
Complexity Theory of

Polynomial-Time Problems

Sebastian Krinninger

Lecture 9: Dynamic Algorithms I

Today’s Plan

July 22, 2016 2/25

1. Decremental SSSP via Even-Shiloach tree

2. Decremental APSP

Floyd-Warshall Algorithm

July 22, 2016 3/25

𝑂(𝑛3) algorithm for computing All-Pairs Shortest Paths (APSP)

Put some order 𝑣1, … , 𝑣𝑛 on the nodes

Set 𝑑 𝑣𝑖 , 𝑣𝑗 = 𝑤 𝑣𝑖 , 𝑣𝑗 for every pair of nodes 𝑣𝑖 ≠ 𝑣𝑗

For 𝑘 = 1 to 𝑛:

For every pair of nodes 𝑣𝑖 , 𝑣𝑗:

𝑑 𝑣𝑖 , 𝑣𝑗 ← min 𝑑 𝑣𝑖 , 𝑣𝑗 , 𝑑 𝑣𝑖 , 𝑣𝑘 + 𝑑 𝑣𝑘, 𝑣𝑗

𝑛: number of nodes

Running Time: 𝑛 iterations, each takes time 𝑂(𝑛2)

Correctness: After iteration 𝑖, 𝑑(⋅,⋅) gives correct distance in graph

restricted to {𝑣1, … , 𝑣𝑘}
⇒ Correct in full graph after iteration 𝑛

Dynamic View

July 22, 2016 4/25

Why stop after 𝑛 iterations?

Floyd-Warshall allows insertions of new nodes

Insert(𝑣, 𝐼𝑛𝑣, 𝑂𝑢𝑡𝑣): // (Insert node with incident edges and weights)

Set 𝑑 𝑣′, 𝑣 = 𝑤 𝑣′, 𝑣 for every incoming neighbor 𝑣′ of 𝑣
Set 𝑑 𝑣, 𝑣′ = 𝑤 𝑣, 𝑣′ for every outgoing neighbor 𝑣′ of 𝑣

For every incoming neighbor 𝑠 of 𝑣 and every node 𝑡

𝑑 𝑠, 𝑡 ← min 𝑑 𝑠, 𝑡 , 𝑑 𝑠, 𝑣 + 𝑑 𝑣, 𝑡

For every node 𝑠 outgoing neighbor 𝑡 of 𝑣

𝑑 𝑠, 𝑡 ← min 𝑑 𝑠, 𝑡 , 𝑑 𝑠, 𝑣 + 𝑑 𝑣, 𝑡

For every other pair of nodes 𝑠, 𝑡:

𝑑 𝑠, 𝑡 ← min 𝑑 𝑠, 𝑡 , 𝑑 𝑠, 𝑣 + 𝑑 𝑣, 𝑡

Update Time: 𝑂(𝑛2) per insertion

Dynamic Algorithms

July 22, 2016 5/25

A dynamic graph algorithm is a data structure supporting:

• Preprocess(𝐺): preprocess the graph 𝐺
• Insert(𝑢,𝑣): insert the edge (𝑢, 𝑣) into 𝐺
• Delete(𝑢,𝑣): delete the edge (𝑢, 𝑣) from 𝐺
• Query(𝐺): return result of algorithm for current graph 𝐺

Terminology:

• Incremental: only insertions are supported

• Decremental: only deletions are supported

• Fully dynamic: both insertions and deletions are supported

Some algorithms also support insertions and deletions of nodes

Goal:

• Time spent per update or query less than recomputing from scratch

• (Polynomial preprocessing time)

Measuring Update Time

July 22, 2016 6/25

Two Measures

• Worst-case update time

Fixed upper bound on running time per update

• Amortized update time

“On average” upper bound on running time per update

Formally: Amortized update time 𝑢(𝑛,𝑚) if total time spent for a

sequence of 𝑡 updates is at most 𝑡 ⋅ 𝑢(𝑛,𝑚).

Very common in incremental/decremental algorithms:

• Amortize update time over 𝑚 insertions/deletions

• “Total update time”

1. Decremental SSSP

July 22, 2016 7/25

Even-Shiloach Algorithm

July 22, 2016 8/25

Goal: Decremental SSSP in unweighted graphs from source 𝑠

s

Example of shortest path tree from 𝑠:

Level 0

Level 1

Level 2

Level 3

tree edge

other edge

Cannot cross more

than 1 level

Deletion Procedure I

July 22, 2016 9/25

s

a

b c d

e f g

• 𝑐 loses its parent

• 𝑐 finds no new parent at level 2
• 𝑐 increases level to 3
• 𝑐 informs neighbors about level

increase

• Children of 𝑐 lose their parent

s

a

b

c

d

e f g

• 𝑐 finds new parent 𝑑
• 𝑒 finds new parent 𝑏
• 𝑓 finds new parent 𝑏𝑔 finds no new

parent at level 3
• 𝑔 increases level to 4

Deletion Procedure II

July 22, 2016 10/25

• 𝑔 finds new parent 𝑐
• Now we are done because all

nodes have a parent again

s

a

b

c

d

e f

g

s

a

b

c

d

e f

g

Internal Data Structures and Initialization

July 22, 2016 11/25

Data Structures:

For every node 𝑣:

• Number neighbors of 𝑣 from 1 to deg 𝑣 (initial degree of 𝑣)

• 𝑛𝑖(𝑣) Pointer to 𝑖-th neighbor of 𝑣
• 𝑝(𝑣) Index of parent of 𝑣 (among neighbors) in tree

• ℓ(𝑣) Level of 𝑣 in tree (will correspond to distance from root)

Global:

• 𝑄 Priority queue with levels as keys

(used in update procedure)

Initialization:

Compute BFS tree from source 𝑠 such that each node takes parent with

minimum index among neighbors.

Time: 𝑂(𝑚)

Pseudocode

July 22, 2016 12/25

Delete(𝑢,𝑣):
Add 𝑢 and 𝑣 to 𝑄
While 𝑄 ≠ ∅

Take node 𝑣 with minimum level from 𝑄
Process(𝑣)

FindNewParent(𝑣):
// Check if neighbor with index 𝑝(𝑣) is a valid parent

While 𝐺 does not contain edge (𝑣, 𝑛𝑝 𝑣 (𝑣)) or 𝑙 𝑣 < ℓ 𝑛𝑝 𝑣 𝑣 + 1 :

𝑝 𝑣 ← 𝑝 𝑣 + 1 // If not, try next neighbor as parent

Add 𝑣 to 𝑄
If 𝑝 𝑣 = deg(𝑣) + 1 // Check if all neighbors exhausted

𝑙 𝑣 ← 𝑙 𝑣 + 1 // Increase level

If ℓ 𝑣 ≥ 𝑛 − 1: // Check if level too big

Set ℓ 𝑣 ← ∞
Remove 𝑣 from 𝑄

𝑝 𝑣 ← 1 // Reset parent index

Add neighbors of 𝑣 to 𝑄 // Process neighbors

Correctness I

July 22, 2016 13/25

Claim 1: Initially, and after each update is finished: ℓ 𝑣 ≥ dist(𝑠, 𝑣) ∀𝑣

Proof:

If ℓ 𝑣 = ∞, then certainly true

Otherwise:

Consider path 𝜋 from 𝑣 induced by following parents

Levels of nodes on 𝜋 are strictly decreasing:

• When parent of a node is set, parent has strictly smaller level

• When level of a node changes it informs all potential children

Thus, 𝜋 ends at 𝑠 because 𝑠 is the only node at level 0

ℓ 𝑣 = length of 𝜋
𝜋 cannot be shorter than shortest path from 𝑠 to 𝑣
Thus, ℓ 𝑣 ≥ dist(𝑠, 𝑣)

Correctness II

July 22, 2016 14/25

Claim 2: At any time: For every node 𝑣 with neighbor 𝑢,

ℓ 𝑣 ≤ ℓ 𝑢 + 1 if ℓ 𝑢 + 1 ≤ 𝑛 − 1.

Proof:

By induction on #level increases of 𝑣 (in total over all deletions)

Induction Base: True after initialization

Induction Step:

ℓ(𝑣): level of 𝑣 directly before level increase

ℓ′ 𝑣 : level of 𝑣 directly after level increase

By IH: ℓ 𝑣 ≤ ℓ 𝑢 + 1
Algorithm guarantees: ℓ 𝑣 < ℓ 𝑢 + 1 (otherwise no level increase of 𝑣)

(Detail: no candidate parent for 𝑣 at level ℓ 𝑣 anymore by

processing order according to levels)

Thus: ℓ 𝑣 + 1 ≤ ℓ 𝑢 + 1
Since ℓ′ 𝑣 = ℓ 𝑣 + 1 we have ℓ′ 𝑣 ≤ ℓ 𝑢 + 1

Inequality remains true until next level increase of 𝑣 because level of 𝑢
never decreases

Correctness III

July 22, 2016 15/25

Lemma: Initially and after each update is finished, ℓ 𝑣 = dist(𝑠, 𝑣) ∀𝑣

If dist 𝑠, 𝑣 < ∞:

Consider successor 𝑢 of 𝑣 on shortest path from 𝑠 to 𝑣

s vu

= 1

When algorithm finished update:

ℓ 𝑢 = dist 𝑠, 𝑢 by IH

In particular: dist 𝑠, 𝑢 ≤ 𝑛 − 2 and thus ℓ 𝑢 + 1 ≤ 𝑛 − 1

By Claim 2: ℓ 𝑣 ≤ ℓ 𝑢 + 1 = dist 𝑠, 𝑣
By Claim 1: ℓ 𝑣 ≥ dist 𝑠, 𝑣

⇒ ℓ 𝑣 = dist 𝑠, 𝑣

If dist 𝑠, 𝑣 = ∞: Then ℓ 𝑣 ≥ dist 𝑠, 𝑣 = ∞ by Claim 1

Proof by induction on distance to 𝑠

Running Time

July 22, 2016 16/25

Lemma: The total update time over all deletions is 𝑂(𝑚𝑛)

Amortized analysis!

Idea: Every time the level of some node 𝑣 increases, we charge running

time of 𝑂 deg 𝑣 to that level increase (see next slide).

The level of every node can increase at most 𝑛 − 1 times (max. distance).

Total time: 𝑂 #del + 𝑣∈𝑉 𝑛 deg 𝑣 = 𝑂 𝑚 + 𝑛 ⋅ 𝑣∈𝑉 deg 𝑣 = 𝑂 𝑛 ⋅ 𝑚

Remember from kindergarten: sum of degrees ≤ twice #edges

(where 𝑚 is the number of edges at initialization)

(where deg 𝑣 is the degree of 𝑣 at initialization)

Additionally, charge time 𝑂 1 to every deletion

Running Time Analysis

July 22, 2016 17/25

Delete(𝑢,𝑣):
Add 𝑢 and 𝑣 to 𝑄
While 𝑄 ≠ ∅

Take node 𝑣 with minimum level from 𝑄
Process(𝑣)

Process(𝑣):

While 𝐺 does not contain edge (𝑣, 𝑛𝑝 𝑣 (𝑣)) or 𝑙 𝑣 < ℓ 𝑛𝑝 𝑣 𝑣 + 1 :

𝑝 𝑣 ← 𝑝 𝑣 + 1
Add 𝑣 to 𝑄
If 𝑝 𝑣 = deg(𝑣) + 1

𝑙 𝑣 ← 𝑙 𝑣 + 1
If ℓ 𝑣 ≥ 𝑛 − 1:

Set ℓ 𝑣 ← ∞
Remove 𝑣 from 𝑄

𝑝 𝑣 ← 1
Add neighbors of 𝑣 to 𝑄

𝑂 1 charge to

• level increase of node that put 𝑣 into queue or

• deletion that put 𝑣 into queue

Total: 𝑂(#del + 𝑣∈𝑉 𝑛 deg 𝑣)+

𝑂 deg 𝑣 :

charge to level increase of 𝑣

𝑂 1 per increase of parent index

(increases at most deg 𝑣 times at each level)

𝑂 1 per deletion

𝑂 1 , charge to

• level increase of node that put 𝑣 into queue or

• deletion that put 𝑣 into queue or

• increase of parent index

Banker’s View

July 22, 2016 18/25

Every node 𝑣 receives:

• 10deg 𝑣 coins at initialization

• 3 coins when deleting incident edges

Observation: Sufficient number of coins to pay 1 coin per operation.

(Note: give constant number of coins to each neighbor at level increase)

Total number of coins spent: 𝑂 #del + 𝑣∈𝑉 𝑛 deg 𝑣

Implementing Priority Queue

July 22, 2016 19/25

Standard heap: Time 𝑂 log𝑛 per operation

In our application we can get 𝑂(1) per operation

Array 𝐴 of size 𝑛, where 𝐴[𝑖] contains pointer to list of nodes at level 𝑖

[u,v,x,y,z]

In unweighted undirected graphs:

• At most two lists non-empty

• at consecutive levels

Extensions

July 22, 2016 20/25

Theorem: Maintaining SSSP under deletions takes total time

• 𝑂 𝑚𝑛 in unweighted undirected graphs

• 𝑂 𝑚𝑛 in unweighted directed graphs

• 𝑂 𝑚𝑛𝑊 in directed graphs with weights 1,2, … ,𝑊 .

Theorem: Maintaining SSSP under deletions up to depth 𝐷 takes total

time 𝑂(𝑚𝐷) in directed graphs with integer weights.

[Even/Shiloach ‘81, King ’99, King/Thorup ‘01]

2. Decremental APSP

July 22, 2016 21/25

Hitting Set for Long Paths

July 22, 2016 22/25

Random process for picking a set of nodes 𝑆:

• Set 𝑝 = min
10 log 𝑛

ℎ
, 1

• Iterate over all nodes

• Pick each node with probability 𝑝 independently (flip biased coin)

• Expected size of 𝑆: 𝑂
𝑛 log 𝑛

ℎ

Lemma: For every pair of nodes 𝑠 and 𝑡, if the shortest path from 𝑠 to 𝑡
contains at least ℎ nodes, then one of them is from 𝑆 with

probability at least 1 −
1

𝑛
(i.e., ‘with high probability’).

Caveat: There could be many shortest paths from 𝑠 to 𝑡. We only

guarantee to hit one of them (e.g. lexicographic shortest path).

s t

≥ ℎ

Lemma also holds for all graphs during a sequence of deletions (if

sequence of deletions is independent from random choices of algorithm)

Maintaining shortest paths in range 𝟐𝒊…𝟐𝒊+𝟏

July 22, 2016 23/25

Pick set of nodes 𝑆𝑖 ("𝑖-centers”):

• Sampling probability 𝑝 = min
10 log 𝑛

2𝑖
, 1

• Expected size of 𝑆𝑖: 𝑂
𝑛 log 𝑛

2𝑖

c

Even-Shiloach tree from 𝑐
up to depth 2𝑖+1

Even-Shiloach tree to 𝑐
up to depth 2𝑖+1

(Reverse graph:

reverse direction of each edge)

For every 𝑖-center 𝑐 ∈ 𝑆𝑖:

Total time: 𝑂 𝑆𝑖 𝑚2𝑖+1 = 𝑂(𝑚𝑛 log𝑛)

 𝑑(𝑐, 𝑣) = dist 𝑐, 𝑣 if dist 𝑐, 𝑣 < 2𝑖+1

∞ otherwise

Decremental APSP algorithm

July 22, 2016 24/25

For 𝑖 = 1 to ⌊log 𝑛⌋:

• Pick 𝑖-centers 𝑆𝑖 with sampling probability 𝑝 = min
10 log 𝑛

2𝑖
, 1

• For every 𝑖-center 𝑐 ∈ 𝑆𝑖: Maintain ES-tree to and from 𝑐 of depth 2𝑖+1

Total update time: 𝑂 𝑖=1
⌊log 𝑛⌋

𝑆𝑖 𝑚2𝑖 = 𝑂 𝑖=1
log 𝑛

𝑚𝑛 log𝑛 = 𝑂(𝑚𝑛 log2 𝑛)

Query Algorithm:

• Question: What is the distance from 𝑠 to 𝑡

• Return minimum value of 𝑑 𝑠, 𝑐 + 𝑑 𝑐, 𝑡 among all centers 𝑐 ∈ ⋃𝑆𝑖
• Query time: 𝑂 𝑛 (= number of centers)

Correctness:

• Let 𝜋 be shortest path from 𝑠 to 𝑡
• 𝜋 has between 2𝑖 and 2𝑖+1 nodes for some 𝑖 = 1 to ⌊log 𝑛⌋
• 𝜋 contains a center 𝑐 ∈ 𝑆𝑖 with high probability

• Subpaths from 𝑠 to 𝑐 and from 𝑐 to 𝑠 are also shortest paths and both

have length ≤ 2𝑖+1

• Thus, 𝑑 𝑠, 𝑐 + 𝑑 𝑐, 𝑡 = dist(𝑠, 𝑡)

• Other centers can never report a smaller value for 𝑑 𝑠, 𝑐 + 𝑑 𝑐, 𝑡

Extensions

July 22, 2016 25/25

Theorem: There is a decremental algorithm for maintaining APSP in

unweighted, directed graphs with total update time

𝑂(𝑛3 log2 𝑛) and constant query time.

Theorem: There is a decremental algorithm for maintaining APSP in

unweighted, directed graphs with total update time

𝑂(𝑚𝑛 log2 𝑛) and query time 𝑂(𝑛).

Result we just showed:

By explicitly maintaining distances after each update, one can reduce

query time.

[Baswana et al. ‘02]

