Complexity Theory of Polynomial-Time Problems

Lecture 9: Dynamic Algorithms I

Sebastian Krinninger
Today’s Plan

1. Decremental SSSP via Even-Shiloach tree
2. Decremental APSP
Floyd-Warshall Algorithm

$O(n^3)$ algorithm for computing All-Pairs Shortest Paths (APSP)

n: number of nodes

Put some order v_1, \ldots, v_n on the nodes
Set $d(v_i, v_j) = w(v_i, v_j)$ for every pair of nodes $v_i \neq v_j$

For $k = 1$ to n:
 For every pair of nodes v_i, v_j:
 \[d(v_i, v_j) \leftarrow \min\left(d(v_i, v_j), d(v_i, v_k) + d(v_k, v_j) \right) \]

Running Time: n iterations, each takes time $O(n^2)$

Correctness: After iteration i, $d(\cdot, \cdot)$ gives correct distance in graph restricted to \{ v_1, \ldots, v_k \} \Rightarrow Correct in full graph after iteration n
Dynamic View

Why stop after n iterations?
Floyd-Warshall allows \textit{insertions} of new nodes

\begin{align*}
\text{Insert}(v, In_v, Out_v): & \quad \text{// (Insert node with incident edges and weights)} \\
\text{Set } d(v', v) = w(v', v) \text{ for every incoming neighbor } v' \text{ of } v \\
\text{Set } d(v, v') = w(v, v') \text{ for every outgoing neighbor } v' \text{ of } v \\
\text{For every incoming neighbor } s \text{ of } v \text{ and every node } t \\
\quad d(s, t) & \leftarrow \min\{d(s, t), d(s, v) + d(v, t)\} \\
\text{For every node } s \text{ outgoing neighbor } t \text{ of } v \\
\quad d(s, t) & \leftarrow \min\{d(s, t), d(s, v) + d(v, t)\} \\
\text{For every other pair of nodes } s, t: \\
\quad d(s, t) & \leftarrow \min\{d(s, t), d(s, v) + d(v, t)\}
\end{align*}

\textbf{Update Time:} $O(n^2)$ \textit{per insertion}
A dynamic graph algorithm is a data structure supporting:

- **Preprocess** \((G)\): preprocess the graph \(G\)
- **Insert** \((u, v)\): insert the edge \((u, v)\) into \(G\)
- **Delete** \((u, v)\): delete the edge \((u, v)\) from \(G\)
- **Query** \((G)\): return result of algorithm for current graph \(G\)

Terminology:
- Incremental: only insertions are supported
- Decremental: only deletions are supported
- Fully dynamic: both insertions and deletions are supported

Some algorithms also support insertions and deletions of nodes

Goal:
- Time spent per update or query less than recomputing from scratch
- (Polynomial preprocessing time)
Measuring Update Time

Two Measures
• Worst-case update time
 Fixed upper bound on running time per update
• Amortized update time
 “On average” upper bound on running time per update

Formally: Amortized update time $u(n,m)$ if total time spent for a sequence of t updates is at most $t \cdot u(n,m)$.

Very common in incremental/decremental algorithms:
• Amortize update time over m insertions/deletions
• “Total update time”
1. Decremental SSSP
Even-Shiloach Algorithm

Goal: Decremental SSSP in unweighted graphs from source s

Example of shortest path tree from s:

- **Level 0:**
 - s
- **Level 1:**
- **Level 2:**
- **Level 3:**

- **Tree edge**
- **Other edge**

Cannot cross more than 1 level
Deletion Procedure I

- c loses its parent
- c finds no new parent at level 2
- c increases level to 3
- c informs neighbors about level increase
- Children of c lose their parent

- c finds new parent d
- e finds new parent b
- f finds new parent bg finds no new parent at level 3
- g increases level to 4
• g finds new parent c
• Now we are done because all nodes have a parent again
Internal Data Structures and Initialization

Data Structures:
For every node v:
• Number neighbors of v from 1 to $\text{deg}(v)$ (initial degree of v)
• $n_i(v)$ Pointer to i-th neighbor of v
• $p(v)$ Index of parent of v (among neighbors) in tree
• $\ell(v)$ Level of v in tree (will correspond to distance from root)

Global:
• Q Priority queue with levels as keys
 (used in update procedure)

Initialization:
Compute BFS tree from source s such that each node takes parent with minimum index among neighbors.

Time: $O(m)$
Pseudocode

Delete(u, v):
Add u and v to Q
While $Q \neq \emptyset$
 Take node v with minimum level from Q
 Process(v)

FindNewParent(v):
// Check if neighbor with index $p(v)$ is a valid parent
While G does not contain edge $(v, n_{p(v)}(v))$ or $l(v) < \left(\ell \left(n_{p(v)}(v) \right) + 1 \right)$:
 $p(v) \leftarrow p(v) + 1$ // If not, try next neighbor as parent
 Add v to Q
 If $p(v) = \deg(v) + 1$ // Check if all neighbors exhausted
 $l(v) \leftarrow l(v) + 1$ // Increase level
 If $\ell(v) \geq n - 1$:
 Set $\ell(v) \leftarrow \infty$
 Remove v from Q
 $p(v) \leftarrow 1$ // Reset parent index
 Add neighbors of v to Q // Process neighbors
Claim 1: Initially, and after each update is finished: \(\ell(v) \geq \text{dist}(s, v) \) \(\forall v \)

Proof:
If \(\ell(v) = \infty \), then certainly true

Otherwise:
Consider path \(\pi \) from \(v \) induced by following parents
Levels of nodes on \(\pi \) are strictly decreasing:
• When parent of a node is set, parent has strictly smaller level
• When level of a node changes it informs all potential children

Thus, \(\pi \) ends at \(s \) because \(s \) is the only node at level 0

\[\ell(v) = \text{length of } \pi \]
\(\pi \) cannot be shorter than shortest path from \(s \) to \(v \)
Thus, \(\ell(v) \geq \text{dist}(s, v) \)
Correctness II

Claim 2: At any time: For every node v with neighbor u,
\[\ell(v) \leq \ell(u) + 1 \text{ if } \ell(u) + 1 \leq n - 1. \]

Proof:
By induction on #level increases of v (in total over all deletions)

Induction Base: True after initialization

Induction Step:
$\ell(v)$: level of v directly before level increase
$\ell'(v)$: level of v directly after level increase

By IH: $\ell(v) \leq \ell(u) + 1$
Algorithm guarantees: $\ell(v) < \ell(u) + 1$ (otherwise no level increase of v)
(Detail: no candidate parent for v at level $\ell(v)$ anymore by processing order according to levels)

Thus: $\ell(v) + 1 \leq \ell(u) + 1$
Since $\ell'(v) = \ell(v) + 1$ we have $\ell'(v) \leq \ell(u) + 1$

Inequality remains true until next level increase of v because level of u
never decreases
Lemma: Initially and after each update is finished, $\ell(v) = \text{dist}(s, v)$ $\forall v$

Proof by induction on distance to s

If $\text{dist}(s, v) = \infty$: Then $\ell(v) \geq \text{dist}(s, v) = \infty$ by Claim 1

If $\text{dist}(s, v) < \infty$:
Consider successor u of v on shortest path from s to v

When algorithm finished update:
$\ell(u) = \text{dist}(s, u)$ by IH
In particular: $\text{dist}(s, u) \leq n - 2$ and thus $\ell(u) + 1 \leq n - 1$

By Claim 2: $\ell(v) \leq \ell(u) + 1 = \text{dist}(s, v)$
By Claim 1: $\ell(v) \geq \text{dist}(s, v)$

$\Rightarrow \ell(v) = \text{dist}(s, v)$
Lemma: The total update time over all deletions is $O(mn)$

(where m is the number of edges at initialization)

Amortized analysis!

Idea: Every time the level of some node v increases, we charge running time of $O(\deg(v))$ to that level increase (see next slide).

(where $\deg(v)$ is the degree of v at initialization)

The level of every node can increase at most $n - 1$ times (max. distance).

Additionally, charge time $O(1)$ to every deletion

Total time: $O(#\text{del} + \sum_{v \in V} n \deg(v)) = O(m + n \cdot \sum_{v \in V} \deg(v)) = O(n \cdot m)$

Remember from kindergarten: sum of degrees \leq twice #edges
Running Time Analysis

Delete\((u, v)\):
Add \(u\) and \(v\) to \(Q\)
While \(Q \neq \emptyset\)

Take node \(v\) with minimum level from \(Q\)

Process\((v)\):
While \(G\) does not contain edge \((v, n_{p(v)}(v))\) or \(l(v) < (\ell(n_{p(v)}(v)) + 1)\):

\[p(v) \leftarrow p(v) + 1 \]

Add \(v\) to \(Q\)
If \(p(v) = \text{deg}(v) + 1\)

\[l(v) \leftarrow l(v) + 1 \]
If \(l(v) \geq n - 1\):
Set \(l(v) \leftarrow \infty\)
Remove \(v\) from \(Q\)

\[p(v) \leftarrow 1 \]
Add neighbors of \(v\) to \(Q\)

\(O(1)\) charge to
- level increase of node that put \(v\) into queue or
- deletion that put \(v\) into queue

\(O(1)\), charge to
- level increase of node that put \(v\) into queue or
- deletion that put \(v\) into queue or
- increase of parent index

\(O(1)\) per increase of parent index
(increases at most \(\text{deg}(v)\) times at each level)

\(O(\text{deg}(v))\):
charge to level increase of \(v\)

Total: \(O(\#\text{del} + \sum_{v \in V} n \text{deg}(v)) + \)
Every node v receives:
- 10 $\deg(v)$ coins at initialization
- 3 coins when deleting incident edges

Observation: Sufficient number of coins to pay 1 coin per operation.

(Note: give constant number of coins to each neighbor at level increase)

Total number of coins spent: $O(\#\text{del} + \sum_{v \in V} n \deg(v))$
Implementing Priority Queue

Standard heap: Time $O(\log n)$ per operation

In our application we can get $O(1)$ per operation

Array A of size n, where $A[i]$ contains pointer to list of nodes at level i

In unweighted undirected graphs:
- At most two lists non-empty
- at consecutive levels
Theorem: Maintaining SSSP under deletions takes total time
- \(O(mn) \) in unweighted undirected graphs
- \(O(mn) \) in unweighted directed graphs
- \(O(mnW) \) in directed graphs with weights \(\{1, 2, \ldots, W\} \).

[Even/Shiloach '81, King '99, King/Thorup '01]

Theorem: Maintaining SSSP under deletions up to depth \(D \) takes total time \(O(mD) \) in directed graphs with integer weights.
2. Decremental APSP
Hitting Set for Long Paths

Random process for picking a set of nodes S:
- Set $p = \min\left(\frac{10 \log n}{h}, 1\right)$
- Iterate over all nodes
- Pick each node with probability p independently (flip biased coin)
- Expected size of S: $O\left(\frac{n \log n}{h}\right)$

Lemma: For every pair of nodes s and t, if the shortest path from s to t contains at least h nodes, then one of them is from S with probability at least $1 - \frac{1}{n}$ (i.e., ‘with high probability’).

Caveat: There could be many shortest paths from s to t. We only guarantee to hit one of them (e.g. lexicographic shortest path).

Lemma also holds for all graphs during a sequence of deletions (if sequence of deletions is independent from random choices of algorithm)
Maintaining shortest paths in range $2^i \ldots 2^{i+1}$

Pick set of nodes S_i ("i-centers"):

- Sampling probability $p = \min \left(\frac{10 \log n}{2^i}, 1 \right)$
- Expected size of S_i: $O \left(\frac{n \log n}{2^i} \right)$

For every i-center $c \in S_i$:

$$
\hat{d}(c, v) = \begin{cases}
\text{dist}(c, v) & \text{if } \text{dist}(c, v) < 2^{i+1} \\
\infty & \text{otherwise}
\end{cases}
$$

Even-Shiloach tree to c
up to depth 2^{i+1}
(Reverse graph: reverse direction of each edge)

Even-Shiloach tree from c
up to depth 2^{i+1}

Total time: $O(|S_i| m 2^{i+1}) = O(mn \log n)$
Decremental APSP algorithm

For $i = 1$ to $\lceil \log n \rceil$:
- Pick i-centers S_i with sampling probability $p = \min\left(\frac{10 \log n}{2^i}, 1\right)$
- For every i-center $c \in S_i$: Maintain ES-tree to and from c of depth 2^{i+1}

Total update time:

$$O\left(\sum_{i=1}^{\lceil \log n \rceil} |S_i| m 2^i\right) = O\left(\sum_{i=1}^{\lceil \log n \rceil} mn \log n\right) = O(mn \log^2 n)$$

Query Algorithm:
- Question: What is the distance from s to t
- Return minimum value of $\hat{d}(s, c) + \hat{d}(c, t)$ among all centers $c \in U S_i$
- Query time: $O(n)$ (= number of centers)

Correctness:
- Let π be shortest path from s to t
- π has between 2^i and 2^{i+1} nodes for some $i = 1$ to $\lceil \log n \rceil$
- π contains a center $c \in S_i$ with high probability
- Subpaths from s to c and from c to s are also shortest paths and both have length $\leq 2^{i+1}$
- Thus, $\hat{d}(s, c) + \hat{d}(c, t) = \text{dist}(s, t)$
- Other centers can never report a smaller value for $\hat{d}(s, c) + \hat{d}(c, t)$
Extensions

Result we just showed:

Theorem: There is a decremental algorithm for maintaining APSP in unweighted, directed graphs with total update time $O(mn \log^2 n)$ and query time $O(n)$.

By explicitly maintaining distances after each update, one can reduce query time.

Theorem: There is a decremental algorithm for maintaining APSP in unweighted, directed graphs with total update time $O(n^3 \log^2 n)$ and constant query time.

[Baswana et al. ‘02]