 𝑅 ≔ 𝑥,𝑦, 𝑧 ∈ 1, … , 𝑝 6		 		𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p 	contains	a	triangle}		

3) for each 𝑥,𝑦, 𝑧 ∈ 𝑅 s.t. there is no 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅 with 𝑥Q < 𝑥, 𝑦Q < 𝑦, 𝑧Q < 𝑧

run ALG(𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p)

𝑂(𝑝6𝑛G)

size 𝑛/𝑝

how many iterations?

𝐼n

𝐼 𝐾p

𝐾

𝐽o

𝐽

0) if 𝑛 = 𝑂(1) then solve in constant time

Node-Weighted Minimum Weight Triangle

How many iterations?

3) for each 𝑥,𝑦, 𝑧 ∈ 𝑅 s.t. there is no 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅 with 𝑥Q < 𝑥, 𝑦Q < 𝑦, 𝑧Q < 𝑧

define Δ®,r ≔ 𝑥, 𝑦, 𝑧 ∈ 1,… ,𝑝 6		 		𝑥 − 𝑦 = 𝑟		and		𝑥 − 𝑧 = 𝑠}

for 𝑟, 𝑠 ∈ {−𝑝, … ,𝑝}

the sets Δ®,r cover 1, … ,𝑝 6

line 3) applies to at most one (𝑥,𝑦, 𝑧)	in Δ®,r for any 𝑟, 𝑠!

hence, there are at most (2𝑝)V= 4𝑝V recursive calls to ALG

= 1,1 − 𝑟,1 − 𝑠 , 2,2 − 𝑟,2 − 𝑠 , … , 𝑝,𝑝 − 𝑟, 𝑝 − 𝑠 ∩ 1, … , 𝑝 6

recursion: 𝑇 𝑛 ≤ 4𝑝V ⋅ 𝑇 𝑛/𝑝 + 𝑂(𝑝6𝑛G)

Node-Weighted Minimum Weight Triangle
given graph 𝐺 = (𝑉, 𝐸)	with 𝑉 = 𝐼 ∪ 𝐽 ∪ 𝐾 and node weights 𝑤� ,
compute minimum weight 𝑞 s.t.
there are 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 with 𝑖, 𝑗 , 𝑗, 𝑘 , 𝑘, 𝑖 ∈ 𝐸 and 𝑤+ +𝑤, +𝑤/ = 𝑞

- parameter 𝑝 (=sufficiently large constant)
- assume	𝑛 ≔ 𝐼 = 𝐽 = 𝐾 = 𝑝ℓ for some ℓ ∈ ℕ

(add isolated dummy vertices)

- assume that 𝐼, 𝐽, 𝐾 are sorted by weight

ALG(G):

1) split 𝐼 = 𝐼3 ∪⋯∪ 𝐼¥, 𝐽 = 𝐽3 ∪⋯∪ 𝐽¥, 𝐾 = 𝐾3 ∪⋯∪ 𝐾¥
(in sorted order: max 𝐼n ≤ min 𝐼nH3 aso.)

2) 𝑅 ≔ 𝑥,𝑦, 𝑧 ∈ 1, … , 𝑝 6		 		𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p 	contains	a	triangle}		

3) for each 𝑥,𝑦, 𝑧 ∈ 𝑅 s.t. there is no 𝑥Q,𝑦Q, 𝑧Q ∈ 𝑅 with 𝑥Q < 𝑥, 𝑦Q < 𝑦, 𝑧Q < 𝑧

run ALG(𝐺 𝐼n ∪ 𝐽o ∪ 𝐾p)

𝑂(𝑝6𝑛G)

size 𝑛/𝑝

𝐼n

𝐼 𝐾p

𝐾

𝐽o

𝐽

0) if 𝑛 = 𝑂(1) then solve in constant time

recursion: 𝑇 𝑛 ≤ 4𝑝V ⋅ 𝑇 𝑛/𝑝 + 𝑂(𝑝6𝑛G)

Node-Weighted Minimum Weight Triangle

recursion: 𝑇 𝑛 ≤ 4𝑝V ⋅ 𝑇 𝑛/𝑝 + 𝑂(𝑝6𝑛G)

𝑇 𝑛 ≤ 4𝑝V ⋅ 𝑇 𝑛/𝑝 + 𝛼	𝑝6𝑛G for some constant 𝛼

want to show: 𝑇 𝑛 ≤ 2𝛼	𝑝6𝑛G

plug in: 𝑇 𝑛 ≤ 4𝑝V ⋅ 2𝛼	𝑝6(𝑛/𝑝)G+𝛼	𝑝6𝑛G

= 𝛼	𝑝6𝑛G(1 + 8𝑝VNG)

assume 𝜔 > 2: ≤ 2𝛼	𝑝6𝑛G for a sufficiently large constant 𝑝

𝑇 𝑛 ≤ 𝑂(𝑛G)so we have:

(if 𝜔 = 2: show that 𝑇 𝑛 ≤ 2𝛼	𝑝6𝑛GHI)

in total: 𝑇 𝑛 ≤ 𝑂(𝑛G + 𝑛VHI) for any 𝜀 > 0

In this lecture you learned that...

…(B)MM is useful for designing theoretically fast algorithms

- Exercise: k-Clique in 𝑂(𝑛G//6)

no combinatorial 𝑂(𝑛6NI)

- Exercise: MaxCut in 𝑂(2G1/6	poly(𝑛))
- Node-Weighted Negative Triangle in 𝑂(𝑛G)

…BMM is an obstacle for practically fast / theoretically very fast algorithms

not faster than 𝑂(𝑛V.6\6)

- Exercise: pattern matching with 2 patterns

- Sliding Window Hamming Distance

- Transitive Closure has no 𝑂(𝑛GNI) / combinatorial 𝑂(𝑛6NI) algorithm

- context-free grammar problems

