Complexity Theory of Polynomial-Time Problems

Lecture 11: Nondeterministic SETH

Karl Bringmann
can we relate SAT / 3SUM / APSP / BMM?
Relating Hypotheses

only very weak relations are known

e.g. ETH implies that k-SUM has no \(n^{o(k)} \) algorithm

OPEN: SETH implies that 3SUM has no \(O(n^{2-\varepsilon}) \) algorithm ?

today we will see a barrier for tighter connections
I. Nondeterministic SETH
Nondeterministic Algorithms

Turing machine: can choose any applicable transition at any point in time
RAM: operation \texttt{guess()} fills a cell with an integer

\textbf{YES}-instance: at least one accepting path \quad \textbf{NO}-instance: all paths reject

guesses on an accepting path = \textit{proof that we have a YES-instance}

NP: all problems solvable in polytime by a nondet. Turing machine

\textbf{k-SAT} algorithm: guess a satisfying assignment, check correctness $O(n + m)$
"guess a short proof of satisfiability and check it"

\textbf{3SUM} algorithm: guess $a, b, c \in A$ and check $a + b + c = 0$ $O(1)/O(n)$
Co-Nondeterministic Algorithms

Turing machine: can choose any applicable transition at any point in time
RAM: operation `guess()` fills a cell with an integer

YES-instance: all paths accept **NO-instance:** at least one path rejects

guesses on a rejecting path = proof that we have a NO-instance

co-NP: all problems solvable in polytime by a co-nondet. Turing machine

k-SAT: „guess a short proof of unsatisfiability and check it“ – Is this possible?

classic computational complexity:

if NP ≠ co-NP, then **k-SAT has no $O(poly(n))$ co-nondet. algorithm**

we believe that NP ≠ co-NP, since otherwise the polynomial hierarchy collapses
(Co-)Nondeterministic SETH

if NP \neq co-NP, then k-SAT has no $O(\text{poly}(n))$ co-nondet. algorithm

not even a $O(2^{(1-\varepsilon)n})$ co-nondet. algorithm is known!

Nondeterministic SETH: k-SAT has no $O(2^{(1-\varepsilon)n})$ co-nondet. algorithm

[CGIMPS’16]

do not allow randomization!

NSETH implies SETH (without randomization)
barely anyone believes that NSETH is true
but it formalizes a current barrier

NSETH can be used to conditionally rule out reductions
Potential Reduction from SAT to 3SUM

an *deterministic* algorithm A for k-SAT with *oracle* access to 3SUM s.t.:

Properties:

- for any formula ϕ, algorithm $A(\phi)$ correctly solves k-SAT on ϕ
- A runs in time $r(n) = O(2^{(1-\gamma)n})$ for some $\gamma > 0$
- for any $\epsilon > 0$ there is a $\delta \in (0, \gamma)$ s.t. $\sum_{i=1}^{k} n_i^{2-\epsilon} \leq 2^{(1-\delta)n}$

E.g. $k = 1$ and $n_1 = 2^{n/2} m^c$, then $n_1^{2-\epsilon} \leq 2^{(1-\epsilon/2)n} n^{ck} \leq 2^{(1-\epsilon/3)n}$
Potential Reduction from SAT to 3SUM

an *deterministic* algorithm A for k-SAT with *oracle* access to 3SUM s.t.:

Properties:

- for any formula ϕ, algorithm $A(\phi)$ correctly solves k-SAT on ϕ
- A runs in time $r(n) = O(2^{(1-\gamma)n})$ for some $\gamma > 0$
- for any $\varepsilon > 0$ there is a $\delta \in (0, \gamma)$ s.t. $\sum_{i=1}^{k} n_i^{2-\varepsilon} \leq 2^{(1-\delta)n}$

$$O(2^{(1-\delta)n}) \text{ algorithm } \iff O(n^{2-\varepsilon}) \text{ algorithm}$$
Potential Reduction from SAT to 3SUM

an *deterministic* algorithm A for k-SAT with *oracle* access to 3SUM s.t.:

```
\[ 3\text{SUM} \]
```

Properties:

for any formula ϕ, algorithm $A(\phi)$ correctly solves k-SAT on ϕ

A runs in time $r(n) = O(2^{(1-\gamma)n})$ for some $\gamma > 0$

for any $\varepsilon > 0$ there is a $\delta \in (0, \gamma)$ s.t. $\sum_{i=1}^{k} n_i^{2-\varepsilon} \leq 2^{(1-\delta)n}$

nondet. $O(2^{(1-\delta)n})$ algorithm and
co-nondet. $O(2^{(1-\delta)n})$ algorithm \iff

nondet. $O(n^{2-\varepsilon})$ algorithm and
co-nondet. $O(n^{2-\varepsilon})$ algorithm
Potential Reduction from SAT to 3SUM

an *deterministic* algorithm A for k-SAT with *oracle* access to 3SUM s.t.:

For each instance I_j: guess whether it is YES- or NO-instance

 - if we guessed YES: guess a proof π_j that I_j is a YES-instance
 - if we guessed NO: guess a proof π_j that I_j is a NO-instance

If we guessed correctly:

$\pi = (\pi_1, ..., \pi_k)$ forms a proof that ϕ is satisfiable or unsatisfiable

Algorithm A is the "proof checker"
Potential Reduction from SAT to 3SUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:

k-SAT
- formula ϕ
- n variables, $m \leq n^k$ clauses

3SUM
- instance I_1
 - size n_1
- \vdots
- instance I_k
 - size n_k

total time $r(n)$

nondet. $O(2^{(1-\delta)n})$ algorithm and co-nondet. $O(2^{(1-\delta)n})$ algorithm \iff nondet. $O(n^{2-\varepsilon})$ algorithm and co-nondet. $O(n^{2-\varepsilon})$ algorithm

no nondet. $O(2^{(1-\delta)n})$ algorithm or no co-nondet. $O(2^{(1-\delta)n})$ algorithm \implies no nondet. $O(n^{2-\varepsilon})$ algorithm or no co-nondet. $O(n^{2-\varepsilon})$ algorithm

\iff NSETH
Ruling Out Reductions

If NSETH holds and

3SUM has a $O(n^{2-\varepsilon})$ co-nondeterministic algorithm

then there is no deterministic reduction from k-SAT to 3SUM

either 3SUM has strongly subquadratic algorithms

or 3SUM is hard for a different reason than k-SAT

or NSETH fails

has drawbacks, but this is the only tool for negative results in this area
Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\{-n^s, \ldots, n^s\}$, are there $a, b, c \in A$ s.t. $a + b + c = 0$?

Thm: 3SUM has a co-nondeterministic algorithm in time $\tilde{O}(n^{3/2})$

[CGIMPS'16]

\tilde{O} hides polylogarithmic factors in n

$$\tilde{O}(f(n)) = O(f(n) \cdot \text{polylog } n)$$

$$\tilde{O}(f(n)) = \bigcup_{c \geq 0} O(f(n) \log^c n)$$
Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\{-n^s, \ldots, n^s\}$, are there $a, b, c \in A$ s.t. $a + b + c = 0$?

Thm: 3SUM has a co-nondeterministic algorithm in time $\tilde{O}(n^{3/2})$

[CGIMPS'16]

1) guess prime $p \leq n^{3/2} \log n$

2) compute $t = |\{(a, b, c) \in A^3 \mid a + b + c = 0 \mod p\}|$
Recall: 3SUM for Small Numbers

3SUM is in time $O(n) + \tilde{O}(U)$ for numbers in $\{0, \ldots, U\}$

define polynomial $P(X) := \sum_{a \in A} X^a$

has degree at most U

compute $Q(X) := P(X) \cdot P(X) \cdot P(X) = (\sum_{a \in A} X^a)(\sum_{a \in A} X^a)(\sum_{a \in A} X^a)$

what is the coefficient of X^t in $Q(X)$?

it is the number of (a, b, c) summing to t

use efficient polynomial multiplication (via Fast Fourier Transform):

polynomials of degree d can be multiplied in time $\tilde{O}(d)$
Co-Nondeterministic Algorithm for 3SUM

3SUM: given set \(A \) of integers in \(\{-n^s, \ldots, n^s\} \), are there \(a, b, c \in A \) s.t. \(a + b + c = 0 \)?

Thm: 3SUM has a co-nondeterministic algorithm in time \(\tilde{O}(n^{3/2}) \)

[CGIMPS'16]

1) guess prime \(p \leq n^{3/2} \log n \)

2) compute \(t = |\{(a, b, c) \in A^3 | a + b + c = 0 \mod p\}| \) \(\tilde{O}(p) \)

\[
\text{let } B := \{a \mod p | a \in A\} \quad \text{(in general } B \text{ is a multi-set!)}
\]

\[
\begin{align*}
\text{let } r_0 &:= |\{(a, b, c) \in B^3 | a + b + c = 0\}| \\
\text{let } r_1 &:= |\{(a, b, c) \in B^3 | a + b + c = p\}| \\
\text{let } r_2 &:= |\{(a, b, c) \in B^3 | a + b + c = 2p\}| \\
\end{align*}
\]

\[
\text{then } t = r_0 + r_1 + r_2
\]

universe size \(U = p \)
Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\{-n^s, \ldots, n^s\}$, are there $a, b, c \in A$ s.t. $a + b + c = 0$?

Thm: 3SUM has a co-nondeterministic algorithm in time $\tilde{O}(n^{3/2})$

[CGIMPS'16]

1) guess prime $p \leq n^{3/2} \log n$

2) compute $t = |\{(a, b, c) \in A^3 \mid a + b + c = 0 \mod p}\| \quad \tilde{O}(p)$

3) if $t > \alpha \cdot n^{3/2} \log n$: accept (constant α to be fixed later)

4) guess distinct $(a_1, b_1, c_1), \ldots, (a_t, b_t, c_t) \in A^3$ such that $a_i + b_i + c_i = 0 \mod p \quad \forall i$

5) check that for all (a_i, b_i, c_i) we have $a_i + b_i + c_i \neq 0$

6) if everything works out: reject (otherwise accept)

✔ time $\tilde{O}(n^{3/2})$

✔ if we reject then we have a NO-instance

✔ YES-instance: all paths accept

NO-instance: at least one path rejects
Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\{-n^s, \ldots, n^s\}$, are there $a, b, c \in A$ s.t. $a + b + c = 0$?

NO-instance: at least one path rejects:

show that there exists a prime $p \leq n^{3/2} \log n$ such that

$$t = |\{(a, b, c) \in A^3 \mid a + b + c = 0 \mod p\}| < \alpha \cdot n^{3/2} \log n$$

$M := \#$ tuples (a, b, c, p) with $a, b, c \in A$ and prime p s.t. $a + b + c = 0 \mod p$

each $a + b + c$ is in $\{-3n^s, \ldots, 3n^s\} \setminus \{0\}$, so it has at most $\log(3n^s)$ prime factors

thus $M \leq n^3 \log(3n^s) \leq 3s \cdot n^3 \log n$

by prime number theorem: there are at least $n^{3/2} / \beta$ primes $p \leq n^{3/2} \log n$

thus there is a prime p contained in at most $M/(n^{3/2} / \beta)$ tuples (a, b, c, p)

thus there is a prime p with $t \leq M/(n^{3/2} / \beta) \leq 3s \cdot \beta \cdot n^{3/2} \log(n)$

set $\alpha := 3s \cdot \beta$
Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\{-n^s, ..., n^s\}$, are there $a, b, c \in A$ s.t. $a + b + c = 0$?

Thm: 3SUM has a co-nondeterministic algorithm in time $\tilde{O}(n^{3/2})$

[CGIMPS'16]

1) guess prime $p \leq n^{3/2} \log n$

2) compute $t = |\{(a, b, c) \in A^3 \mid a + b + c = 0 \mod p\}|$

3) if $t > \alpha \cdot n^{3/2} \log n$: accept

4) guess distinct $(a_1, b_1, c_1), ..., (a_t, b_t, c_t) \in A^3$ such that $a_i + b_i + c_i = 0 \mod p \ \forall i$

5) check that for all (a_i, b_i, c_i) we have $a_i + b_i + c_i \neq 0$

6) if everything works out: reject (otherwise accept)

✔ time $\tilde{O}(n^{3/2})$

✔ **YES**-instance: all paths accept

✔ **NO**-instance: at least one path rejects

✔ if we reject then we have a NO-instance
I. Randomized Nondeterministic SETH
Randomized Nondeterministic SETH

Nondeterministic SETH: k-SAT has no no $O(2^{(1-\varepsilon)n})$ co-nondet. algorithm

what if we allow randomization?

then the hypothesis is wrong!

Thm: k-SAT has a randomized co-nondeterministic $O(2^{n/2\text{poly}(n)})$ algorithm with error probability $2^{-\Omega(n)}$

[Williams'16]

Thm: OV has a randomized co-nondeterministic $O(n \text{ poly}(d, \log n))$ algorithm with error probability $n^{-\Omega(1)}$
Tools: Basics on Polynomials

fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time

univariate polynomials $P(X) = \sum_{i=0}^{n} a_i X^i$, $Q(X) = \sum_{i=0}^{m} b_i X^i$, $m \leq n$

multiplication $P(X) \cdot Q(X)$: $\tilde{O}(n)$ (by FFT, without proof)

division with remainder: $\tilde{O}(n)$ (without proof)

$P(X) = S(X) \cdot Q(X) + R(X)$, where $R(X)$ has degree $< m$

we write $R(X) = P(X) \mod Q(X)$

evaluate $P(X)$ at a given point x: $O(n)$

Horner's method: $P(x) = a_0 + x \cdot (a_1 + x \cdot (a_2 + x \cdot (...)))$
Tools: Multipoint Evaluation on Polynomials

fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time
univariate polynomial $P(X) = \sum_{i=0}^{n} a_i X^i$

multipoint evaluation: $\tilde{O}(n)$

evaluate $P(X)$ at given points $X = x_1, \ldots, x_n$

1) let $L(X) := (X - x_1) \cdots (X - x_{n/2})$ and $R(X) := (X - x_{n/2+1}) \cdots (X - x_n)$
2) let $P_L(X) := P(X) \mod L(X)$ and $P_R(X) := P(X) \mod R(X)$
3) recursively compute $P_L(x_1), \ldots, P_L(x_{n/2})$ and $P_R(x_{n/2+1}), \ldots, P_R(x_n)$

polynomial division: $P(X) = S(X) \cdot L(X) + P_L(X)$

$P(x_i) = S(x_i) \cdot L(x_i) + P_L(x_i) = P_L(x_i)$

$T(n) = 2T(n/2) + \tilde{O}(n) = \tilde{O}(n)$

= 0 for $i \leq n/2$
Tools: Multipoint Evaluation on Polynomials

fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time

univariate polynomial $P(X) = \sum_{i=0}^{n} a_i X^i$

computing $L(X) := (X - x_1) \cdots (X - x_{n/2})$:

computes canonical polynomials $P_{s \cdot 2^t + 1, (s+1)2^t}(X)$

defined by

$$P_{i,j}(X) := \prod_{k=i}^{j} (X - x_k)$$

in layer i: $n/2^i$ multiplications of polynomials of degree 2^i

total time $\tilde{O}(n)$
Tools: Polynomial Interpolation

fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time
univariate polynomial $P(X) = \sum_{i=0}^{n} a_iX^i$

polynomial interpolation: $\tilde{O}(n)$

given pairs $(x_1, y_1), \ldots, (x_n, y_n)$ find a polynomial $P(X)$ with $P(x_i) = y_i$ for all i

Lagrange's formula: $P(X) = \sum_i y_i \cdot \prod_{j \neq i} \frac{X - x_j}{x_i - x_j}$

Caveat: "division by x" in \mathbb{Z}_p means multiplication with the inverse x^{-1}

extended Euclidean algorithm:
computes s,t with $s \cdot x + t \cdot p = \gcd(x,p) = 1$
modulo p: $s \cdot x = 1$
so $s = x^{-1}$ is the inverse of x
Tools: Polynomial Interpolation

1st goal: compute
\[P(X) = \sum_{i} y'_i \cdot \prod_{j \neq i} (X - x_j) \quad \text{(for } y'_i := y_i \cdot \prod_{j \neq i} \frac{1}{x_i - x_j}) \]

let \(L(X) := (X - x_1) \cdots (X - x_{n/2}) \) and \(R(X) := (X - x_{n/2+1}) \cdots (X - x_n) \)

recursion:
\[
\sum_{i} y'_i \cdot \prod_{j \neq i} (X - x_j) = \left(\sum_{1 \leq i \leq n/2} y'_i \cdot \prod_{1 \leq j \leq n/2, j \neq i} (X - x_j) \right) \cdot R(X) \\
+ \left(\sum_{n/2 < i \leq n} y'_i \cdot \prod_{n/2 < j \leq n, j \neq i} (X - x_j) \right) \cdot L(X)
\]
Tools: Polynomial Interpolation

2nd goal: compute factors

\[s_i = \prod_{j \neq i} \frac{1}{x_i - x_j} \]

compute the derivative of

\[Q(X) := \prod_{i=1}^{n} X - x_i = \sum_{i=0}^{n} a_i X^i \]

\[Q'(X) = \sum\prod_{i \neq j} X - x_j = \sum_{i=0}^{n} i \cdot a_i X^{i-1} \]

can compute \(Q'(X) \) in time \(\tilde{O}(n) \)

then we have

\[Q'(x_k) = \sum\prod_{i \neq j} x_k - x_j = \prod_{j \neq k} x_k - x_j = s_k^{-1} \]

compute all \(Q'(x_k) \) for \(k = 1, ..., n \) in time \(\tilde{O}(n) \) by multipoint evaluation
Tools: Polynomial Interpolation

fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time

univariate polynomial $P(X) = \sum_{i=0}^{n} a_i X^i$

polynomial interpolation: $\tilde{O}(n)$

given pairs $(x_1, y_1), \ldots, (x_n, y_n)$ find a polynomial $P(X)$ with $P(x_i) = y_i$ for all i

Lagrange‘s formula: $P(X) = \sum_{i} y_i \cdot \prod_{j \neq i} \frac{X - x_j}{x_i - x_j}$

can be computed in time $\tilde{O}(n)!$
Tools: Arithmetic Circuits

fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time

arithmetic circuits are a (succinct) representation of (multivariate) polynomials

input gates labeled with variables X_1, \ldots, X_k - **univariate** if $k = 1$

each other gate is a “+” or “×” (unbounded fanin)
 or a “−” (fanin 1)
 or a **constant** (fanin 0)

fanout is unbounded
one **output** gate
(no cyclic dependencies)

given an input $x_1, \ldots, x_k \in \mathbb{Z}_p$
the output $C(x_1, \ldots, x_k)$
is the number computed
by the output gate (in \mathbb{Z}_p)

\[
(42 + (X_1 X_2))(X_1 X_2)(-X_2)(X_3 + (X_3 \cdot 7))
\]
Tools: Arithmetic Circuits

fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time

representation as circuit is not unique

(circuit = unstructured, succinct) $= \quad$ (polynomial = structured, verbose)

$$(1 + 2X)(2X)(3 - X) = -4X^3 + 10X^2 + 6X$$
fix field \(\mathbb{Z}_p \) and assume that field operations can be performed in \(O(1) \) time.

working modulo \(p \) is necessary

over \(\mathbb{Z} \) numbers can get very large:

\[
2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^{2^d}
\]
Tools: Arithmetic Circuits

fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time.

k inputs $s =$ number of wires

degree $d =$ „largest degree of any monomial assuming no cancellations“

degree(input gate) = 1

degree(constant gate) = 0

degree(“-” gate) = degree of child

degree(“+” gate) = maximum of degrees of children

degree(“×” gate) = sum of degrees of children

degree of circuit = degree(output gate)

$$(42 + (X_1 X_2))(X_1 X_2)(-X_2)(X_3 + (X_3 \cdot 7))$$
Tools: Evaluation of Circuits

fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time

k inputs size $s = \text{number if wires}$ degree d

evaluating a circuit at given input: $O(s)$

$$(1 + 2X)(2X)(3 - X)$$
Tools: Identity Testing

fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time

k inputs size $s =$ number if wires degree d

given two circuits C_1, C_2, do they represent the same polynomial over \mathbb{Z}_p?

this problem is called polynomial identity testing

assume that C_1, C_2 are univariate and assume $p \geq 2d$

Schwarz-Zippel-Lemma:

this has a randomized $\tilde{O}(s)$-time algorithm with error probability $1 - s^{-\Omega(1)}$

1) for $\log s$ rounds:

2) pick random $x \in \mathbb{Z}_p$

3) if $C_1(x) \neq C_2(x)$: return „not identical“

4) return „identical“

$C_1(X) - C_2(X)$ is a polynomial $Q(X)$ of degree d

if $C_1(X) \neq C_2(X)$ then $Q(X)$ is not the 0-polynomial and thus has at most d roots

with probability $\geq 1/2$ we pick a non-root x
Tools: Evaluation of Circuits

Fix field \mathbb{Z}_p and assume that field operations can be performed in $O(1)$ time

k inputs
size $s = \text{number of wires}$
degree d

evaluating a circuit at given input: $O(s)$

Multipoint evaluation (at n points):
no near-linear time algorithm known

Trivial algorithm: $O(n \cdot s)$

Converting a univariate circuit
to a polynomial: $\widetilde{O}(s \cdot d)$
(write each gate as a degree polynomial)

Conversion + multipoint evaluation for polynomials
= multipoint evaluation for univariate circuits in $\tilde{O}(s \cdot d + n + d)$

(for multivariate: degree d polynomial has up to $\binom{d + k + 1}{k}$ monomials 😞)
OV: Given sets $A, B \subseteq \{0, 1\}^d$ of size n
Decide whether there are $a \in A, b \in B$ such that $a \perp b$

circuit $C(a, b)$ for testing orthogonality of a, b:

$$C(a, b) = \prod_{i=1}^{d} (1 - a_i b_i)$$
OV as Multipoint Evaluation on Circuits

OV: Given sets $A, B \subseteq \{0,1\}^d$ of size n

Decide whether there are $a \in A, b \in B$ such that $a \perp b$

Circuit $C(a)$ for testing orthogonality of a with any $b \in B$:

$$C(a) = \sum_{b \in B} C(a, b) = \sum_{b \in B} \prod_{i=1}^{d} (1 - a_i b_i)$$

- d inputs (for the coordinates of a)
- size $O(nd)$
- degree $\leq 2d$

- for any $a \in \{0,1\}^d$: $0 \leq C(a) \leq n$
- pick prime $p \geq n$ and work modulo p, i.e., over field \mathbb{Z}_p
(Co-)Nondet. Multipoint Evaluation on Circuits

Given circuit C on inputs $X_1, ..., X_k$ with size s and degree d over \mathbb{Z}_p.

Given inputs $z_1, ..., z_n \in \mathbb{Z}_p^k$.

Want to evaluate C on each $z_j = (z_j[1], ..., z_j[k])$.

Can assume $p \geq 2nd$, $p \leq n^{O(1)}$.

1) Compute polynomials $R_1(X), ..., R_k(X)$ such that $R_i(j) = z_j[i]$ by polynomial interpolation.

 New goal: evaluate univariate circuit $C'(X) = C(R_1(X), ..., R_k(X))$ on $X = 1, ..., n$.

 C' has size $\leq O(s + kn)$ and depth $\leq dn$.

2) Guess a polynomial $Q(X)$ of degree at most dn.

3) Check that $Q(X) = C(R_1(X), ..., R_k(X))$ by "polynomial identity testing".

4) Multipoint evaluate $Q(X)$ on $X = 1, ..., n$ and return these values.

C' has size $\leq O(s + kn)$ and depth $\leq dn$.

$\tilde{O}(kn)$

$O(dn)$

$\tilde{O}(s + kn + dn)$

$\tilde{O}(dn)$
Co-Nondet. Algorithm for OV

use circuit \(C(a) \) for testing orthogonality of \(a \) with any \(b \in B \subseteq \{0,1\}^d \)
evaluate \(C(a) \) at each \(a \in A \)
\(d \) inputs, size \(O(dn) \), degree \(\leq 2d \)

YES-instance: all paths accept \hspace{1cm} **NO-instance:** at least one path rejects
...with high probability

1) compute polynomials \(R_1(X), \ldots, R_k(X) \) such that \(R_i(j) = z_j[i] \)
by polynomial interpolation

new goal: evaluate univariate circuit \(C'(X) = C(R_1(X), \ldots, R_k(X)) \) on \(X = 1, \ldots, n \)
\(C' \) has size \(\leq O(s + kn) \) and depth \(\leq dn \)

2) guess a polynomial \(Q(X) \) of degree at most \(dn \)
\(O(dn) \)

3) check that \(Q(X) = C(R_1(X), \ldots, R_k(X)) \)
by “polynomial identity testing”, if not: ACCEPT
\(\tilde{O}(s + kn + dn) \)

4) multipoint evaluate \(Q(X) \) on \(X = 1, \ldots, n \) and return these values \(\tilde{O}(dn) \)

5) ACCEPT if \(\sum_{j=1}^n Q(j) \geq 1 \) \(\tilde{O}(dn) \)

\(\tilde{O}(kn) \)
Co-Nondet. Algorithm for OV

NO-instance: If we correctly guess $Q(X)$ then the identity test works with prob. 1 and we correctly report non-existence of an orthogonal pair = REJECT

YES-instance: If we correctly guess $Q(X)$ then we ACCEPT

If we wrongly guess $Q(X)$ then identity test fails with prob. $1 - n^{-\Omega(1)}$ for any guess: we ACCEPT with probability $1 - n^{-\Omega(1)}$

1) compute polynomials $R_1(X), \ldots, R_k(X)$ such that $R_i(j) = z_j[i]$ by polynomial interpolation

new goal: evaluate univariate circuit $C'(X) = C(R_1(X), \ldots, R_k(X))$ on $X = 1, \ldots, n$

C' has size $\leq O(s + kn)$ and depth $\leq dn$

2) guess a polynomial $Q(X)$ of degree at most dn

3) check that $Q(X) = C(R_1(X), \ldots, R_k(X))$
 by “polynomial identity testing”, if not: ACCEPT

4) multipoint evaluate $Q(X)$ on $X = 1, \ldots, n$ and return these values

5) ACCEPT if $\sum_{j=1}^{n} Q(j) \geq 1$
Conclusion

Nondeterministic SETH: k-SAT has no no \(O(2^{(1-\varepsilon)n})\) co-nondet. algorithm

No randomization allowed

If it holds, then there is no deterministic reduction from SETH to 3SUM,

since 3SUM has a \(\tilde{O}(n^{3/2})\) co-nondeterministic algorithm

This is the only tool for ruling out reductions!

„Randomized Nondeterministic SETH“: is wrong!

We have seen a \(\tilde{O}(dn)\) co-nondeterministic algorithm for OV

uses many tools for computing with polynomials and arithmetic circuits