$\square \square \square$ max planck institut informatik

Complexity Theory of Polynomial-Time Problems

Lecture 8: (Boolean) Matrix Multiplication

Karl Bringmann

Recall: Boolean Matrix Multiplication

given $n \times n$ matrices A, B with entries in $\{0,1\}$
compute matrix C with $C_{i, j}=\bigvee_{k=1}^{n} A_{i, k} \wedge B_{k, j}$
what we already know about BMM:
BMM is in time $O\left(n^{3} / \log n\right)$ (four Russians)
BMM is equivalent to computing the Transitive Closure of a given graph

BMM can be reduced to APSP $\rightarrow O\left(n^{3} / 2^{\sqrt{\log n}}\right)$

Exponent of Matrix Multiplication

define ω as the infimum over all c such that MM has an $O\left(n^{c}\right)$ algorithm note: MM is in time $O\left(n^{\omega+\varepsilon}\right)$ for any $\varepsilon>0$
we will be sloppy and write: MM is in time $O\left(n^{\omega}\right)$
note: MM is not in time $O\left(n^{\omega-\varepsilon}\right)$ for any $\varepsilon>0$
$\omega \geq 2$

Thm:

$$
\omega<3
$$

$$
\omega \leq \ldots
$$

Strassen'69 2.81
Pan'78 2.79
this is very fast - in theoryall these algorithms haveimpractically large constant factors(maybe except Strassen'69)

Bini et al.'792.78
Schönhage'80 2.52
Romani'80 2.52
Coppersmith,Winograd'81 2.50
Strassen'86 2.48
Coppersmith,Winograd'90 2.376
Stothers'10 2.374
Vassilevska-Williams'11 2.37288
Le Gall' 14 2.37287

Boolean Matrix Multiplication

Thm:

BMM is in time $O\left(n^{\omega}\right)$
given $n \times n$ matrices A, B with entries in $\{0,1\}$
compute standard matrix product C^{\prime} with $C_{i, j}^{\prime}=\sum_{i=1}^{n} A_{i, k} \cdot B_{k, j}$
define matrix C with $C_{i, j}=\left[C_{i, j}^{\prime}>0\right]$
then C is the Boolean matrix product of A and B

Hypothesis:
 BMM is not in time $O\left(n^{\omega-\varepsilon}\right)$

Combinatorial Algorithms

fast matrix multiplication uses algebraic techniques which are impractical
"combinatorial algorithms": do not use algebraic techniques not well defined!

Arlazarov,Dinic,Kronrod, Faradzhev'70 (four russians)
Bansal,Williams'09
Chan'15
Yu'15

$$
O\left(n^{3} / \log ^{2} n\right)
$$

$$
\begin{gathered}
O\left(n^{3}(\log \log n)^{2} / \log ^{9 / 4} n\right) \\
O\left(n^{3}(\log \log n)^{3} / \log ^{3} n\right) \\
O\left(n^{3} \text { poly } \log \log n / \log ^{4} n\right)
\end{gathered}
$$

Hypothesis: $\quad \mathrm{BMM}$ has no "combinatorial" algorithm in time $O\left(n^{3-\varepsilon}\right)$

In this lecture you learn that...

.(B)MM is useful for designing theoretically fast algorithms

- Exercise: k-Clique in $O\left(n^{\omega k / 3}\right)$
- Exercise: MaxCut in $O\left(2^{\omega n / 3}\right.$ poly $\left.(n)\right)$
- Node-Weighted Negative Triangle in $O\left(n^{\omega}\right)$
...BMM is an obstacle for practically fast / theoretically very fast algorithms

no combinatorial $O\left(n^{3-\varepsilon}\right)$
not faster than $O\left(n^{2.373}\right)$
- Transitive Closure has no $O\left(n^{\omega-\varepsilon}\right) /$ combinatorial $O\left(n^{3-\varepsilon}\right)$ algorithm
- Exercise: pattern matching with 2 patterns
- Sliding Window Hamming Distance
- context-free grammar problems

Outline

1) Relations to Subcubic Equivalences
2) Strassen's Algorithm
3) Sliding Window Hamming Distance
4) Node-Weighted Negative Triangle
5) Context-Free Grammars

Corollaries from Subcubic Equivalences

BMM

APSP

$\mathbb{1}$

Min-Plus
Product
\Uparrow
All-Pairs- given an unweighted graph G
Triangle
$\Uparrow \quad \forall i, j$: are they in a triangle with some k ?
Triangle
given an unweighted graph G does it contain a triangle?

$\mathbb{1}$

All-Pairs-NegativeTriangle

$$
\mathbb{I}
$$

Negative Triangle
[Vassilevska-Williams,Williams'10]

Corollaries from Subcubic Equivalences

Corollaries from Subcubic Equivalences

Given an unweighted undirected graph G
Adjacency matrix A, entries in $\{0,1\}$

APSP

$\mathbb{1}$

Min-Plus Product

$\mathbb{1}$

All-Pairs-NegativeTriangle

$$
\mathbb{I}
$$

Negative Triangle

Corollaries from Subcubic Equivalences

All-Pairs-Triangle to Triangle

Triangle Given graph G
Decide whether there are vertices i, j, k such that
i, j, k form a triangle

All-Pairs-Triangle Given graph G with vertex set $V=I \cup J \cup K$
Decide for every $i \in I, j \in J$ whether there is a vertex $k \in K$ such that i, j, k form a triangle

Split I, J, K into n / s parts of size s :

$$
I_{1}, \ldots, I_{n / s}, J_{1}, \ldots, J_{n / s}, K_{1}, \ldots, K_{n / s}
$$

For each of the $(n / s)^{3}$ triples $\left(I_{x}, J_{y}, K_{z}\right)$: consider graph $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$

All-Pairs-Triangle to Triangle

Initialize C as $n \times n$ all-zeroes matrix
For each of the $(n / s)^{3}$ triples of parts $\left(I_{x}, J_{y}, K_{z}\right)$:
All-PairsTriangle

While $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$ contains a triangle:
Find a triangle (i, j, k) in $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$
Set $C[i, j]:=1$
Delete edge (i, j)
(i, j) is in no more triangles
\checkmark guaranteed termination: can delete $\leq n^{2}$ edges
\checkmark correctness:
if (i, j) is in a triangle, we will find one

All-Pairs-Triangle to Triangle

Find a triangle (i, j, k) in $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$
How to find a triangle
All-PairsTriangle if we can only decide whether one exists?

Triangle

Partition I_{x} into $I_{x}{ }^{(1)}, I_{x}{ }^{(2)}, J_{y}$ into $J_{y}{ }^{(1)}, J_{y}{ }^{(2)}, K_{z}$ into $K_{z}{ }^{(1)}, K_{z}{ }^{(2)}$
Since $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$ contains a triangle, at least one of the 2^{3} subgraphs

$$
G\left[I_{x}{ }^{(a)} \cup J_{y}{ }^{(b)} \cup K_{z}{ }^{(c)}\right]
$$

contains a triangle
Decide for each such subgraph whether it contains a triangle

Recursively find a triangle in one subgraph

All-Pairs-Triangle to Triangle

Find a triangle (i, j, k) in $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$
How to find a triangle
All-Pairs-
Triangle
if we can only decide whether one exists?
Triangle

Partition I_{x} into $I_{x}{ }^{(1)}, I_{x}{ }^{(2)}, J_{y}$ into $J_{y}{ }^{(1)}, J_{y}{ }^{(2)}, K_{z}$ into $K_{z}{ }^{(1)}, K_{z}{ }^{(2)}$
Since $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$ contains a triangle, at least one of the 2^{3} subgraphs

$$
G\left[I_{x}{ }^{(a)} \cup J_{y}{ }^{(b)} \cup K_{z}{ }^{(c)}\right]
$$

contains a triangle
Running Time:
$T_{\text {FindTriangle }}(n) \leq$
Decide for each such subgraph whether it contains a triangle

Recursively find a triangle in one subgraph
$2^{3} \cdot T_{\text {DecideTriangle }}(n)$
$+T_{\text {FindTriangle }}(n / 2)$

All-Pairs-Triangle to Triangle

Initialize C as $n \times n$ all-zeroes matrix
For each of the $(n / s)^{3}$ triples of parts $\left(I_{x}, J_{y}, K_{z}\right)$:

All-PairsTriangle

Triangle While $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$ contains a triangle:

Find a triangle (i, j, k) in $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$
Set $C[i, j]:=1$
Delete edge (i, j)

Running Time:

$(*)=O\left(T_{\text {FindTriangle }}(s)\right)=O\left(T_{\text {DecideTriangle }}(s)\right)$
Total time: $((\#$ triples $)+(\#$ triangles found $)) \cdot(*)$

$$
\leq\left((n / s)^{3}+n^{2}\right) \cdot T_{\text {DecideTriangle }}(s)
$$

Set $s=n^{1 / 3}$ and assume $T_{\text {DecideTriangle }}(n)=O\left(n^{3-\varepsilon}\right)$
Total time: $O\left(n^{2} \cdot n^{1-\varepsilon / 3}\right)=O\left(n^{3-\varepsilon / 3}\right)$

Corollaries from Subcubic Equivalences

	If BMM has (combinatorial) $O\left(n^{3-\varepsilon}\right)$ algorithm then Triangle has (combinatorial) $O\left(n^{3-\varepsilon}\right)$ algorithm
BMM	
\}	
All-Pairs-	If Triangle has (combinatorial) $O\left(n^{3-\varepsilon}\right)$ algorithm then BMM has (combinatorial) $O\left(n^{3-\varepsilon / 3}\right)$ algorithm
Triangle	
介	
Triangle	\rightarrow subcubic equivalent, but this mainly makes sense for combinatorial algorithms

APSP

I

Min-Plus
Product
I
All-Pairs-Negative-
Triangle

$$
\mathbb{I}
$$

Negative Triangle

Outline

1) Relations to Subcubic Equivalences
2) Strassen's Algorithm
3) Sliding Window Hamming Distance
4) Node-Weighted Negative Triangle
5) Context-Free Grammars

Strassen‘s Algorithm

$$
\begin{aligned}
& \text { shows } \omega \leq 2.81 \\
& C_{1,1}=A_{1,1} \cdot B_{1,1}+A_{1,2} \cdot B_{2,1} \\
& C_{1,2}=A_{1,1} \cdot B_{1,2}+A_{1,2} \cdot B_{2,2} \\
& C_{2,1}=A_{2,1} \cdot B_{1,1}+A_{2,2} \cdot B_{2,1} \\
& T(n) \leq 8 T(n / 2)+O\left(n^{2}\right) \\
& T(n) \leq O\left(n^{3}\right) \\
& C_{2,2}=A_{2,1} \cdot B_{1,2}+A_{2,2} \cdot B_{2,2}
\end{aligned}
$$

Strassen‘s Algorithm

shows $\omega \leq 2.81$
$A_{1,1}$
$A_{2,1}$

$B_{1,1}$
$B_{2,1}$
:---:
$C_{2,1}$

$$
\begin{array}{ll}
M_{1}=\left(A_{1,1}+A_{2,2}\right) \cdot\left(B_{1,1}+B_{2,2}\right) & C_{1,1}=M_{1}+M_{4}-M_{5}+M_{7} \\
M_{2}=\left(A_{2,1}+A_{2,2}\right) \cdot B_{1,1} & C_{1,2}=M_{3}+M_{5} \\
M_{3}=A_{1,1} \cdot\left(B_{1,2}-B_{2,2}\right) & C_{2,1}=M_{2}+M_{4} \\
M_{4}=A_{2,2} \cdot\left(B_{2,1}-B_{1,1}\right) & C_{2,2}=M_{1}-M_{2}+M_{3}+M_{6} \\
M_{5}=\left(A_{1,1}+A_{1,2}\right) \cdot B_{2,2} & \\
M_{6}=\left(A_{2,1}-A_{1,1}\right) \cdot\left(B_{1,1}+B_{1,2}\right) & T(n) \leq 7 T(n / 2)+O\left(n^{2}\right) \\
M_{7}=\left(A_{1,2}-A_{2,2}\right) \cdot\left(B_{2,1}+B_{2,2}\right) & T(n) \leq O\left(n^{\log _{2} 7}\right)=O\left(n^{2.8074}\right)
\end{array}
$$

Faster Matrix Multiplication

tensor = 3-dimensional matrix
matrix multiplication tensor:
n^{2} rows/columns/...
entries in $\{0,1\}$
entry $T_{(i, j),\left(i^{\prime}, k^{\prime}\right),\left(k^{\prime \prime}, j^{\prime \prime}\right)}=1$
iff $i=i^{\prime}$ and $j=j^{\prime \prime}$ and $k^{\prime}=k^{\prime \prime}$

(i, j)
i.e. $A_{i^{\prime}, k^{\prime}} \cdot B_{k^{\prime \prime}, j^{\prime \prime}}$ appears in $C_{i, j}$
matrix of rank 1: outer product of two vectors matrix of rank r : sum of r rank-1-matrices
tensor of rank 1: outer product of three vectors tensor of rank r : sum of r rank-1-tensors
matrix rank is in P
tensor rank is not known to be in P

Faster Matrix Multiplication

tensor = 3-dimensional matrix
matrix multiplication tensor:
n^{2} rows/columns/...
entries in $\{0,1\}$
entry $T_{(i, j),\left(i^{\prime}, k^{\prime}\right),\left(k^{\prime \prime}, j^{\prime \prime}\right)}=1$
iff $i=i^{\prime}$ and $j=j^{\prime \prime}$ and $k^{\prime}=k^{\prime \prime}$

(i, j)
i.e. $A_{i^{\prime}, k^{\prime}} \cdot B_{k^{\prime \prime}, j^{\prime \prime}}$ appears in $C_{i, j}$

Strassen: rank of MM-tensor for $n=2$ is at most 7
any bound on rank of MM-tensor can be transformed into a MM-algorithm
thus search for faster MM-algorithms is a mathematical question
this is complete: one can find ω by analyzing tensor rank!

Outline

1) Relations to Subcubic Equivalences
2) Strassen's Algorithm
3) Sliding Window Hamming Distance
4) Node-Weighted Negative Triangle
5) Context-Free Grammars

Sliding Window Hamming Distance

given two strings: text T of length n and pattern P of length $m<n$ compute for each i the Hamming distance of P and $T[i . . i+m-1]$

	a	\mathbf{b}	\mathbf{c}	\mathbf{b}	\mathbf{b}	\mathbf{c}	\mathbf{a}	\mathbf{a}	
best known algorithm:	b	b	c	a					2
$O(n \sqrt{m}$ polylog $n)$		b	b	c	a				3
$\leq O\left(n^{1.5001}\right)$			b	b	c	a			3
				b	b	c	a		0
				b	b	c	a	2	

[Indyk,Porat,Clifford'09]
Thm: \quad Sliding Window Hamming Distance has no $O\left(n^{\omega / 2-\varepsilon}\right)$ algorithm or combinatorial $O\left(n^{1.5-\varepsilon}\right)$ algorithm unless the BMM-Hypothesis fails

$$
\approx O\left(n^{1.18}\right)
$$

Open Problem: get rid of „combinatorial" or design improved algorithm using MM

Sliding Window Hamming Distance

given two strings: text T of length n and pattern P of length $m<n$ compute for each i the Hamming distance of P and $T[i . . i+m-1]$

pattern = concat rows: $1 \times x 123 \times 23$

alphabet: $\{1,2, \ldots, n, x, y, \$\}$
text $=$ concat columns + padding:
\$ \$ \$ \$ \$ 12 y \$ 1 y 3 \$ y $23 \$ \$ \$ \$ \$ \$$
$1 \times x 123 \times 23$

Sliding Window Hamming Distance

\$	\$	\$	\$	\$	\$	1	2	y	\$	\$ 1	1 y	y	3	\$	y	2	3	\$		\$	\$	\$	\$
						1	x	x	x 1	12	$1 \times$	3	x	2	3	x	x		2	3	x	2	3
			1	X	x			3	¢	$\times 2$	23	$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$	3 x	x	2 1	2	3	x	2	3			
1	X	X	1		$\begin{aligned} & 3 \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$		$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$				2	$\begin{aligned} & 3 \\ & 2 \end{aligned}$		x	2	3						

put a 1 if there is at least one match

1	0	0
1	1	1
0	1	1

1	1	0
1	0	1
0	1	1

$=$| 1 | 1 | 0 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Sliding Window Hamming Distance

given Boolean $n \times n$-matrices A, B
we construct text+pattern of length $O\left(n^{2}\right)$ (in time $O\left(n^{2}\right)$)
thus, an $O\left(n^{\omega / 2-\varepsilon}\right)$ algorithm for Sliding Window Hamming Distance would yield an $O\left(n^{\omega-2 \varepsilon}\right)$ algorithm for BMM, contradicting BMM-Hypothesis
and an $O\left(n^{1.5-\varepsilon}\right)$ combinatorial algorithm for Sliding Window Hamming Dist. would yield an $O\left(n^{3-2 \varepsilon}\right)$ combinatorial algorithm for BMM

Thm: Sliding Window Hamming Distance has no $O\left(n^{\omega / 2-\varepsilon}\right)$ algorithm or combinatorial $O\left(n^{1.5-\varepsilon}\right)$ algorithm unless the BMM-Hypothesis fails

Outline

1) Relations to Subcubic Equivalences
2) Strassen's Algorithm
3) Sliding Window Hamming Distance
4) Node-Weighted Negative Triangle
5) Context-Free Grammars

Node-Weighted Negative Triangle

Node-Weighted Negative Triangle

(Edge-

Weighted)
Negative
Triangle

Node-
Weighted
Negative
Triangle

Triangle $\quad O\left(n^{\omega}\right)$
find appropriate edge weights that simulate the given node weights:

$$
\text { set } w_{i, j}:=\left(w_{i}+w_{j}\right) / 2
$$

then for a triangle i, j, k :

$$
w_{j, i}+w_{i, k}+w_{k, j}=w_{i}+w_{j}+w_{k}
$$

Node-Weighted Negative Triangle

Node-Weighted Minimum Weight Triangle

we can assume that the graph is tripartite:
$G:$

triangle i, j, k

$\Leftrightarrow \quad$ triangle i_{1}, j_{2}, k_{3}

Node-Weighted Minimum Weight Triangle

given graph $G=(V, E)$ with $V=I \cup J \cup K$ and node weights w_{v}, compute minimum weight q s.t.
there are $i \in I, j \in J, k \in K$ with $(i, j),(j, k),(k, i) \in E$ and $w_{i}+w_{j}+w_{k}=q$

- assume that I, J, K are sorted by weight
- parameter p (=sufficiently large constant)
- assume $n:=|I|=|J|=|K|=p^{\ell}$ for some $\ell \in \mathbb{N}$ (add isolated dummy vertices)

Node-Weighted Minimum Weight Triangle

given graph $G=(V, E)$ with $V=I \cup J \cup K$ and node weights w_{v}, compute minimum weight q s.t.
there are $i \in I, j \in J, k \in K$ with $(i, j),(j, k),(k, i) \in E$ and $w_{i}+w_{j}+w_{k}=q$

- assume that I, J, K are sorted by weight
- parameter p (=sufficiently large constant)
- assume $n:=|I|=|J|=|K|=p^{\ell}$ for some $\ell \in \mathbb{N}$ (add isolated dummy vertices)

ALG(G): 0) if $n=O(1)$ then solve in constant time

1) split $I=I_{1} \cup \cdots \cup I_{p}, J=J_{1} \cup \cdots \cup J_{p}, K=K_{1} \cup \cdots \cup K_{p}$
 (in sorted order: $\max w\left(I_{x}\right) \leq \min w\left(I_{x+1}\right)$ and so on)
2) $R:=\left\{(x, y, z) \in\{1, \ldots, p\}^{3} \mid G\left[I_{x} \cup J_{y} \cup K_{z}\right]\right.$ contains a triangle $\}$
3) for each $(x, y, z) \in R$ s.t. there is no $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in R$ with $x^{\prime}<x, y^{\prime}<y, z^{\prime}<z$ run $\operatorname{ALG}\left(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\right)$

Node-Weighted Minimum Weight Triangle

3) for each $(x, y, z) \in R$ s.t. there is no $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in R$ with $x^{\prime}<x, y^{\prime}<y, z^{\prime}<z$ run $\operatorname{ALG}\left(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\right)$
Correctness:
if there is no triangle in $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$ then we can ignore it
if $(x, y, z) \in R$ is dominated by $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in R$:
let i, j, k be a triangle in $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$, and $i^{\prime}, j^{\prime}, k^{\prime}$ a triangle in $G\left[I_{x^{\prime}} \cup J_{y^{\prime}} \cup K_{z^{\prime}}\right]$ then $w_{i}+w_{j}+w_{k} \geq \min w\left(I_{x}\right)+\min w\left(J_{y}\right)+\min w\left(K_{z}\right)$
and $w_{i^{\prime}}+w_{j^{\prime}}+w_{k^{\prime}} \leq \max w\left(I_{x^{\prime}}\right)+\max w\left(J_{y^{\prime}}\right)+\max w\left(K_{z^{\prime}}\right)$
so we can safely ignore $G\left[I_{x} \cup J_{y} \cup K_{z}\right]$

Node-Weighted Minimum Weight Triangle

given graph $G=(V, E)$ with $V=I \cup J \cup K$ and node weights w_{v}, compute minimum weight q s.t.
there are $i \in I, j \in J, k \in K$ with $(i, j),(j, k),(k, i) \in E$ and $w_{i}+w_{j}+w_{k}=q$

- assume that I, J, K are sorted by weight
- parameter p (=sufficiently large constant)
- assume $n:=|I|=|J|=|K|=p^{\ell}$ for some $\ell \in \mathbb{N}$ (add isolated dummy vertices)

ALG(G): 0) if $n=O(1)$ then solve in constant time

1) split $I=I_{1} \cup \cdots \cup I_{p}, J=J_{1} \cup \cdots \cup J_{p}, K=K_{1} \cup \cdots \cup K_{p}$
 (in sorted order: $\max I_{x} \leq \min I_{x+1}$ aso.)
2) $R:=\left\{(x, y, z) \in\{1, \ldots, p\}^{3} \mid G\left[I_{x} \cup J_{y} \cup K_{z}\right]\right.$ contains a triangle $\} \quad O\left(p^{3} n^{\omega}\right)$
3) for each $(x, y, z) \in R$ s.t. there is no $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in R$ with $x^{\prime}<x, y^{\prime}<y, z^{\prime}<z$ run $\operatorname{ALG}\left(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\right)$

Node-Weighted Minimum Weight Triangle

3) for each $(x, y, z) \in R$ s.t. there is no $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in R$ with $x^{\prime}<x, y^{\prime}<y, z^{\prime}<z$ How many iterations?
define $\Delta_{r, s}:=\left\{(x, y, z) \in\{1, \ldots, p\}^{3} \mid x-y=r\right.$ and $\left.x-z=s\right\}$

$$
=\{(1,1-r, 1-s),(2,2-r, 2-s), \ldots,(p, p-r, p-s)\} \cap\{1, \ldots, p\}^{3}
$$

$$
\text { for } r, s \in\{-p, \ldots, p\}
$$

the sets $\Delta_{r, s}$ cover $\{1, \ldots, p\}^{3}$
line 3) applies to at most one (x, y, z) in $\Delta_{r, s}$ for any r, s !
hence, there are at most $(2 p)^{2}=4 p^{2}$ recursive calls to ALG

Node-Weighted Minimum Weight Triangle

given graph $G=(V, E)$ with $V=I \cup J \cup K$ and node weights w_{v}, compute minimum weight q s.t.
there are $i \in I, j \in J, k \in K$ with $(i, j),(j, k),(k, i) \in E$ and $w_{i}+w_{j}+w_{k}=q$

- assume that I, J, K are sorted by weight
- parameter p (=sufficiently large constant)
- assume $n:=|I|=|J|=|K|=p^{\ell}$ for some $\ell \in \mathbb{N}$ (add isolated dummy vertices)

ALG(G): 0) if $n=O(1)$ then solve in constant time

1) split $I=I_{1} \cup \cdots \cup I_{p}, J=J_{1} \cup \cdots \cup J_{p}, K=K_{1} \cup \cdots \cup K_{p}$
 (in sorted order: $\max I_{x} \leq \min I_{x+1}$ aso.)
2) $R:=\left\{(x, y, z) \in\{1, \ldots, p\}^{3} \mid G\left[I_{x} \cup J_{y} \cup K_{z}\right]\right.$ contains a triangle $\} \quad O\left(p^{3} n^{\omega}\right)$
3) for each $(x, y, z) \in R$ s.t. there is no $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in R$ with $x^{\prime}<x, y^{\prime}<y, z^{\prime}<z$ run $\operatorname{ALG}\left(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\right)$ size n / p

Node-Weighted Minimum Weight Triangle

recursion:

$$
T(n) \leq 4 p^{2} \cdot T(n / p)+O\left(p^{3} n^{\omega}\right)
$$

$$
T(n) \leq 4 p^{2} \cdot T(n / p)+\alpha p^{3} n^{\omega} \quad \text { for some constant } \alpha
$$

want to show:

$$
T(n) \leq 2 \alpha p^{3} n^{\omega}
$$

plug in:

$$
\begin{aligned}
T(n) & \leq 4 p^{2} \cdot 2 \alpha p^{3}(n / p)^{\omega}+\alpha p^{3} n^{\omega} \\
& =\alpha p^{3} n^{\omega}\left(1+8 p^{2-\omega}\right) \\
& \leq 2 \alpha p^{3} n^{\omega} \quad \text { for a sufficiently large constant } p
\end{aligned}
$$

so we have:

$$
T(n) \leq O\left(n^{\omega}\right)
$$

(if $\omega=2$: show that $T(n) \leq 2 \alpha p^{3} n^{\omega+\varepsilon}$)

In this lecture you learned that...

..(B)MM is useful for designing theoretically fast algorithms

- Exercise: k-Clique in $O\left(n^{\omega k / 3}\right)$
- Exercise: MaxCut in $O\left(2^{\omega n / 3}\right.$ poly $\left.(n)\right)$
- Node-Weighted Negative Triangle in $O\left(n^{\omega}\right)$
...BMM is an obstacle for practically fast / theoretically very fast algorithms

no combinatorial $O\left(n^{3-\varepsilon}\right) \quad$ not faster than $O\left(n^{2.373}\right)$
- Transitive Closure has no $O\left(n^{\omega-\varepsilon}\right) /$ combinatorial $O\left(n^{3-\varepsilon}\right)$ algorithm
- Exercise: pattern matching with 2 patterns
- Sliding Window Hamming Distance
- context-free grammar problems

