"リр"

Complexity Theory of Polynomial-Time Problems

Lecture 10: Dynamic Algorithms II

Sebastian Krinninger
(with slides by Thatchaphol Saranurak)

Exam

- Oral exam
- Tentative date:
- September 5-9
- (In lecture, students preferred this over end-of-July date)

Limits of Dynamic Algorithms?

Even-Shiloach: Incremental/decremental SSSP with total time $O(\mathrm{mn})$ and constant query time

Amortized O(n) per update

The success story of dynamic algorithms:
Connectivity: In an undirected graph, maintain fully dynamic data structure that answers connectivity queries (is u connected to v) for any pair of nodes.

After a long line of research:
Theorem: There is a randomized fully dynamic connectivity algorithm with worst-case update time $O\left(\log ^{5} n\right)$ and query time $O(\log n)$
[Kapron et al. '13]

A Simple Problem?

What about directed graphs?
SSR: Maintain which nodes can be reached from a source node s in a directed graph
\#SSR: \quad Maintain number of reachable nodes from a source node s in a directed graph

Upper bounds with constant query time and total update time

- $O(m)$ incremental
- $O(m)$ decremental in directed acyclic graphs
- $O(m \sqrt{n \log n})$ decremental in genral graphs [Chechik et al. '16]

What about fully dynamic algorithms?
What about worst-case bounds?

Today's Theorems

Theorem: There is no incremental algorithm for \#SSR with worst-case update and query time $O\left(n^{1-\epsilon}\right)$ unless OVH fails.
[Abboud/V. Williams '14]
Theorem: There is no fully dynamic algorithm for \#SSR with amortized update and query time $O\left(n^{1-\epsilon}\right)$ unless OVH fails.
[Abboud/V. Williams '14]

Theorem: There is no incremental algorithm for SSR with worst-case update time $O\left(n^{1-\epsilon}\right)$ and query time $O\left(n^{2-\epsilon}\right)$ unless the OMv Conjecture fails.
[Henzinger et al. '15]
Theorem: There is no fully dynamic algorithm for SSR with amortized update $O\left(n^{1-\epsilon}\right)$ and query time $O\left(n^{2-\epsilon}\right)$ unless the OMv Conjecture fails.
[Henzinger et al. '15]

Today's Plan: Conditional Lower Bounds

1. Lower bound for \#SSR based on OV
2. OMv Conjecture and equivalence to OuMv
3. Lower bounds for SSR based on OuMv

1．Lower bound for \＃SSR based on OV

Reduction from OV

Given: Sets of d-dimensional vectors A and B of size $|A|=|B|=n$ Question: Are there $a \in \mathrm{~A}$ and $b \in B$ such that a and b are orthogonal?

Initialization: $\quad d$ dimensions $\quad n$ vectors of B

At initialization, for every i and $b \in B$, insert: edge (i, b) iff $b[i] \neq 0$

Correctness

Claim: \quad Let k be the number of 1-entries of $a \in A$.
 After inserting all edges (a, i) such that $a[i] \neq 0$: no $b \in B$ orthogonal to a if and only if
 s can reach $n+k+1$ nodes

" \Rightarrow " Assume no $b \in B$ orthogonal to a
Then for every $b \in B$ there is an i such that $a[i] \neq 0$ and $b[i] \neq 0$
Thus, for every node b on right side there is some path $s \rightarrow i \rightarrow b$
$\Rightarrow s$ can reach $n+k+1$ nodes (including itself)
" \Leftarrow " Assume s can reach $n+k+1$ nodes
Then s reaches all nodes b on the right side
(because middle nodes only reachable if $a[i] \neq 0$)
Thus, for every b on right side there is a path from s to b
Must have the form $s \rightarrow i \rightarrow b$ for some middle node i
Then: $a[i] \neq 0$ and $b[i] \neq 0$ and a and b are not orthogonal
\Rightarrow No $b \in B$ orthogonal to a

Dynamic Algorithm

Given: Sets of d-dimensional vectors A and B of size $|A|=|B|=n$ Question: Are there $a \in \mathrm{~A}$ and $b \in B$ such that a and b are orthogonal?

For fixed $a \in A$: edge (s, i) iff $a[i] \neq 0$ edge (i, b) iff $b[i] \neq 0$

For each $a \in A$:
For every $a[i] \neq 0$: insert edge (s, i)
Query number of nodes reachable from s
If \#nodes reachable from $s<n+k+1$: output 'yes'
Delete all edges leaving s
Output 'no'

Running Time

Assumption: There is a fully dynamic algorithm for \#SSR with amortized update time $n^{1-\epsilon}$ and query time $n^{1-\epsilon}$

For each $a \in A$:
For every $a_{i} \neq 0$: insert edge (s, i)
Query number of nodes reachable from s
If \#nodes reachable from $s<n+k+1$: output 'yes'
Delete all edges leaving s
Output 'no'
\#nodes: $n+d+1=O(n+d)$
\#insertions: $\leq n d$
\#deletions: $\leq n d$
\#queries: $\leq n$
Total time: $O\left(n d \cdot(n+d)^{1-\epsilon}+n \cdot(n+d)^{1-\epsilon}\right)=n^{2-\epsilon} \cdot \operatorname{poly}(d)$
Contradicts OV Hypothesis!

Worst-Case Lower Bound

Assumption: There is an incremental algorithm for \#SSR with worstcase update time $n^{1-\epsilon}$ and query time $n^{1-\epsilon}$

Fully dynamic

For every i and $b \in B$, insert:
For each $a \in A$:
For every $a_{i} \neq 0$: insert edge (s, i)
Query number of nodes reachable from s
If \#nodes reachable from $s<n+k+1$: output 'yes'
Delete all edges leaving s
Output 'no'

Incremental

Instead of deleting edges leaving s :

1. Observe complete state of the machine after initialization and before inserting first edges (s, i)
2. Record changes to the state while processing insertions: $O\left(d(n+d)^{1-\epsilon}\right)$ (changes to memory cells, etc.)
3. Undo changes and roll back to state before insertions

Takes same amount of time as processing insertions: $O\left(d(n+d)^{1-\epsilon}\right)$

2. OMv Conjecture and equivalence to OuMv

Boolean Matrix Multiplication

Input: Boolean (0/1) matrices A and B
Output: $A \times B$ where + is OR and $*$ is AND

Online Boolean Matrix Multiplication

Input: Boolean $n \times n$ matrix M Online sequence of vectors $v_{1}, \ldots, v_{n} \in\{0,1\}^{n}$

Output: $M v_{i}$ before v_{i+1} arrives

OMv Conjecture: No algorithm with total time $O\left(n^{3-\epsilon}\right)$ (for some $\epsilon>0$). (not even with polynomial-time preprocessing)

Motivation

－Column－wise BMM：second matrix is given as sequence of vectors
－If OMv is refuted：radical new approach for fast BMM （Conceptually very different from Strassen－like approaches）
－Provides tight lower bounds for a dozen of dynamic graph problems
－Most of the reductions are almost trivial

Before obtaining useful lower bounds：hardness of intermediate problems

Hardness for Sequence of Length \sqrt{n}

Lemma: Cannot solve OMv for sequences of length \sqrt{n} in total time $n^{2.5-\epsilon}$ (for some $\epsilon>0$), unless original OMv Conjecture fails.

To handle OMv for sequence of length n :
Restart algorithm after each subsequence of length \sqrt{n}
Time: $\sqrt{n} \cdot n^{2.5-\epsilon}=n^{3-\epsilon}$ (contradicting OMv)

OuMv Problem

Input: Boolean $n \times n$ matrix M Online sequence of pairs of vectors $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$

Output: $u_{i}^{T} M v_{i}$ before $\left(u_{i+1}, v_{i+1}\right)$ arrives

Main difference to OMv: n output bits instead of n^{2}

Theorem: If there is an algorithm for OuMv with running time $T(n)=$ $n^{3-\epsilon}$, then

- there is an algorithm with running time $O\left(n^{2.5-\epsilon}\right)$ for OMv of length \sqrt{n} and thus
- there is an algorithm with running time $O\left(n^{3-\epsilon}\right)$ for OMv

Using OuMv to Find a Single Witness

Can we find a witness index t s.t. $u[t]=1$ and $(M v)[t]=1$?
Idea: Bisection of index set
(At least) one half must contain witness

Can isolate a single witness with $O(\log n)$ queries

Finding all Witnesses

Repeat:

- Set $u[t]=0$ for every witness t found so far
- Find new witness

Until no witness found anymore
We spend $O(\log n)$ queries per witness
w_{i} : \#witnesses of $\left(u_{i}, v_{i}\right)$
Find all witnesses of $\left(u_{i}, v_{i}\right)$ with $O\left(1+w_{i} \log n\right)$ queries
Find all witnesses of $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$ with $O\left(n+\sum_{i=1}^{n} w_{i} \log n\right)$ queries

But: Need to restart after n queries
Total time: $O\left(\frac{n+\sum_{i=1}^{n} w_{i} \log n}{n} \cdot T(n)\right)=O\left(\left(1+\frac{\sum_{i=1}^{n} w_{i} \log n}{n}\right) \cdot T(n)\right)$
$T(n)$: running time of OuMv algorithm on $n \times n$ matrix and sequence of length n

Witnesses for OR-OMv Subproblem

OR-OMv Subproblem:

- Given $n \times n$ Boolean matrices M_{1}, \ldots, M_{k}
- Online sequence k-tuples of vectors $\in\{0,1\}^{n}$:

$$
\left(v_{1,1}, \ldots, v_{1, k}\right), \ldots,\left(v_{n, 1}, \ldots, v_{n, k}\right)
$$

- Compute $M_{1} v_{i, 1} \vee \cdots \vee M_{k} v_{i, k}$ online

Algorithm: k "witness-finding" instances of OuMv

$$
\begin{aligned}
& \text { Set } u_{i, 1}=(1, \ldots, 1)^{T} \\
& \text { For } j=1 \text { to } k \text { : } \\
& \quad b_{i, j}=\text { vector of witnesses of } u_{i, j} M_{j} v_{i, j} \\
& \quad u_{i, j+1}=u_{i, j}-b_{i, j} \\
& \hline
\end{aligned}
$$

\square

Idea: No 1 -entry at any position t is "lost" from result because position t set to 0 in $u_{i, j}$ only if result already contains 1 at position t

$$
\text { Observation: } b_{i, 1} \vee \cdots \vee b_{i, k}=M_{1} v_{i, 1} \vee \cdots \vee M_{k} v_{i, k}
$$

W_{j} : \#witnesses found by instance j
Running time: $O\left(\sum_{j=1}^{k}\left(1+\frac{W_{j} \log n}{n}\right) \cdot T(n)\right)=O\left(\left(k+\frac{\sum_{j=1}^{k} W_{j}}{n}\right) \cdot T(n) \log n\right)$

Multiplication via Smaller Blocks

\sqrt{n} instances of OR-OMv subproblem with parameters $n^{\prime}=\sqrt{n}$ and $k=\sqrt{n}$

Total running time:

$O\left(\sqrt{n} \cdot\left(k+n^{\prime}\right) \log n^{\prime} \cdot T\left(n^{\prime}\right)\right)$
$=O\left(\sqrt{n} \cdot(\sqrt{n}+\sqrt{n}) \log n^{\prime} \cdot T\left(n^{\prime}\right)\right)$
$=O(n \log n \cdot T(\sqrt{n}))$
$=O\left(n \log n \cdot n^{1.5-\epsilon}\right)$
$=O\left(n^{2.5-\delta}\right)$
Contradicts OMv conjecture

3．OMv－Hardness of Graph Problems

Edge Query Problem

1. Preprocess

2. n Queries

Edge Query Problem

1. Preprocess

2. n Queries

Edge Query Problem

1. Preprocess

Edge Query Problem

1. Preprocess

Edge Query Problem

1. Preprocess

2. n Queries

$\operatorname{Set}\left(L_{1}, R_{1}\right)$
$\operatorname{Edge}\left(L_{1}, R_{1}\right)$? $\operatorname{Set}\left(L_{2}, R_{2}\right)$
Edge $\left(L_{2}, R_{2}\right)$?
$\operatorname{Set}\left(L_{n}, R_{n}\right)$
$\operatorname{Edge}\left(L_{n}, R_{n}\right)$?

Edge Query Problem

1. Preprocess

2. n Queries

$\operatorname{Set}\left(L_{1}, R_{1}\right)$
$\operatorname{Edge}\left(L_{1}, R_{1}\right)$? $\operatorname{Set}\left(L_{2}, R_{2}\right)$
Edge $\left(L_{2}, R_{2}\right)$?
$\operatorname{Set}\left(L_{n}, R_{n}\right)$
$\operatorname{Edge}\left(L_{n}, R_{n}\right)$?

Edge Query Problem

1. Preprocess

2. n Queries

$\operatorname{Set}\left(L_{1}, R_{1}\right)$
$\operatorname{Edge}\left(L_{1}, R_{1}\right)$? $\operatorname{Set}\left(L_{2}, R_{2}\right)$
Edge $\left(L_{2}, R_{2}\right)$?
$\operatorname{Set}\left(L_{n}, R_{n}\right)$
$\operatorname{Edge}\left(L_{n}, R_{n}\right)$?

Edge Query Problem

1. Preprocess

2. n Queries

$\operatorname{Set}\left(L_{1}, R_{1}\right)$
$\operatorname{Edge}\left(L_{1}, R_{1}\right)$? $\operatorname{Set}\left(L_{2}, R_{2}\right)$ Edge $\left(L_{2}, R_{2}\right)$?
$\operatorname{Set}\left(L_{n}, R_{n}\right)$
$\operatorname{Edge}\left(L_{n}, R_{n}\right)$?

Edge Query Problem

Preprocess:

Input: $\quad\left(L_{1}, R_{1}\right)$
 $\left(L_{n}, R_{n}\right)$

Output: Any edge linking L_{1} and R_{1} ?
Any edge linking L_{n} and R_{n} ?

Theorem

Edge Query
 - Preprocess: poly(n)
 - Time (for n queries): $n^{3-\epsilon}$

OMv conjecture fails

Reduction from OuMv to Edge－Query

Input Problem：OuMv on $n \times n$ matrix M with online sequence $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$
G ：graph defined by adjacency matrix $M^{\prime}=\left[\begin{array}{cc}0 & M \\ M^{T} & 0\end{array}\right]$
Symmetry
When vector pair $\left(u_{i}, v_{i}\right)$ arrives perform edge query with
S_{i} ：set indicated by $x_{i}=\left[\begin{array}{c}u_{i} \\ 0\end{array}\right]$
T_{i} ：set indicated by $y_{i}=\left[\begin{array}{c}0 \\ v_{i}\end{array}\right]$

Observation 1：$x_{i}^{T} M^{\prime} y_{i}=u_{i}^{T} M v_{i}$

Observation 2：There is an edge in $E\left(S_{i}, T_{i}\right)$ iff $x_{i}^{T} M^{\prime} y_{i}=1$

We will show...

Fully dynamic SSR
 - Preprocess: poly(n)
 - Update: $n^{1-\epsilon}$ (amorized)
 - Query: $n^{2-\epsilon}$

Edge Query

- Preprocess: poly(n)
- Time (for n queries): $n^{3-\epsilon}$

OMv conjecture fails

Recomputation from scratch upon query is optimal point on trade-off curve!

Lower bound on worst-case incremental/decremental: rollback technique!

Edge Query

Edge $\left(L_{1}, R_{1}\right) ?$

Edge Query

SSR

Edge $\left(L_{1}, R_{1}\right) ?$

Edge Query

SSR

After knowing "Edge($\left.L_{1}, R_{1}\right)$?", UNDO.

Edge $\left(L_{1}, R_{1}\right) ?$

Edge Query

SSR

Use $O(n)$ updates.

$\operatorname{Edge}\left(L_{2}, R_{2}\right) ?($ another example)

Edge Query

SSR

Edge Query

Edge $\left(L_{i}, R_{i}\right)$?

Edge Query

For $i=1, \ldots, n$
 Edge $\left(L_{i}, R_{i}\right)$?

SSR

Can answer using
\#updates: $0\left(n^{2}\right)$ \#queries:n

Edge Query

> For $i=1, \ldots, n$
> Edge $\left(L_{i}, R_{i}\right)$?

Can answer using \#updates: $0\left(n^{2}\right)$ \#queries:
 n

Edge Query

- Preprocess: poly(n)
- Time (for n queries):

ss-Reach

- Preprocess: poly(n)
- Update: $n^{1-\epsilon}$ (amorizizd)
- Query: $n^{2-\epsilon}$

Edge Query

> For $i=1, \ldots, n$
> Edge $\left(L_{i}, R_{i}\right)$?

Can answer using \#updates: $O\left(n^{2}\right)$ \#queries:

Edge Query

- Preprocess: poly(n)
- Time (for n queries):

ss-Reach

- Preprocess: poly(n)
- Update n^{1-6} (amortized)
- Query: n^{2}

Edge Query

For $i=1, \ldots, n$
 Edge $\left(L_{i}, R_{i}\right)$?

Can answer using \#updates: $0\left(n^{2}\right)$ \#queries: n

Edge Query

- Preprocess: poly(n)
- Time (for n queries):

ss-Reach

- Preprocess: poly(n)
- Update: $n^{1-\epsilon}$ (amortized)
- Query $n^{2-\epsilon}$

Edge Query

For $i=1, \ldots, n$ Edge $\left(L_{i}, R_{i}\right)$?

Can answer using \#update s:0 $\left(n^{2}\right)$ \#queries: n

Edge Query

- Preprocess: poly (n)
- Time (for n queries):

$+n \times n^{2-\epsilon}$
$\leq O\left(n^{3-\epsilon}\right)$

Many popular conjectures...

Conjectures

BMM

(Boolean Matrix Multiplication)
3SUM
Multiphase
(Based on 3SUM)

Triangle
APSP
(All Pair Shortest Path)

SETH

(Strong Exponential Time Hypothesis)
Matching Triangle
(Based on 3SUM, APSP and SETH)

informatik

References

STOC'02 Chan, ESA'04 Rodiity, Zwick FOCS'14 Abboud, V-Williams
FOCS'14 Abboud, V-Williams Arxiv'14 Kopelowitz, Pettie, Porat STOC'10 Patrascu

FOCS'14 Abboud, V-Williams
FOCS'14 Abboud, V-Williams

FOCS'14 Abboud, V-Williams

STOC'15 Abboud, V-Williams, Yu

