
Complexity Theory of

Polynomial-Time Problems

Sebastian Krinninger

(Based on reading group talk of Pavel Kolev)

Lecture 12: More on OMv

Online Boolean Matrix Multiplication

July 22, 2016 2/19

Input: Boolean 𝑛 × 𝑛 matrix 𝑀
Online sequence of vectors 𝑣1, … , 𝑣𝑛 ∈ 0,1

𝑛

Output: 𝑀𝑣𝑖 before 𝑣𝑖+1 arrives (“query”)

× =

𝑛

𝑛

𝑀 𝑣𝑖 𝑀𝑣𝑖

OMv Conjecture: No algorithm with total time 𝑂 𝑛3−𝜖 (for some 𝜖 > 0).
(not even with polynomial-time preprocessing)

[Henzinger et al.’15]

A New Upper Bound

July 22, 2016 3/19

Theorem: OMv can be solved in total time 𝑛3/2Ω(log 𝑛).

[Larsen, Williams’16]

Amortized time per query: 𝑛2/2Ω(log 𝑛)

for sequence of ≥ 2Ω(log 𝑛) queries

(and no preprocessing time)

Lemma: If OuMv can be solved in total time 𝑂(𝑛3/𝑓(𝑛)), then

OMv can be solved in total time 𝑂(𝑛3/ 𝑓(𝑛)).

[Henzinger et al.’15]

This application: 𝑓 𝑛 = 𝑛2/2Ω(log 𝑛)

OuMv: Vector-Matrix-Vector Multiplication

July 22, 2016 4/19

Notation:

• 𝑈 ⊆ 𝑛 : set of indices with 1-entries in 𝑢
• 𝑉 ⊆ 𝑛 : set of indices with 1-entries in 𝑣
• 𝑀 𝑈 × 𝑉 : submatrix of 𝑀 induced by 𝑈 and 𝑉

1-entries of 𝑣

1-entries of 𝑢

Observation: 𝑢𝑀𝑣 iff submatrix of 𝑀 induced by 𝑢 and 𝑣 contains a 1

Data Structures

July 22, 2016 5/19

• 𝐶 ⊆ 𝑛 × 𝑛
• List 𝐿 of triples 𝑈𝑘 , 𝑉𝑘 , 𝑆𝑘 s.t.

• 𝑈𝑘 ⊆ 𝑛
• 𝑉𝑘 ⊆ 𝑛
• 𝑆𝑘 ⊆ 𝑛 × 𝑛

Invariants:

• 𝑆𝑘 contains all pairs 𝑖, 𝑗 with 𝑖 ∈ 𝑈𝑘 , 𝑗 ∈ 𝑉𝑘 s.t. 𝑀 𝑖, 𝑗 = 1
Intuition: (𝑈𝑘 , 𝑉𝑘) represents expensive query from the past

• 𝐶 contains all pairs 𝑖, 𝑗 that appear in no 𝑈𝑘 × 𝑉𝑘 of 𝐿
Indicator matrix 𝐷 s.t. 𝐷 𝑖, 𝑗 = 1 iff 𝑖, 𝑗 ∈ 𝐶
Intuition: 𝐶 contains unseen pairs

The Core Problem

July 22, 2016 6/19

Unseen Pairs: Given 𝑈 and 𝑉, such that 𝑈 × 𝑉 ∩ 𝐶 ≤ 𝐾.

Determine 𝑊 ≔ 𝑈 × 𝑉 ∩ 𝐶

Idea: Reduce to listing orthogonal vectors:

At some point in algorithm: want to list all unseen pairs

Define vectors 𝑢1, … , 𝑢𝑛, 𝑣1, … , 𝑣𝑛 of dimension 𝑑 ≔ |𝐿|
For every 𝑖 ∈ 𝑛 : 𝑢𝑖 ∈ 0,1

𝑑 s.t. 𝑢𝑖 𝑘 = 1 iff 𝑖 ∈ 𝑈𝑘
For every 𝑗 ∈ 𝑛 : 𝑣𝑗 ∈ 0,1

𝑑 s.t. 𝑣𝑗 𝑘 = 1 iff 𝑗 ∈ 𝑉𝑘

𝑖, 𝑗 ∈ 𝑈 × 𝑉 ∩ 𝐶 iff 𝑖, 𝑗 ∈ 𝑈 × 𝑉 and ¬∃𝑘: 𝑖, 𝑗 ∈ 𝑈𝑘 × 𝑉𝑘
iff 𝑖, 𝑗 ∈ 𝑈 × 𝑉 and < 𝑢𝑖 , 𝑣𝑗 >= 0

Observation: To compute 𝑈 × 𝑉 ∩ 𝐶 we can list all ≤ 𝐾 pairs

𝑖, 𝑗 ∈ 𝑈 × 𝑉 such that 𝑢𝑖 and 𝑣𝑗 are orthogonal.

𝐶 contains all pairs 𝑖, 𝑗 that appear in no 𝑈𝑘 × 𝑉𝑘 of 𝐿

Reminder: OV Algorithm

July 22, 2016 7/19

Set 𝐴 ≔ 𝑢1, … , 𝑢𝑛 , 𝐵 ≔ 𝑣1, … , 𝑣𝑛

1. Divide 𝐴 and 𝐵 into 𝑞 =
𝑛

𝑠
subsets of size ≤ 𝑠:

𝐴1, … , 𝐴𝑞 and 𝐵1, … , 𝐵𝑞
2. Construct polynomial

𝑃(𝑎1 1 ,…𝑎1 𝑑 ,… , 𝑎𝑠 1 … , 𝑎𝑠 𝑑 , 𝑏1 1 ,… 𝑏1 𝑑 ,… , 𝑏𝑠 1 … , 𝑏𝑠 1)

𝑃 𝐴𝑖 , 𝐵𝑗 = 1 if and only if 𝐴𝑖, 𝐵𝑗 contains orthogonal pair

…with high probability

3. For every pair of subsets 𝐴𝑖, 𝐵𝑗: evaluate 𝑃 on 𝐴𝑖, 𝐵𝑗

…simultaneously! → 𝑂
𝑛2

𝑠2
polylog(𝑛)

4. Return “yes” if some 𝐴𝑖, 𝐵𝑗 contains orthogonal pair, “no” otherwise

New:

(*) Requires tighter analysis than provided in lecture 3 (where we had 𝑠 = 2𝜖 log 𝑛/ log 𝑑)

To bound #monomials, set 𝑠 = 2𝜖 log 𝑛 for sufficiently small 𝜖 (*)

For every pair 𝐴𝑖, 𝐵𝑗 containing orthogonal pair:

Report all orthogonal pairs by checking for every corresponding

pair (𝑖, 𝑗) if 𝑖, 𝑗 ∈ 𝐶 (constant time lookup in matrix 𝐷!)

𝑂 𝐾𝑠2

Variant of Orthogonal Vectors

July 22, 2016 8/19

OV Listing

with Oracle:
Given two sets of vectors 𝑈 ⊆ 0,1 𝑑, 𝑉 ⊆ 0,1 𝑑 containing at

most 𝐾 orthogonal pairs and an oracle supporting 𝑂(1) time

access to < 𝑢, 𝑣 > for any pair 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉, report all

orthogonal pairs in 𝑈 × 𝑉.

Time: 𝑂
𝑛2

𝑠2
polylog 𝑛 + 𝐾𝑠2

Note: Without oracle we just get 𝑂
𝑛2

𝑠2
𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛 + 𝐾𝑠2𝑑 . This

is not good enough in our application where we set 𝐾 = 𝑛2/𝑑.

Algorithm Overview

July 22, 2016 9/19

1. Check for small submatrix

2. Check for dense submatrix

3. Check among previously seen pairs

4. Estimate number of unseen pairs

5. (a) If estimate is high, enumerate pairs and mark as seen

6. (b) If estimate is low, list unseen pairs

Parameters:

• 𝑦 ≔ 𝑛3/2

• 𝑧 ≔ 2𝛿 log 𝑛

Small Submatrix

July 22, 2016 10/19

1. Check for small submatrix

If 𝑈 × 𝑉 <
𝑛2

𝑧
:

Try all 𝑖 ∈ 𝑈, 𝑗 ∈ 𝑉
If 𝑀 𝑖, 𝑗 = 1 for some pair, then return 1

Dense Submatrix

July 22, 2016 11/19

2. Check for dense submatrix

Sample 𝑦 uniform random pairs 𝑖, 𝑗 ∈ 𝑈 × 𝑉
If 𝑀 𝑖, 𝑗 = 1 for some pair, then return 1

Claim: If 𝑀 𝑈 × 𝑉 has ≥
𝑐𝑛2 log 𝑛

𝑦
1-entries, then 𝑀 𝑖, 𝑗 = 1

for some sample pair with probability at least 1 −
1

𝑛𝑐
.

Probability that a sampled pair 𝑖, 𝑗 is a 1-entry of 𝑀 𝑈 × 𝑉 :
#1 entries in𝑀 𝑈×𝑉

𝑈×𝑉
≥
𝑐𝑛2 log 𝑛

𝑦 𝑈×𝑉
≥
𝑐𝑛2 log 𝑛

𝑦 𝑛2
=
𝑐 log 𝑛

𝑦

Probability that no sampled pair 𝑖, 𝑗 is a 1-entry of 𝑀 𝑈 × 𝑉 :

1 −
𝑐 log𝑛

𝑦

𝑦

= 1 −
𝑐 log 𝑛

𝑦

𝑦
𝑐 log 𝑛

𝑐 log 𝑛

≤
1

𝑒

𝑐 log 𝑛

=
1

𝑛𝑐

Proof:

Fact: lim 1 −
1

𝑥

𝑥
= 𝑒

Previously Seen Pairs

July 22, 2016 12/19

3. Check among pairs seen before

For all triples 𝑈𝑘 , 𝑉𝑘 , 𝑆𝑘 in 𝐿 and all pairs 𝑖, 𝑗 ∈ 𝑆𝑘:
If 𝑖, 𝑗 ∈ 𝑈 × 𝑉, then return 1

Size Estimation

July 22, 2016 13/19

4. Estimate number of unseen pairs

Goal: estimate size of 𝑊 = 𝑈 × 𝑉 ∩ 𝐶

𝑅 ≔ sample of
𝑛2

𝑧
uniform random pairs from 𝐶

𝑏 ≔
𝑅∩ 𝑈×𝑉

𝑅
⋅ |𝐶|

Efficient sampling from 𝐶: keep 𝐶 in tree data structure (or similar)

Claim: 𝐸 𝑏 = |𝑊|

Proof: Random variables: 𝑋𝑖 = 1 if 𝑖-th sample of 𝑅 in 𝑈 × 𝑉
𝑋𝑖 = 0 otherwise

Pr 𝑋𝑖 = 1 =
|𝑊|

|𝐶|

𝐸 𝑏 =
|𝐶|

|𝑅|
⋅ 𝐸 𝑅 ∩ 𝑈 × 𝑉 =

𝐶

𝑅
⋅ 𝐸

𝑖=1

𝑅

𝑋𝑖 =
𝐶

𝑅
⋅

𝑖=1

𝑅

𝐸 𝑋𝑖

=
𝐶

𝑅
⋅

𝑖=1

𝑅
𝑊

𝐶
= |𝑊|

Chernoff Bound

July 22, 2016 14/19

Theorem: Let 𝑋1, … , 𝑋𝑡 be a sequence of 𝑡 independent Bernoulli trials

s.t. Pr 𝑋𝑖 = 1 = 𝑝 and Pr 𝑋𝑖 = 0 = 1 − 𝑝 and 𝜇 ≔ 𝐸 𝑖=1
𝑡 𝑋𝑖 .

1. For every 𝛿 > 0:

Pr
𝑖=1

𝑡

𝑋𝑖 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2

2 + 𝛿
𝜇

2. For every 𝛿 ∈ 0,1 :

Pr
𝑖=1

𝑡

𝑋𝑖 ≤ 1 − 𝛿 𝜇 ≤ exp −
𝛿2

2
𝜇

Applying Chernoff Bound

July 22, 2016 15/19

Theorem: Let 𝑋1, … , 𝑋𝑡 be a sequence of 𝑡 independent Bernoulli trials

s.t. Pr 𝑋𝑖 = 1 = 𝑝 and Pr 𝑋𝑖 = 0 = 1 − 𝑝 and 𝜇 ≔ 𝐸 𝑖=1
𝑡 𝑋𝑖 .

2. For every 𝛿 ∈ 0,1 :

Pr
𝑖=1

𝑡

𝑋𝑖 ≤ 1 − 𝛿 𝜇 ≤ exp −
𝛿2

2
𝜇

Claim: Let 𝑊 = 𝑈 × 𝑉 ∩ 𝐶. If |𝑊| >
4𝑛2

𝑧
, then 𝑏 >

2𝑛2

𝑧
whp.

𝜇 = 𝐸
𝑖=1

𝑡

𝑋𝑖 =
𝑅 ⋅ |𝑊|

|𝐶|
=
𝑛2

𝑧
⋅
𝑊

𝐶
≥
4𝑛4

𝑧2 𝐶
≥
4𝑛2

𝑧2
≥ 4 log2 𝑛 (𝑧 ≤

𝑛

log 𝑛
)

Pr 𝑏 <
2𝑛2

𝑧
= Pr 𝑅 ∩ 𝑈 × 𝑉 <

2𝑛2 𝑅

𝑧 𝐶
= Pr

𝑖=1

𝑡

𝑋𝑖 <
2𝑛2 𝑅

𝑧 𝐶

≤ Pr
𝑖=1

𝑡

𝑋𝑖 <
1

2
⋅
𝑅 ⋅ 𝑊

𝐶
= Pr

𝑖=1

𝑡

𝑋𝑖 < 1 −
1

2
⋅ 𝜇

≤ exp −
1

8
𝜇 ≤exp −

log2 𝑛

2
≤exp − log𝑛 =

1

𝑛

Applying Chernoff Bound

July 22, 2016 16/19

Theorem: Let 𝑋1, … , 𝑋𝑡 be a sequence of 𝑡 independent Bernoulli trials

with Pr 𝑋𝑖 = 1 = 𝑝 and Pr 𝑋𝑖 = 0 = 1 − 𝑝 .

1. For every 𝛿 > 0 and 𝜇′ ≥ 𝜇:

Pr
𝑖=1

𝑡

𝑋𝑖 ≥ 1 + 𝛿 𝜇′ ≤ exp −
𝛿2

2 + 𝛿
𝜇′

Claim: Let 𝑊 = 𝑈 × 𝑉 ∩ 𝐶. If 𝑊 ≤
𝑛2

𝑧
, then 𝑏 <

2𝑛2

𝑧
whp

Pr 𝑏 ≥
2𝑛2

𝑧
= Pr

𝑖=1

𝑡

𝑋𝑖 ≥
2𝑛2 𝑅

𝑧 𝐶
= Pr

𝑖=1

𝑡

𝑋𝑖 ≥ 2𝜇
′

≤ exp −
1

3
𝜇′ ≤

1

𝑛

𝜇′ ≔
𝑛2

𝑧
⋅
𝑅

𝐶
≥
𝑅

𝑧
=
𝑛2

𝑧2
≥ log2 𝑛

𝜇 = 𝐸
𝑖=1

𝑡

𝑋𝑖 =
𝑅 ⋅ |𝑊|

|𝐶|
≤
𝑛2

𝑧
⋅
𝑅

𝐶
= 𝜇′

(𝑧 ≤
𝑛

log 𝑛
)

Exhaustive Search

July 22, 2016 17/19

5. (a) If estimate is high, enumerate pairs and mark as seen

If 𝑏 >
2𝑛2

𝑧
:

• Compute answer to query 𝑈, 𝑉
• Determine 𝑆 = 𝑖, 𝑗 ∈ 𝑈 × 𝑉 ∣ 𝑀 𝑖, 𝑗 = 1

𝑆 ≤
𝑐𝑛2 log 𝑛

𝑦
(with high probability)

• Determine 𝑊 = 𝑈 × 𝑉 ∩ 𝐶

If 𝑊 <
𝑛2

𝑧
or 𝑆 >

𝑐𝑛2 log 𝑛

𝑌
: immediately return answer to query

(happens with low probability)

• Add triple (𝑈, 𝑉, 𝑆) to 𝐿
• Remove all 𝑖, 𝑗 ∈ 𝑈 × 𝑉 from 𝐶

(Zero out entries of 𝐷)

• Return answer to query 𝑈, 𝑉

List Unseen Pairs

July 22, 2016 18/19

6. (b) If estimate is low, list unseen pairs

If 𝑏 ≤
2𝑛2

𝑧
:

• Determine 𝑊 = 𝑈 × 𝑉 ∩ 𝐶

𝑊 ≤
4𝑛2

𝑧
(with high probability)

• Use OV Listing algorithm

• Check if there is 𝑖, 𝑗 ∈ 𝑊 s.t. 𝑀 𝑖, 𝑗 = 1

Running Time Analysis

July 22, 2016 19/19

Crucial observations:

1. Every time a triple 𝑈, 𝑉, 𝑆 is added to the list, 𝐶 is reduced by

at least
𝑛2

𝑧

⇒ length of list: 𝐿 ≤
𝑛2

𝑛2/𝑧
= 𝑧

2. Every time a triple 𝑈, 𝑉, 𝑆 is added to the list, we have

𝑆 ≤ 𝑂
𝑛2 log 𝑛

𝑦

First Part of Algorithm

July 22, 2016 20/19

1. Check for small submatrix

If 𝑈 × 𝑉 <
𝑛2

𝑧
:

Try all 𝑖 ∈ 𝑈, 𝑗 ∈ 𝑉
If 𝑀 𝑖, 𝑗 = 1 for some pair, then return 1

2. Check for dense submatrix

Sample 𝑦 uniform random pairs 𝑖, 𝑗 ∈ 𝑈 × 𝑉
If 𝑀 𝑖, 𝑗 = 1 for some pair, then return 1

Otherwise: Submatrix 𝑀 𝑈 × 𝑉 has ≤
𝑐𝑛2 log 𝑛

𝑦
1-entries

3. Check among pairs seen before

For all triples 𝑈𝑘 , 𝑉𝑘 , 𝑆𝑘 in 𝐿 and all pairs 𝑖, 𝑗 ∈ 𝑆𝑘:
If 𝑖, 𝑗 ∈ 𝑈 × 𝑉, then return 1

𝑂
𝑛2

𝑧

𝑂 𝑦

𝑂 𝑘=1
|𝐿|
𝑆𝑘 ≤ 𝑂 𝑘=1

𝐿 𝑛2 log 𝑛

𝑦
≤ 𝑂

𝑧 𝑛2 log 𝑛

𝑦

4. Estimate number of unseen pairs

𝑅 ≔ sample of
𝑛2

𝑧
uniform random pairs from 𝐶

𝑏 ≔
𝑅∩ 𝑈×𝑉

𝑅
⋅ |𝐶|

𝑂
𝑛2

𝑧

Exhaustive Search

July 22, 2016 21/19

5. (a) If estimate is high, enumerate pairs and mark as seen

If 𝑏 >
2𝑛2

𝑧
:

• Compute answer to query 𝑈, 𝑉
• Determine 𝑆 = 𝑖, 𝑗 ∈ 𝑈 × 𝑉 ∣ 𝑀 𝑖, 𝑗 = 1

𝑆 ≤
𝑐𝑛2 log 𝑛

𝑦
(with high probability)

• Determine 𝑊 = 𝑈 × 𝑉 ∩ 𝐶

If 𝑊 <
𝑛2

𝑧
or 𝑆 >

𝑐𝑛2 log 𝑛

𝑌
: immediately return answer to query

(happens with low probability)

• Add triple (𝑈, 𝑉, 𝑆) to 𝐿
• Remove all 𝑖, 𝑗 ∈ 𝑈 × 𝑉 from 𝐶

(Zero out entries of 𝐷)

• Return answer to query 𝑈, 𝑉

𝑂 𝑛2

Expensive, but can be amortized!

Executed at most 𝑧 times

List Unseen Pairs

July 22, 2016 22/19

6. (b) If estimate is low, list unseen pairs

If 𝑏 ≤
2𝑛2

𝑧
:

• Determine 𝑊 = 𝑈 × 𝑉 ∩ 𝐶

𝑊 ≤
4𝑛2

𝑧
(with high probability)

• Use OV Listing algorithm with table-lookup oracle

• Check if there is 𝑖, 𝑗 ∈ 𝑊 s.t. 𝑀 𝑖, 𝑗 = 1

𝑂
𝑛

𝑠

2

+
𝑛2

𝑧
⋅ 𝑠2

Total Running Time

July 22, 2016 23/19

Parameter choice:

• 𝑦 = 𝑛3/2

• 𝑧 = 2𝛿 log 𝑛 (for some 𝛿 > 0)

• 𝑠 = 2𝜖𝛿 log 𝑛 (for sufficiently small 𝜖 > 0)

𝑂 𝑞 ⋅
𝑛2

𝑧
+ 𝑦 +

𝑧 𝑛2

𝑦
+
𝑛

𝑠

2

+
𝑛2

𝑧
⋅ 𝑠2 polylog 𝑛 + 𝑧𝑛2

Check for small

submatrix /

Size estimation

Check for dense

submatrix

Check among

previously seen

pairs

Exhaustive search

List unseen pairs

𝑞: number of queries

⇒ amortized 𝑂 𝑛2/2𝛿 log 𝑛 per query

Summary

July 22, 2016 24/19

1. Algorithmic use of OMv to OuMv reduction

2. Essentially: OuMv to OV reduction

3. 3 sources of randomization:

• Hitting set

• Size estimation

• Probabilistic polynomial

