"リリ" informatik

Complexity Theory of Polynomial-Time Problems

Lecture 11: Nondeterministic SETH

Karl Bringmann

Complexity Inside P

Relating Hypotheses

only very weak relations are known
e.g. ETH implies that k-SUM has no $n^{o(k)}$ algorithm

OPEN: SETH implies that 3SUM has no $O\left(n^{2-\varepsilon}\right)$ algorithm?
today we will see a barrier for tighter connections

I. Nondeterministic SETH

Nondeterministic Algorithms

Turing machine: can choose any applicable transition at any point in time RAM: operation guess() fills a cell with an integer

YES-instance: at least one accepting path NO-instance: all paths reject guesses on an accepting path = proof that we have a YES-instance

NP: all problems solvable in polytime by a nondet. Turing machine
k-SAT algorithm: guess a satisfying assignment, check correctness $O(n+m)$ "guess a short proof of satisfiability and check it"

3SUM algorithm: guess $a, b, c \in A$ and check $a+b+c=0$

Co-Nondeterministic Algorithms

Turing machine: can choose any applicable transition at any point in time RAM: operation guess() fills a cell with an integer

YES-instance: all paths accept NO-instance: at least one path rejects guesses on a rejecting path = proof that we have a NO-instance
co-NP: all problems solvable in polytime by a co-nondet. Turing machine
k-SAT: "guess a short proof of unsatisfiability and check it" - Is this possible ?
classic computational complexity:
if NP \neq co-NP, then $k-S A T$ has no $\boldsymbol{O}(\operatorname{poly}(n))$ co-nondet. algorithm
we believe that NP \neq co-NP, since otherwise the polynomial hierarchy collapses

(Co-)Nondeterministic SETH

if NP \neq co-NP, then k-SAT has no $O(\operatorname{poly}(n))$ co-nondet. algorithm not even a $O\left(2^{(1-\varepsilon) n}\right)$ co-nondet. algorithm is known!

Nondeterministic SETH: k-SAT has no no $O\left(2^{(1-\varepsilon) n}\right)$ co-nondet. algorithm
[CGIMPS'16]
do not allow randomization!

NSETH implies SETH (without randomization)
barely anyone believes that NSETH is true
but it formalizes a current barrier

NSETH can be used to conditionally rule out reductions

Potential Reduction from SAT to 3SUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:
3SUM

Properties:

for any fomula ϕ, algorithm $A(\phi)$ correctly solves k-SAT on ϕ
A runs in time $r(n)=O\left(2^{(1-\gamma) n}\right)$ for some $\gamma>0$ for any $\varepsilon>0$ there is a $\delta \in(0, \gamma)$ s.t. $\sum_{i=1}^{k} n_{i}{ }^{2-\varepsilon} \leq 2^{(1-\delta) n}$
e.g. $k=1$ and $n_{1}=2^{n / 2} m^{c}$, then $n_{1}{ }^{2-\varepsilon} \leq 2^{(1-\varepsilon / 2) n} n^{c k} \leq 2^{(1-\varepsilon / 3) n}$

Potential Reduction from SAT to 3SUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:
3SUM

Properties:
for any fomula ϕ, algorithm $A(\phi)$ correctly solves k-SAT on ϕ
A runs in time $r(n)=O\left(2^{(1-\gamma) n}\right)$ for some $\gamma>0$
for any $\varepsilon>0$ there is a $\delta \in(0, \gamma)$ s.t. $\sum_{i=1}^{k} n_{i}{ }^{2-\varepsilon} \leq 2^{(1-\delta) n}$

$$
O\left(2^{(1-\delta) n}\right) \text { algorithm } \quad \Leftarrow \quad O\left(n^{2-\varepsilon}\right) \text { algorithm }
$$

Potential Reduction from SAT to 3SUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:

3SUM

Properties:

for any fomula ϕ, algorithm $A(\phi)$ correctly solves k-SAT on ϕ
A runs in time $r(n)=O\left(2^{(1-\gamma) n}\right)$ for some $\gamma>0$
for any $\varepsilon>0$ there is a $\delta \in(0, \gamma)$ s.t. $\sum_{i=1}^{k} n_{i}{ }^{2-\varepsilon} \leq 2^{(1-\delta) n}$
nondet. $O\left(2^{(1-\delta) n}\right)$ algorithm and co-nondet. $O\left(2^{(1-\delta) n}\right)$ algorithm nondet. $O\left(n^{2-\varepsilon}\right)$ algorithm and co-nondet. $O\left(n^{2-\varepsilon}\right)$ algorithm

Potential Reduction from SAT to 3SUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:
3SUM

for each instance I_{j} : guess whether it is YES- or NO-instance if we guessed YES: guess a proof π_{j} that I_{j} is a YES-instance if we guessed NO: guess a proof π_{j} that I_{j} is a NO-instance
if we guessed correctly:
$\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$ forms a proof that ϕ is satisfiable or unsatisfiable algorithm A is the „proof checker"

Potential Reduction from SAT to 3SUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:
3SUM

nondet. $O\left(2^{(1-\delta) n}\right)$ algorithm and co-nondet. $O\left(2^{(1-\delta) n}\right)$ algorithm
no nondet. $O\left(2^{(1-\delta) n}\right)$ algorithm or $\quad \Rightarrow \quad$ no nondet. $O\left(n^{2-\varepsilon}\right)$ algorithm or no co-nondet. $O\left(2^{(1-\delta) n}\right)$ algorithm $\quad \Rightarrow$ no co-nondet. $O\left(n^{2-\varepsilon}\right)$ algorithm

Ruling Out Reductions

If NSETH holds and

3SUM has a $O\left(n^{2-\varepsilon}\right)$ co-nondeterministic algorithm
then there is no deterministic reduction from k-SAT to 3SUM
either 3SUM has strongly subquadratic algorithms
or 3SUM is hard for a different reason than k-SAT or NSETH fails
has drawbacks, but this is the only tool for negative results in this area

Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\left\{-n^{s}, \ldots, n^{s}\right\}$, are there $a, b, c \in A$ s.t. $a+b+c=0$?

Thm:
3SUM has a co-nondeterministic algorithm in time $\widetilde{O}\left(n^{3 / 2}\right)$
[CGIMPS'16]
\tilde{O} hides polylogarithmic factors in n

$$
\begin{aligned}
& \tilde{O}(f(n))=O(f(n) \cdot \operatorname{polylog} n) \\
& \tilde{O}(f(n))=\bigcup_{c \geq 0} O\left(f(n) \log ^{c} n\right)
\end{aligned}
$$

Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\left\{-n^{s}, \ldots, n^{s}\right\}$, are there $a, b, c \in A$ s.t. $a+b+c=0$?

Thm: 3SUM has a co-nondeterministic algorithm in time $\widetilde{O}\left(n^{3 / 2}\right)$
[CGIMPS'16]

1) guess prime $p \leq n^{3 / 2} \log n$
$\tilde{O}(p)$
2) compute $t=\left|\left\{(a, b, c) \in A^{3} \mid a+b+c=0 \bmod p\right\}\right|$

Recall: 3SUM for Small Numbers

3SUM is in time $O(n)+\widetilde{O}(U)$ for numbers in $\{0, \ldots, U\}$
define polynomial $P(X):=\sum_{a \in A} X^{a}$
has degree at most U
compute $Q(X):=P(X) \cdot P(X) \cdot P(X)=\left(\sum_{a \in A} X^{a}\right)\left(\sum_{a \in A} X^{a}\right)\left(\sum_{a \in A} X^{a}\right)$
what is the coefficient of X^{t} in $Q(X)$?

$$
\left(X^{a} \cdot X^{b} \cdot X^{c}=X^{a+b+c}\right)
$$

it is the number of $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ summing to \boldsymbol{t}
use efficient polynomial multiplication (via Fast Fourier Transform): polynomials of degree d can be multiplied in time $\widetilde{O}(d)$

Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\left\{-n^{s}, \ldots, n^{s}\right\}$, are there $a, b, c \in A$ s.t. $a+b+c=0$?

Thm: \quad SSUM has a co-nondeterministic algorithm in time $\widetilde{O}\left(n^{3 / 2}\right)$
[CGIMPS' 16]

1) guess prime $p \leq n^{3 / 2} \log n$
2) compute $t=\left|\left\{(a, b, c) \in A^{3} \mid a+b+c=0 \bmod p\right\}\right|$
let $B:=\{a \bmod p \mid a \in A\} \quad$ (in general B is a multi-set!)
let $r_{0}:=\left|\left\{(a, b, c) \in B^{3} \mid a+b+c=0\right\}\right|$ let $r_{1}:=\left|\left\{(a, b, c) \in B^{3} \mid a+b+c=p\right\}\right|$
let $r_{2}:=\left|\left\{(a, b, c) \in B^{3} \mid a+b+c=2 p\right\}\right|$
then $t=r_{0}+r_{1}+r_{2}$

Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\left\{-n^{s}, \ldots, n^{s}\right\}$, are there $a, b, c \in A$ s.t. $a+b+c=0$?
Thm: \quad 3SUM has a co-nondeterministic algorithm in time $\widetilde{O}\left(n^{3 / 2}\right)$
[CGIMPS'16]

1) guess prime $p \leq n^{3 / 2} \log n$
2) compute $t=\left|\left\{(a, b, c) \in A^{3} \mid a+b+c=0 \bmod p\right\}\right|$
3) if $t>\alpha \cdot n^{3 / 2} \log n$: accept (constant α to be fixed later)
4) guess distinct $\left(a_{1}, b_{1}, c_{1}\right), \ldots,\left(a_{t}, b_{t}, c_{t}\right) \in A^{3}$ such that $a_{i}+b_{i}+c_{i}=0 \bmod p \forall i$
5) check that for all $\left(a_{i}, b_{i}, c_{i}\right)$ we have $a_{i}+b_{i}+c_{i} \neq 0$

6) if everything works out: reject (otherwise accept)
\checkmark time $\widetilde{O}\left(n^{3 / 2}\right)$
\checkmark YES-instance: all paths accept

Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\left\{-n^{s}, \ldots, n^{s}\right\}$, are there $a, b, c \in A$ s.t. $a+b+c=0$?

NO-instance: at least one path rejects:
show that there exists a prime $p \leq n^{3 / 2} \log n$ such that

$$
t=\left|\left\{(a, b, c) \in A^{3} \mid a+b+c=0 \bmod p\right\}\right|<\alpha \cdot n^{3 / 2} \log n
$$

$\mathrm{M}:=\#$ tuples (a, b, c, p) with $a, b, c \in A$ and prime p s.t. $a+b+c=0 \bmod p$ each $a+b+c$ is in $\left\{-3 n^{s}, \ldots, 3 n^{s}\right\} \backslash\{0\}$, so it has at most $\log \left(3 n^{s}\right)$ prime factors thus $M \leq n^{3} \log \left(3 n^{s}\right) \leq 3 s \cdot n^{3} \log n$
by prime number theorem: there are at least $n^{3 / 2} / \beta$ primes $p \leq n^{3 / 2} \log n$ thus there is a prime p contained in at most $M /\left(n^{3 / 2} / \beta\right)$ tuples (a, b, c, p) thus there is a prime p with $t \leq M /\left(n^{3 / 2} / \beta\right) \leq 3 s \cdot \beta \cdot n^{3 / 2} \log (n)$

$$
\text { set } \alpha:=3 s \cdot \beta
$$

Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in $\left\{-n^{s}, \ldots, n^{s}\right\}$, are there $a, b, c \in A$ s.t. $a+b+c=0$?
Thm: \quad 3SUM has a co-nondeterministic algorithm in time $\widetilde{O}\left(n^{3 / 2}\right)$
[CGIMPS'16]

1) guess prime $p \leq n^{3 / 2} \log n$
2) compute $t=\left|\left\{(a, b, c) \in A^{3} \mid a+b+c=0 \bmod p\right\}\right|$
3) if $t>\alpha \cdot n^{3 / 2} \log n$: accept (constant α to be fixed later)
4) guess distinct $\left(a_{1}, b_{1}, c_{1}\right), \ldots,\left(a_{t}, b_{t}, c_{t}\right) \in A^{3}$ such that $a_{i}+b_{i}+c_{i}=0 \bmod p \forall i$
5) check that for all $\left(a_{i}, b_{i}, c_{i}\right)$ we have $a_{i}+b_{i}+c_{i} \neq 0$

6) if everything works out: reject (otherwise accept)
\checkmark time $\widetilde{O}\left(n^{3 / 2}\right)$
\checkmark YES-instance: all paths accept

I. Randomized Nondeterministic SETH

Randomized Nondeterministic SETH

Nondeterministic SETH: k-SAT has no no $O\left(2^{(1-\varepsilon) n}\right)$ co-nondet. algorithm
what if we allow randomization?
then the hypothesis is wrong!

Thm: k-SAT has a randomized co-nondeterministic $O\left(2^{n / 2}\right.$ poly $\left.(n)\right)$ algorithm with error probability $2^{-\Omega(n)}$

Thm: OV has a randomized co-nondeterministic $O(n$ poly $(d, \log n))$ algorithm with error probability $n^{-\Omega(1)}$

Tools: Basics on Polynomials

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time univariate polynomials $P(X)=\sum_{i=0}^{n} a_{i} X^{i}, Q(X)=\sum_{i=0}^{m} b_{i} X^{i}, m \leq n$
multiplication $P(X) \cdot Q(X)$: $\tilde{O}(n)$ (by FFT, without proof)
division with remainder: $\tilde{O}(n)$ (without proof)

$$
\begin{aligned}
& P(X)=S(X) \cdot Q(X)+R(X) \text {, where } R(X) \text { has degree }<m \\
& \text { we write } R(X)=P(X) \bmod Q(X)
\end{aligned}
$$

evaluate $P(X)$ at a given point x : $O(n)$
Horner's method: $P(x)=a_{0}+x \cdot\left(a_{1}+x \cdot\left(a_{2}+x \cdot(\ldots)\right)\right)$

Tools: Multipoint Evaluation on Polynomials

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time univariate polynomial $P(X)=\sum_{i=0}^{n} a_{i} X^{i}$
multipoint evaluation: $\tilde{O}(n)$ evaluate $P(X)$ at given points $X=x_{1}, \ldots, x_{n}$

1) let $L(X):=\left(X-x_{1}\right) \cdots\left(X-x_{n / 2}\right)$ and $R(X):=\left(X-x_{n / 2+1}\right) \cdots\left(X-x_{n}\right)$
2) let $\quad P_{L}(X):=P(X) \bmod L(X) \quad$ and $\quad P_{R}(X):=P(X) \bmod R(X)$
3) recursively compute $P_{L}\left(x_{1}\right), \ldots, P_{L}\left(x_{n / 2}\right)$ and $P_{R}\left(x_{n / 2+1}\right), \ldots, P_{R}\left(x_{n}\right)$

$$
\begin{aligned}
\text { polynomial division: } & P(X)=S(X) \cdot L(X)+P_{L}(X) \\
& P\left(x_{i}\right)=S\left(x_{i}\right) \cdot L\left(x_{i}\right)+P_{L}\left(x_{i}\right)=P_{L}\left(x_{i}\right) \\
T(n)=2 T(n / 2)+\tilde{O}(n)=\tilde{O}(n) & \\
& \\
&
\end{aligned}
$$

Tools: Multipoint Evaluation on Polynomials

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time univariate polynomial $P(X)=\sum_{i=0}^{n} a_{i} X^{i}$
computing $L(X):=\left(X-x_{1}\right) \cdots\left(X-x_{n / 2}\right)$:
straight-forward binary tree

computes canonical polynomials

$$
P_{s \cdot 2^{t}+1,(s+1) 2^{t}}(X)
$$

defined by

$$
P_{i, j}(X):=\prod_{k=i}^{j} X-x_{k}
$$

in layer i : $n / 2^{i}$ multiplications of polynomials of degree 2^{i}
total time $\widetilde{O}(n)$

Tools: Polynomial Interpolation

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time
univariate polynomial $P(X)=\sum_{i=0}^{n} a_{i} X^{i}$
polynomial interpolation: $\widetilde{O}(n)$
given pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ find a polynomial $P(X)$ with $P\left(x_{i}\right)=y_{i}$ for all i
Lagrange's formula: $\quad P(X)=\sum_{i} y_{i} \cdot \prod_{j \neq i} \frac{X-x_{j}}{x_{i}-x_{j}}$

Caveat: "division by x " in \mathbb{Z}_{p} means multiplication with the inverse x^{-1} extended Euclidean algorithm:
computes s, t with $s \cdot x+t \cdot p=\operatorname{gcd}(x, p)=1$
modulo $p: s \cdot x=1$
so $s=x^{-1}$ is the inverse of x

Tools: Polynomial Interpolation

1st goal: compute $\quad P(X)=\sum_{i} y_{i}^{\prime} \cdot \prod_{j \neq i} X-x_{j} \quad\left(\right.$ for $\left.y_{i}^{\prime}:=y_{i} \cdot \prod_{j \neq i} \frac{1}{x_{i}-x_{j}}\right)$

$$
\text { let } L(X):=\left(X-x_{1}\right) \cdots\left(X-x_{n / 2}\right) \text { and } R(X):=\left(X-x_{n / 2+1}\right) \cdots\left(X-x_{n}\right)
$$

recursion:

$$
\begin{aligned}
\sum_{i} y_{i}^{\prime} \cdot \prod_{j \neq i} X-x_{j}= & \left(\sum_{1 \leq i \leq n / 2} y_{i}^{\prime} \cdot \prod_{\substack{1 \leq j \leq n / 2 \\
j \neq i}} X-x_{j}\right) \cdot R(X) \\
& +\left(\sum_{n / 2<i \leq n} y_{i}^{\prime} \cdot \prod_{\substack{n / 2<j \leq n \\
j \neq i}} X-x_{j}\right) \cdot L(X)
\end{aligned}
$$

Tools: Polynomial Interpolation

2nd goal: compute factors $s_{i}=\prod_{j \neq i} \frac{1}{x_{i}-x_{j}}$
compute the derivative of

$$
\begin{gathered}
Q(X):=\prod_{i=1}^{n} X-x_{i}=\sum_{i=0}^{n} a_{i} X^{i} \\
Q^{\prime}(X)=\sum_{i} \prod_{j \neq i} X-x_{j}=\sum_{i=0}^{n} i \cdot a_{i} X^{i-1}
\end{gathered}
$$

can compute $Q^{\prime}(X)$ in time $\tilde{O}(n)$
then we have

$$
Q^{\prime}\left(x_{k}\right)=\sum_{i} \prod_{j \neq i} x_{k}-x_{j}=\prod_{j \neq k} x_{k}-x_{j}=s_{k}^{-1}
$$

compute all $Q^{\prime}\left(x_{k}\right)$ for $k=1, \ldots, n$ in time $\widetilde{O}(n)$ by multipoint evaluation

Tools: Polynomial Interpolation

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time univariate polynomial $P(X)=\sum_{i=0}^{n} a_{i} X^{i}$
polynomial interpolation: $\widetilde{O}(n)$
given pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ find a polynomial $P(X)$ with $P\left(x_{i}\right)=y_{i}$ for all i
Lagrange's formula: $\quad P(X)=\sum_{i} y_{i} \cdot \prod_{j \neq i} \frac{X-x_{j}}{x_{i}-x_{j}}$
can be computed in time $\widetilde{O}(n)$!

Tools: Arithmetic Circuits

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time

arithmetic circuits are a (succinct) representation of (multivariate) polynomials
input gates labeled with variables X_{1}, \ldots, X_{k} - univariate if $k=1$
each other gate is a " + " or " x " (unbounded fanin) or a "-" (fanin 1) or a constant (fanin 0)
fanout is unbounded
one output gate
(no cyclic dependencies)
given an input $x_{1}, \ldots, x_{k} \in \mathbb{Z}_{p}$ the output $C\left(x_{1}, \ldots, x_{k}\right)$ is the number computed by the output gate (in \mathbb{Z}_{p})

Tools: Arithmetic Circuits

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time
representation as circuit is not unique

$(1+2 X)(2 X)(3-X)$
circuit $=$ unstructured, succinct

$=\quad-4 X^{3}+10 X^{2}+6 X$
polynomial = structured, verbose

Tools: Arithmetic Circuits

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time
working modulo p is necessary
over \mathbb{Z} numbers can get very large:

Tools: Arithmetic Circuits

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time
k inputs size $s=$ number if wires
degree $d=$ „largest degree of any monomial assuming no cancelations"
degree $($ input gate $)=1$
degree(constant gate) $=0$
degree("-" gate) = degree of child
degree("+" gate) $=$ maximum of degrees of children
degree(" \times " gate) $=$

Tools: Evaluation of Circuits

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time k inputs
size $s=$ number if wires degree d
evaluating a circuit at given input: $O(S)$

Tools: Identity Testing

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time k inputs size $s=$ number if wires degree d
given two circuits C_{1}, C_{2}, do they represent the same polynomial over \mathbb{Z}_{p} ? this problem is called polynomial identity testing
assume that C_{1}, C_{2} are univariate and assume $p \geq 2 d$
Schwarz-Zippel-Lemma:
this has a randomized $\tilde{O}(s)$-time algorithm with error probability $1-s^{-\Omega(1)}$

1) for $\log s$ rounds:
2) pick random $x \in \mathbb{Z}_{p}$
3) if $C_{1}(x) \neq C_{2}(x)$: return „not identical"
4) return „identical"
$C_{1}(X)-C_{2}(X)$ is a polynomial $Q(X)$ of degree d
if $C_{1}(X) \neq C_{2}(X)$ then $Q(X)$ is not the 0-polynomial and thus has at most d roots
with probability $\geq 1 / 2$ we pick a non-root x

Tools: Evaluation of Circuits

fix field \mathbb{Z}_{p} and assume that field operations can be performed in $O(1)$ time k inputs
size $s=$ number if wires degree d
evaluating a circuit at given input: $O(S)$
multipoint evaluation (at n points):
no near-linear time algorithm known
trivial algorithm: $O(n \cdot s)$
converting a univariate circuit to a polynomial: $\tilde{O}(s \cdot d)$ (write each gate as a degree polynomial)

$(1+2 X)(2 X)(3-X)$
conversion + multipoint evaluation for polynomials
$=$ multipoint evaluation for univariate circuits in $\widetilde{O}(s \cdot d+n+d)$
(for multivariate: degree d polynomial has up to $\binom{d+k+1}{k}$ monomials $\dot{\theta}_{\text {) }}$)

OV as Multipoint Evaluation on Circuits

OV: Given sets $A, B \subseteq\{0,1\}^{d}$ of size n
Decide whether there are $a \in A, b \in B$ such that $a \perp b$
circuit $C(a, b)$ for testing orthogonality of a, b :

$$
C(a, b)=\prod_{i=1}^{d}\left(1-a_{i} b_{i}\right)
$$

OV as Multipoint Evaluation on Circuits

OV: Given sets $A, B \subseteq\{0,1\}^{d}$ of size n Decide whether there are $a \in A, b \in B$ such that $a \perp b$
circuit C (a) for testing orthogonality of a with any $b \in B$:

$$
C(a)=\sum_{b \in B} C(a, b)=\sum_{b \in B} \prod_{i=1}^{d}\left(1-a_{i} b_{i}\right)
$$

- d inputs (for the coordinates of a)
- size $O(n d)$
- degree $\leq 2 d$

for each $b \in B$
- for any $a \in\{0,1\}^{d}: 0 \leq C(a) \leq n$
- pick prime $p \geq n$ and work modulo p, i.e., over field \mathbb{Z}_{p}

(Co-)Nondet. Multipoint Evaluation on Circuits

Given circuit C on inputs X_{1}, \ldots, X_{k} with size s and degree d over \mathbb{Z}_{p}
Given inputs $z_{1}, \ldots, z_{n} \in \mathbb{Z}_{p}{ }^{k}$
want to evaluate C on each $z_{j}=\left(z_{j}[1], \ldots, z_{j}[k]\right)$
can assume $p \geq 2 n d, p \leq n^{O(1)}$

1) compute polynomials $R_{1}(X), \ldots, R_{k}(X)$ such that $R_{i}(j)=z_{j}[i]$
by polynomial interpolation
new goal: evaluate univariate circuit $C^{\prime}(X)=C\left(R_{1}(X), \ldots, R_{k}(X)\right)$ on $X=1, \ldots, n$ C^{\prime} has size $\leq O(s+k n)$ and depth $\leq d n$
2) guess a polynomial $Q(X)$ of degree at most $d n$
3) check that $Q(X)=C\left(R_{1}(X), \ldots, R_{k}(X)\right)$ by "polynomial identity testing"
4) multipoint evaluate $Q(X)$ on $X=1, \ldots, n$ and return these values

Co-Nondet. Algorithm for OV

use circuit $C(a)$ for testing orthogonality of a with any $b \in B \subseteq\{0,1\}^{d}$
evaluate $C(a)$ at each $a \in A$
d inputs, size $O(d n)$, degree $\leq 2 d$
YES-instance: all paths accept NO-instance: at least one path rejects ...with high probability

1) compute polynomials $R_{1}(X), \ldots, R_{k}(X)$ such that $R_{i}(j)=z_{j}[i]$
by polynomial interpolation
new goal: evaluate univariate circuit $C^{\prime}(X)=C\left(R_{1}(X), \ldots, R_{k}(X)\right)$ on $X=1, \ldots, n$
C^{\prime} has size $\leq O(s+k n)$ and depth $\leq d n$
2) guess a polynomial $Q(X)$ of degree at most $d n$
3) check that $Q(X)=C\left(R_{1}(X), \ldots, R_{k}(X)\right)$
by "polynomial identity testing", if not: ACCEPT

$$
\tilde{O}(s+k n+d n)
$$

4) multipoint evaluate $Q(X)$ on $X=1, \ldots, n$ and return these values

Co-Nondet. Algorithm for OV

NO-instance: If we correctly guess $Q(X)$ then the identity test works with prob. 1 and we correctly report non-existence of an orthogonal pair = REJECT

YES-instance: If we correctly guess $Q(X)$ then we ACCEPT
If we wrongly guess $Q(X)$ then identity test fails with prob. $1-n^{-\Omega(1)}$ for any guess: we ACCEPT with probability $1-n^{-\Omega(1)}$

1) compute polynomials $R_{1}(X), \ldots, R_{k}(X)$ such that $R_{i}(j)=z_{j}[i]$
by polynomial interpolation
new goal: evaluate univariate circuit $C^{\prime}(X)=C\left(R_{1}(X), \ldots, R_{k}(X)\right)$ on $X=1, \ldots, n$
C^{\prime} has size $\leq O(s+k n)$ and depth $\leq d n$
2) guess a polynomial $Q(X)$ of degree at most $d n$
3) check that $Q(X)=C\left(R_{1}(X), \ldots, R_{k}(X)\right)$ by "polynomial identity testing", if not: ACCEPT

$$
\tilde{O}(s+k n+d n)
$$

4) multipoint evaluate $Q(X)$ on $X=1, \ldots, n$ and return these values

Conclusion

Nondeterministic SETH: k-SAT has no no $O\left(2^{(1-\varepsilon) n}\right)$ co-nondet. algorithm
No randomization allowed
If it holds, then there is no deterministic reduction from SETH to 3SUM, since 3SUM has a $\tilde{O}\left(n^{3 / 2}\right)$ co-nondeterministic algorithm

This is the only tool for ruling out reductions!
„Randomized Nondeterministic SETH": is wrong!
We have seen a $\widetilde{O}(d n)$ co-nondeterministic algorithm for OV
uses many tools for computing with polynomials and arithmetic circuits

