Complexity Theory of Polynomial-Time Problems

Lecture 10: Dynamic Algorithms II

Sebastian Krinninger
(with slides by Thatchaphol Saranurak)
Exam

• Oral exam

• Tentative date:
 • September 5-9
 • (In lecture, students preferred this over end-of-July date)
Even-Shiloach: Incremental/decremental SSSP with total time $O(mn)$ and constant query time

Amortized $O(n)$ per update

The success story of dynamic algorithms:

Connectivity: In an undirected graph, maintain fully dynamic data structure that answers connectivity queries (is u connected to v) for any pair of nodes.

After a long line of research:

Theorem: There is a randomized fully dynamic connectivity algorithm with worst-case update time $O(\log^5 n)$ and query time $O(\log n)$

[Kapron et al. '13]
A Simple Problem?

What about directed graphs?

SSR: Maintain which nodes can be reached from a source node s in a directed graph

#SSR: Maintain number of reachable nodes from a source node s in a directed graph

Upper bounds with constant query time and total update time
- $O(m)$ incremental
- $O(m)$ decremental in directed acyclic graphs
- $O(m \sqrt{n \log n})$ decremental in general graphs [Chechik et al. ‘16]

What about fully dynamic algorithms?

What about worst-case bounds?
Theorem: There is no incremental algorithm for #SSR with worst-case update and query time $O(n^{1-\epsilon})$ unless OVH fails.

[Abboud/V. Williams '14]

Theorem: There is no fully dynamic algorithm for #SSR with amortized update and query time $O(n^{1-\epsilon})$ unless OVH fails.

[Abboud/V. Williams '14]

Theorem: There is no incremental algorithm for SSR with worst-case update time $O(n^{1-\epsilon})$ and query time $O(n^{2-\epsilon})$ unless the OMv Conjecture fails.

[Henzinger et al. '15]

Theorem: There is no fully dynamic algorithm for SSR with amortized update $O(n^{1-\epsilon})$ and query time $O(n^{2-\epsilon})$ unless the OMv Conjecture fails.

[Henzinger et al. '15]
Today’s Plan: Conditional Lower Bounds

1. Lower bound for #SSR based on OV
2. OMv Conjecture and equivalence to OuMv
3. Lower bounds for SSR based on OuMv
1. Lower bound for #SSR based on OV
Reduction from OV

Given: Sets of d-dimensional vectors A and B of size $|A| = |B| = n$

Question: Are there $a \in A$ and $b \in B$ such that a and b are orthogonal?

Initialization:

- d dimensions
- n vectors of B

At initialization, for every i and $b \in B$, insert:

- edge (i, b) iff $b[i] \neq 0$

For fixed $a \in A$:

- edge (s, i) iff $a[i] \neq 0$
Claim: Let k be the number of 1-entries of $a \in A$. After inserting all edges (a, i) such that $a[i] \neq 0$:

no $b \in B$ orthogonal to a if and only if s can reach $n + k + 1$ nodes

“⇒” Assume no $b \in B$ orthogonal to a
Then for every $b \in B$ there is an i such that $a[i] \neq 0$ and $b[i] \neq 0$
Thus, for every node b on right side there is some path $s \rightarrow i \rightarrow b$
⇒ s can reach $n + k + 1$ nodes (including itself)

“⇐” Assume s can reach $n + k + 1$ nodes
Then s reaches all nodes b on the right side
 (because middle nodes only reachable if $a[i] \neq 0$)
Thus, for every b on right side there is a path from s to b
Must have the form $s \rightarrow i \rightarrow b$ for some middle node i
Then: $a[i] \neq 0$ and $b[i] \neq 0$ and a and b are not orthogonal
⇒ No $b \in B$ orthogonal to a
Given: Sets of d-dimensional vectors A and B of size $|A| = |B| = n$

Question: Are there $a \in A$ and $b \in B$ such that a and b are orthogonal?

For fixed $a \in A$:
edge (s, i) iff $a[i] \neq 0$

For each $a \in A$:
For every $a[i] \neq 0$: insert edge (s, i)
Query number of nodes reachable from s
If #nodes reachable from $s < n + k + 1$: output ‘yes’
Delete all edges leaving s

Output ‘no’
Running Time

Assumption: There is a fully dynamic algorithm for #SSR with amortized update time $n^{1-\epsilon}$ and query time $n^{1-\epsilon}$

For each $a \in A$:
- For every $a_i \neq 0$: insert edge (s, i)
- Query number of nodes reachable from s
 - If #nodes reachable from $s < n + k + 1$: output ‘yes’
 - Delete all edges leaving s

Output ‘no’

#nodes: $n + d + 1 = O(n + d)$
#insertions: $\leq nd$
#deletions: $\leq nd$
#queries: $\leq n$

Total time: $O(nd \cdot (n + d)^{1-\epsilon} + n \cdot (n + d)^{1-\epsilon}) = n^{2-\epsilon} \cdot \text{poly}(d)$

Contradicts OV Hypothesis!
Worst-Case Lower Bound

Assumption: There is an incremental algorithm for #SSR with worst-case update time $n^{1-\epsilon}$ and query time $n^{1-\epsilon}$

Fully dynamic
For every i and $b \in B$, insert:
For each $a \in A$:
 For every $a_i \neq 0$: insert edge (s, i)
 Query number of nodes reachable from s
 If #nodes reachable from $s < n + k + 1$: output ‘yes’
 Delete all edges leaving s

Output ‘no’

Incremental
Instead of deleting edges leaving s:
1. Observe complete state of the machine after initialization and before inserting first edges (s, i)
2. Record changes to the state while processing insertions: $O(d(n + d)^{1-\epsilon})$
 (changes to memory cells, etc.)
3. Undo changes and roll back to state before insertions
 Takes same amount of time as processing insertions: $O(d(n + d)^{1-\epsilon})$
2. OMv Conjecture and equivalence to OuMv
Boolean Matrix Multiplication

Input: Boolean (0/1) matrices A and B

Output: $A \times B$ where $+$ is OR and $*$ is AND
Online Boolean Matrix Multiplication

Input: Boolean $n \times n$ matrix M
Online sequence of vectors $v_1, ..., v_n \in \{0,1\}^n$

Output: Mv_i before v_{i+1} arrives ("query")

OMv Conjecture: No algorithm with total time $O(n^{3-\varepsilon})$ (for some $\varepsilon > 0$).
(not even with polynomial-time preprocessing)

[Henzinger et al.'15]
Motivation

- Column-wise BMM: second matrix is given as sequence of vectors
- If OMv is refuted: radical new approach for fast BMM (Conceptually very different from Strassen-like approaches)
- Provides tight lower bounds for a dozen of dynamic graph problems
- Most of the reductions are almost trivial

Before obtaining useful lower bounds: hardness of intermediate problems
Lemma: Cannot solve OMv for sequences of length \sqrt{n} in total time $n^{2.5-\epsilon}$ (for some $\epsilon > 0$), unless original OMv Conjecture fails.

To handle OMv for sequence of length n:
Restart algorithm after each subsequence of length \sqrt{n}

Time: $\sqrt{n} \cdot n^{2.5-\epsilon} = n^{3-\epsilon}$ (contradicting OMv)
Theorem: If there is an algorithm for OuMv with running time $T(n) = n^{3-\epsilon}$, then
- there is an algorithm with running time $O(n^{2.5-\epsilon})$ for OMv of length \sqrt{n} and thus
- there is an algorithm with running time $O(n^{3-\epsilon})$ for OMv
Using OuMv to Find a Single Witness

Can we find a witness index t s.t. $u[t] = 1$ and $(Mv)[t] = 1$?

Idea: Bisection of index set

(At least) one half must contain witness

Can isolate a single witness with $O(\log n)$ queries
Finding all Witnesses

Repeat:
• Set $u[t] = 0$ for every witness t found so far
• Find new witness
Until no witness found anymore

We spend $O(\log n)$ queries per witness

w_i: #witnesses of (u_i, v_i)
Find all witnesses of (u_i, v_i) with $O(1 + w_i \log n)$ queries
Find all witnesses of $(u_1, v_1), ..., (u_n, v_n)$ with $O(n + \sum_{i=1}^{n} w_i \log n)$ queries

But: Need to restart after n queries

Total time: $O\left(\frac{n+\sum_{i=1}^{n} w_i \log n}{n} \cdot T(n)\right) = O\left((1 + \frac{\sum_{i=1}^{n} w_i \log n}{n}) \cdot T(n)\right)$

$T(n)$: running time of OuMv algorithm on $n \times n$ matrix and sequence of length n
Witnesses for OR-OMv Subproblem

OR-OMv Subproblem:
• Given \(n \times n \) Boolean matrices \(M_1, ..., M_k \)
• Online sequence \(k \)-tuples of vectors \(\in \{0,1\}^n \):
 \[
 (v_{1,1}, ..., v_{1,k}), ..., (v_{n,1}, ..., v_{n,k})
 \]
• Compute \(M_1 v_{i,1} \lor ... \lor M_k v_{i,k} \) online

Algorithm: \(k \) “witness-finding” instances of OuMv

Set \(u_{i,1} = (1, ..., 1)^T \)
For \(j = 1 \) to \(k \):
 \[
 b_{i,j} = \text{vector of witnesses of } u_{i,j}M_jv_{i,j}
 \]
 \[
 u_{i,j+1} = u_{i,j} - b_{i,j}
 \]

Idea: No 1-entry at any position \(t \) is “lost” from result because position \(t \) set to 0 in \(u_{i,j} \) only if result already contains 1 at position \(t \)

Observation: \(b_{i,1} \lor ... \lor b_{i,k} = M_1 v_{i,1} \lor ... \lor M_k v_{i,k} \)

Running time:
\[
O \left(\sum_{j=1}^{k} \left(1 + \frac{W_j \log n}{n} \right) \cdot T(n) \right) = O \left(k + \frac{\sum_{j=1}^{k} W_j}{n} \right) \cdot T(n) \log n
\]
\[
= O \left(\left(k + \frac{n^2}{n} \right) \cdot T(n) \log n \right) = O \left((k + n) \cdot T(n) \log n \right)
\]

\(W_j \): #witnesses found by instance \(j \)
Multiplication via Smaller Blocks

\[\sqrt{n} \] instances of OR-OMv subproblem with parameters \(n' = \sqrt{n} \) and \(k = \sqrt{n} \)

Total running time:

\[
O \left(\sqrt{n} \cdot (k + n') \log n' \cdot T(n') \right)
\]
\[
= O \left(\sqrt{n} \cdot (\sqrt{n} + \sqrt{n}) \log n' \cdot T(n') \right)
\]
\[
= O \left(n \log n \cdot T(\sqrt{n}) \right)
\]
\[
= O(n \log n \cdot n^{1.5-\epsilon})
\]
\[
= O(n^{2.5-\delta})
\]

Contradicts OMv conjecture
3. OMv-Hardness of Graph Problems
Edge Query Problem

1. Preprocess

\[\text{Set}(L_1, R_1) \]
\[\text{Edge}(L_1, R_1) \]?
\[\text{Set}(L_2, R_2) \]
\[\text{Edge}(L_2, R_2) \]?
\[\vdots \]
\[\text{Set}(L_n, R_n) \]
\[\text{Edge}(L_n, R_n) \]?

2. \(n \) Queries
Edge Query Problem

1. Preprocess

2. n Queries

- Set(L_1, R_1)
- Edge(L_1, R_1)?
- Set(L_2, R_2)
- Edge(L_2, R_2)?
- ...
- Set(L_n, R_n)
- Edge(L_n, R_n)?
Edge Query Problem

1. Preprocess

YES

2. n Queries

Set(L_1, R_1)
Edge(L_1, R_1)?
Set(L_2, R_2)
Edge(L_2, R_2)?
...
Set(L_n, R_n)
Edge(L_n, R_n)?
Edge Query Problem

1. Preprocess

2. \(n \) Queries

\[
\begin{align*}
\text{Set}(L_1, R_1) \quad &\text{Edge}(L_1, R_1)? \\
\text{Set}(L_2, R_2) \quad &\text{Edge}(L_2, R_2)? \\
\vdots \quad &\text{Edge}(L_n, R_n)?
\end{align*}
\]
Edge Query Problem

1. Preprocess

2. n Queries

Set(L_1, R_1)

Edge(L_1, R_1)?

Set(L_2, R_2)

Edge(L_2, R_2)?

...

Set(L_n, R_n)

Edge(L_n, R_n)?
1. Preprocess

2. n Queries

Set(L_1, R_1)
Edge(L_1, R_1)?
Set(L_2, R_2)
Edge(L_2, R_2)?
...
Set(L_n, R_n)
Edge(L_n, R_n)?
Edge Query Problem

1. Preprocess

2. n Queries

Set(L_1, R_1)
Edge(L_1, R_1)?
Set(L_2, R_2)
Edge(L_2, R_2)?
...
Set(L_n, R_n)
Edge(L_n, R_n)?
Edge Query Problem

1. Preprocess

2. \(n \) Queries

Set\((L_1, R_1)\)
Edge\((L_1, R_1)\)?
Set\((L_2, R_2)\)
Edge\((L_2, R_2)\)?
...
Set\((L_n, R_n)\)
Edge\((L_n, R_n)\)?
Edge Query Problem

Preprocess:

\[\text{Input: } \quad (L_1, R_1) \]
\[\quad \ldots \]
\[\quad (L_n, R_n) \]

Output: Any edge linking \(L_1 \) and \(R_1 \)?
\[\quad \ldots \]
Any edge linking \(L_n \) and \(R_n \)?
Theorem

Edge Query
- Preprocess: $poly(n)$
- Time (for n queries): $n^{3-\epsilon}$

OMv conjecture fails
Reduction from OuMv to Edge-Query

Input Problem: OuMv on $n \times n$ matrix M

with online sequence $(u_1, v_1), \ldots, (u_n, v_n)$

G: graph defined by adjacency matrix $M' = \begin{bmatrix} 0 & M \\ M^T & 0 \end{bmatrix}$

Symmetry

When vector pair (u_i, v_i) arrives perform edge query with

S_i: set indicated by $x_i = \begin{bmatrix} u_i \\ 0 \end{bmatrix}$

T_i: set indicated by $y_i = \begin{bmatrix} 0 \\ v_i \end{bmatrix}$

Observation 1: \(x_i^T M' y_i = u_i^T M v_i \)

Observation 2: There is an edge in $E(S_i, T_i)$ iff \(x_i^T M' y_i = 1 \)
We will show…

Fully dynamic SSR
- Preprocess: \(\text{poly}(n) \)
- Update: \(n^{1-\epsilon} \) (amortized)
- Query: \(n^{2-\epsilon} \)

Edge Query
- Preprocess: \(\text{poly}(n) \)
- Time (for \(n \) queries): \(n^{3-\epsilon} \)

OMv conjecture fails

Recomputation from scratch upon query is optimal point on trade-off curve!

Lower bound on worst-case incremental/decremental: rollback technique!
Preprocess

Edge Query

SSR

Same graph but directed
∃ an edge linking L_1 and R_1

Edge Query

SSR

After $O(n)$ updates...

Edge(L_1, R_1)?

s can reach t
After knowing “Edge(L_1, R_1)?”, UNDO.
Edge Query

SSR

Edge \((L_1, R_1)\)?

Use \(O(n)\) updates.
Edge Query

Not \exists an edge linking L_2 and R_2

SSR

After $O(n)$ updates...

s can not reach t
Edge Query

Edge \((L_i, R_i)\)?

SSR

Can answer using
#updates: \(O(n)\)
#query: 1
For $i = 1, \ldots, n$

Edge(L_i, R_i)?

SSR

Can answer using

#updates: $O(n^2)$

#queries: n
Edge Query

For $i = 1, \ldots, n$

$\text{Edge}(L_i, R_i)$?

SSR

Can answer using

$\#\text{updates}: O(n^2)$

$\#\text{queries}: n$

Edge Query

- Preprocess: $\text{poly}(n)$
- Time (for n queries):

ss-Reach

- Preprocess: $\text{poly}(n)$
- Update: $n^{1-\epsilon}$ (amortized)
- Query: $n^{2-\epsilon}$
For $i = 1, \ldots, n$

Edge(L_i, R_i)?

can answer using

\#updates: $O(n^2)$

\#queries: n

Edge Query
- Preprocess: $\text{poly}(n)$
- Time (for n queries): $O(n^2) \times n^{1-\epsilon}$

SSR
- Update: $n^{1-\epsilon}$ (amortized)
- Query: $n^{2-\epsilon}$

ss-Reach
- Preprocess: $\text{poly}(n)$
- Update: $n^{1-\epsilon}$ (amortized)
- Query: $n^{2-\epsilon}$
For $i = 1, \ldots, n$

Edge Query

SSR

Can answer using

$\#\text{updates}: O(n^2)$

$\#\text{queries}: \frac{n}{n}$
For $i = 1, \ldots, n$

Edge Query

$\text{Edge}(L_i, R_i)$?

SSR

Can answer using

- **#updates**: $O(n^2)$
- **#queries**: n

Edge Query

- **Preprocess**: $\text{poly}(n)$
- **Time (for n queries)**:

 $O(n^2) \times n^{1-\epsilon}$

 $+ n \times n^{2-\epsilon}$

 $\leq O(n^{3-\epsilon})$

ss-Reach

- **Preprocess**: $\text{poly}(n)$
- **Update**: $n^{1-\epsilon}$ (amortized)
- **Query**: $n^{2-\epsilon}$

OMv conjecture fails

Q.E.D.
Many popular conjectures...

<table>
<thead>
<tr>
<th>Conjectures</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMM (Boolean Matrix Multiplication)</td>
<td>STOC’02 Chan, ESA’04 Roditty, Zwick FOCS’14 Abboud, V-Williams</td>
</tr>
<tr>
<td>3SUM</td>
<td>FOCS’14 Abboud, V-Williams Arxiv’14 Kopelowitz, Pettie, Porat STOC’10 Patrascu</td>
</tr>
<tr>
<td>Multiphase (Based on 3SUM)</td>
<td>FOCS’14 Abboud, V-Williams</td>
</tr>
<tr>
<td>Triangle</td>
<td>FOCS’14 Abboud, V-Williams</td>
</tr>
<tr>
<td>APSP (All Pair Shortest Path)</td>
<td>FOCS’14 Abboud, V-Williams</td>
</tr>
<tr>
<td>SETH (Strong Exponential Time Hypothesis)</td>
<td>FOCS’14 Abboud, V-Williams</td>
</tr>
<tr>
<td>Matching Triangle (Based on 3SUM, APSP and SETH)</td>
<td>STOC’15 Abboud, V-Williams, Yu</td>
</tr>
</tbody>
</table>