

Complexity Theory of Polynomial-Time Problems

Lecture 9: Dynamic Algorithms I

Sebastian Krinninger

Today's Plan

1. Decremental SSSP via Even-Shiloach tree
2. Decremental APSP

Floyd-Warshall Algorithm

$O\left(n^{3}\right)$ algorithm for computing All-Pairs Shortest Paths (APSP)
n : number of nodes
Put some order v_{1}, \ldots, v_{n} on the nodes
Set $d\left(v_{i}, v_{j}\right)=w\left(v_{i}, v_{j}\right)$ for every pair of nodes $v_{i} \neq v_{j}$
For $k=1$ to n :
For every pair of nodes v_{i}, v_{j} :

$$
d\left(v_{i}, v_{j}\right) \leftarrow \min \left(d\left(v_{i}, v_{j}\right), d\left(v_{i}, v_{k}\right)+d\left(v_{k}, v_{j}\right)\right)
$$

Running Time: n iterations, each takes time $O\left(n^{2}\right)$

Correctness: After iteration $i, d(\cdot, \cdot)$ gives correct distance in graph restricted to $\left\{v_{1}, \ldots, v_{k}\right\}$
\Rightarrow Correct in full graph after iteration n

Dynamic View

Why stop after n iterations?
Floyd-Warshall allows insertions of new nodes

Insert(v, In $_{v}$, Out $_{v}$): $\quad / /$ (Insert node with incident edges and weights)
Set $d\left(v^{\prime}, v\right)=w\left(v^{\prime}, v\right)$ for every incoming neighbor v^{\prime} of v
Set $d\left(v, v^{\prime}\right)=w\left(v, v^{\prime}\right)$ for every outgoing neighbor v^{\prime} of v
For every incoming neighbor s of v and every node t

$$
d(s, t) \leftarrow \min (d(s, t), d(s, v)+d(v, t))
$$

For every node s outgoing neighbor t of v

$$
d(s, t) \leftarrow \min (d(s, t), d(s, v)+d(v, t))
$$

For every other pair of nodes s, t :

$$
d(s, t) \leftarrow \min (d(s, t), d(s, v)+d(v, t))
$$

Update Time: $\quad O\left(n^{2}\right)$ per insertion

Dynamic Algorithms

A dynamic graph algorithm is a data structure supporting:

- Preprocess (G): preprocess the graph G
- Insert (u, v) : insert the edge (u, v) into G
- De7ete (u, v) : delete the edge (u, v) from G
- Query (G) : return result of algorithm for current graph G

Terminology:

- Incremental: only insertions are supported
- Decremental: only deletions are supported
- Fully dynamic: both insertions and deletions are supported

Some algorithms also support insertions and deletions of nodes

Goal:

- Time spent per update or query less than recomputing from scratch
- (Polynomial preprocessing time)

Measuring Update Time

Two Measures

- Worst-case update time

Fixed upper bound on running time per update

- Amortized update time
"On average" upper bound on running time per update

$$
\begin{array}{ll}
\text { Formally: } & \begin{array}{l}
\text { Amortized update time } u(n, m) \text { if total time spent for a } \\
\\
\\
\text { sequence of } t \text { updates is at most } t \cdot u(n, m) .
\end{array}
\end{array}
$$

Very common in incremental/decremental algorithms:

- Amortize update time over m insertions/deletions
- "Total update time"

1. Decremental SSSP

Even-Shiloach Algorithm

Goal: Decremental SSSP in unweighted graphs from source s
Example of shortest path tree from s :
Level 0

Level 1

Level 2

Level 3

\longrightarrow tree edge
other edge

Cannot cross more than 1 level

Deletion Procedure I

- c loses its parent
- c finds no new parent at level 2
- c increases level to 3
- c informs neighbors about level increase
- Children of c lose their parent
- c finds new parent d
- e finds new parent b
- f finds new parent $b g$ finds no new parent at level 3
- g increases level to 4

Deletion Procedure II

- g finds new parent c
- Now we are done because all nodes have a parent again

Internal Data Structures and Initialization

Data Structures:

For every node v :

- Number neighbors of v from 1 to $\operatorname{deg}(v)$ (initial degree of v)
- $n_{i}(v) \quad$ Pointer to i-th neighbor of v
- $p(v) \quad$ Index of parent of v (among neighbors) in tree
- $\quad \ell(v) \quad$ Level of v in tree (will correspond to distance from root)

Global:

- Q

Priority queue with levels as keys
(used in update procedure)

Initialization:

Compute BFS tree from source s such that each node takes parent with minimum index among neighbors.

Time: $O(\mathrm{~m})$

Pseudocode

Delete (u, v) :
Add u and v to Q
While $Q \neq \varnothing$
Take node v with minimum level from Q Process (v)

FindNewParent(v):
// Check if neighbor with index $p(v)$ is a valid parent
While G does not contain edge $\left(v, n_{p(v)}(v)\right)$ or $l(v)<\left(\ell\left(n_{p(v)}(v)\right)+1\right)$:

$$
\begin{aligned}
& p(v) \leftarrow p(v)+1 \quad / / \text { If not, try next neighbor as parent } \\
& \text { Add } v \text { to } Q \\
& \text { If } p(v)=\operatorname{deg}(v)+1 \quad / / \text { Check if all neighbors exhausted } \\
& l(v) \leftarrow l(v)+1 \quad / / \text { Increase level } \\
& \text { If } \ell(v) \geq n-1 \text { : // Check if level too big } \\
& \text { Set } \ell(v) \leftarrow \infty \\
& \text { Remove } v \text { from } Q \\
& p(v) \leftarrow 1 \quad / / \text { Reset parent index } \\
& \text { Add neighbors of } v \text { to } Q \quad / / \text { Process neighbors }
\end{aligned}
$$

Correctness I

Claim 1: Initially, and after each update is finished: $\ell(v) \geq \operatorname{dist}(s, v) \forall v$

Proof:

If $\ell(v)=\infty$, then certainly true
Otherwise:
Consider path π from v induced by following parents
Levels of nodes on π are strictly decreasing:

- When parent of a node is set, parent has strictly smaller level
- When level of a node changes it informs all potential children

Thus, π ends at s because s is the only node at level 0
$\ell(v)=$ length of π
π cannot be shorter than shortest path from s to v
Thus, $\ell(v) \geq \operatorname{dist}(s, v)$

Correctness II

Claim 2: At any time: For every node v with neighbor u, $\ell(v) \leq \ell(u)+1$ if $\ell(u)+1 \leq n-1$.

Proof:

By induction on \#level increases of v (in total over all deletions)
Induction Base: True after initialization
Induction Step:
$\ell(v)$: level of v directly before level increase
$\ell^{\prime}(v)$: level of v directly after level increase
By $\mathrm{H}: \ell(v) \leq \ell(u)+1$
Algorithm guarantees: $\ell(v)<\ell(u)+1$ (otherwise no level increase of v)
(Detail: no candidate parent for v at level $\ell(v)$ anymore by processing order according to levels)
Thus: $\ell(v)+1 \leq \ell(u)+1$
Since $\ell^{\prime}(v)=\ell(v)+1$ we have $\ell^{\prime}(v) \leq \ell(u)+1$
Inequality remains true until next level increase of v because level of u never decreases

Correctness III

Lemma：Initially and after each update is finished，$\ell(v)=\operatorname{dist}(s, v) \forall v$
Proof by induction on distance to s
If $\operatorname{dist}(s, v)=\infty$ ：Then $\ell(v) \geq \operatorname{dist}(s, v)=\infty$ by Claim 1
If $\operatorname{dist}(s, v)<\infty$ ：
Consider successor u of v on shortest path from s to v

When algorithm finished update：
$\ell(u)=\operatorname{dist}(s, u)$ by IH
In particular： $\operatorname{dist}(s, u) \leq n-2$ and thus $\ell(u)+1 \leq n-1$
By Claim 2：$\ell(v) \leq \ell(u)+1=\operatorname{dist}(s, v)$
By Claim 1：$\ell(v) \geq \operatorname{dist}(s, v)$

$$
\Rightarrow \ell(v)=\operatorname{dist}(s, v)
$$

Running Time

Lemma：The total update time over all deletions is $O(m n)$
（where m is the number of edges at initialization）

Amortized analysis！
Idea：Every time the level of some node v increases，we charge running time of $O(\operatorname{deg}(v))$ to that level increase（see next slide）．
（where $\operatorname{deg}(v)$ is the degree of v at initialization）
The level of every node can increase at most $n-1$ times（max．distance）．
Additionally，charge time $O(1)$ to every deletion
Total time：$O\left(\# \operatorname{del}+\sum_{v \in V} n \operatorname{deg}(v)\right)=O\left(m+n \cdot \sum_{v \in V} \operatorname{deg}(v)\right)=O(n \cdot m)$

Remember from kindergarten：sum of degrees \leq twice \＃edges

Running Time Analysis

Delete (u,v):	
Add u and v to $Q \quad O$ (1) per deletion \quad level increase of node that put v into queue or While $Q \neq \varnothing$ deletion that put v into queue	
Take node v with minimum level from	
	of node that put v into queue or
While G does not contain edge (v, $n_{p(v)}(v)$) or $l(v)<\left(\ell\left(n_{p(v)}(v)\right)+1\right)$:	
$p(v) \leftarrow p(v)+1\} \quad O(1)$ per increase of parent index	
If $p(v)=\operatorname{deg}(v)+1$	
If $\ell(v) \geq n-1: \quad O(\operatorname{deg}(v)):$	
Set $\ell(v) \leftarrow \infty$	charge to level increase of v
Add neighbors of v to Q	

Total: $O\left(\# \operatorname{del}+\sum_{v \in V} n \operatorname{deg}(v)\right)+$

Banker's View

Every node v receives:

- $10 \operatorname{deg}(v)$ coins at initialization
- 3 coins when deleting incident edges

Observation: Sufficient number of coins to pay 1 coin per operation.
(Note: give constant number of coins to each neighbor at level increase)

Total number of coins spent: O (\#del $\left.+\sum_{v \in V} n \operatorname{deg}(v)\right)$

Implementing Priority Queue

Standard heap: Time $O(\log n)$ per operation

In our application we can get $O(1)$ per operation

Array A of size n, where $A[i]$ contains pointer to list of nodes at level i

In unweighted undirected graphs:

- At most two lists non-empty
- at consecutive levels

Extensions

Theorem: Maintaining SSSP under deletions takes total time

- $O(m n)$ in unweighted undirected graphs
- $O(m n)$ in unweighted directed graphs
- $O(m n W)$ in directed graphs with weights $\{1,2, \ldots, W\}$.
[Even/Shiloach '81, King '99, King/Thorup '01]

Theorem: Maintaining SSSP under deletions up to depth D takes total time $O(m D)$ in directed graphs with integer weights.

2. Decremental APSP

Hitting Set for Long Paths

Random process for picking a set of nodes S :

- Set $p=\min \left(\frac{10 \log n}{h}, 1\right)$
- Iterate over all nodes
- Pick each node with probability p independently (flip biased coin)
- Expected size of $S: O\left(\frac{n \log n}{h}\right)$

Lemma: For every pair of nodes s and t, if the shortest path from s to t contains at least h nodes, then one of them is from S with probability at least $1-\frac{1}{n}$ (i.e., 'with high probability').

Caveat: There could be many shortest paths from s to t. We only guarantee to hit one of them (e.g. lexicographic shortest path).

Lemma also holds for all graphs during a sequence of deletions (if sequence of deletions is independent from random choices of algorithm)

Maintaining shortest paths in range $2^{i} \ldots 2^{i+1}$

Pick set of nodes S_{i} ("i-centers"):

- Sampling probability $p=\min \left(\frac{10 \log n}{2^{i}}, 1\right)$
- Expected size of $S_{i}: O\left(\frac{n \log n}{2^{i}}\right)$

For every i-center $c \in S_{i}$:

Even-Shiloach tree to c up to depth 2^{i+1}
(Reverse graph:
reverse direction of each edge)
Total time: $O\left(\left|S_{i}\right| m 2^{i+1}\right)=O(m n \log n)$

Decremental APSP algorithm

For $i=1$ to $\lfloor\log n\rfloor$:

- Pick i-centers S_{i} with sampling probability $p=\min \left(\frac{10 \log n}{2^{i}}, 1\right)$
- For every i-center $c \in S_{i}$: Maintain ES-tree to and from c of depth 2^{i+1}

Total update time: $O\left(\sum_{i=1}^{\lfloor\log n\rfloor}\left|S_{i}\right| m 2^{i}\right)=O\left(\sum_{i=1}^{\lfloor\log n\rfloor} m n \log n\right)=O\left(m n \log ^{2} n\right)$

Query Algorithm:

- Question: What is the distance from s to t
- Return minimum value of $\hat{d}(s, c)+\hat{d}(c, t)$ among all centers $c \in U S_{i}$
- Query time: $O(n)$ (= number of centers)

Correctness:

- Let π be shortest path from s to t
- π has between 2^{i} and 2^{i+1} nodes for some $i=1$ to $\lfloor\log n\rfloor$
- π contains a center $c \in S_{i}$ with high probability
- Subpaths from s to c and from c to s are also shortest paths and both have length $\leq 2^{i+1}$
- Thus, $\hat{d}(s, c)+\hat{d}(c, t)=\operatorname{dist}(s, t)$
- Other centers can never report a smaller value for $\hat{d}(s, c)+\hat{d}(c, t)$

Extensions

Result we just showed:
Theorem: There is a decremental algorithm for maintaining APSP in unweighted, directed graphs with total update time $O\left(m n \log ^{2} n\right)$ and query time $O(n)$.

By explicitly maintaining distances after each update, one can reduce query time.

Theorem: There is a decremental algorithm for maintaining APSP in unweighted, directed graphs with total update time $O\left(n^{3} \log ^{2} n\right)$ and constant query time.
[Baswana et al. '02]

