$\square \square \square \square \square \begin{aligned} & \text { max planck institut } \\ & \text { informatik }\end{aligned}$

Complexity Theory of Polynomial-Time Problems

Lecture 12: More on OMv

Sebastian Krinninger
(Based on reading group talk of Pavel Kolev)

Online Boolean Matrix Multiplication

Input: Boolean $n \times n$ matrix M Online sequence of vectors $v_{1}, \ldots, v_{n} \in\{0,1\}^{n}$

Output: $M v_{i}$ before v_{i+1} arrives

OMv Conjecture: No algorithm with total time $O\left(n^{3-\epsilon}\right)$ (for some $\epsilon>0$). (not even with polynomial-time preprocessing)

A New Upper Bound

Theorem: $\quad \mathrm{OMv}$ can be solved in total time $n^{3} / 2^{\Omega(\sqrt{\log n})}$.
[Larsen, Williams'16]

Amortized time per query: $n^{2} / 2^{\Omega(\sqrt{\log n})}$ for sequence of $\geq 2^{\Omega(\sqrt{\log n})}$ queries (and no preprocessing time)

Lemma: If OuMv can be solved in total time $O\left(n^{3} / f(n)\right)$, then OMv can be solved in total time $O\left(n^{3} / \sqrt{f(n)}\right)$.
[Henzinger et al.'15]
This application: $f(n)=n^{2} / 2^{\Omega(\sqrt{\log n})}$

OuMv: Vector-Matrix-Vector Multiplication

Observation: $\quad u M v$ iff submatrix of M induced by u and v contains a 1

Notation:

- $U \subseteq[n]$: set of indices with 1-entries in u
- $V \subseteq[n]$: set of indices with 1-entries in v
- $M[U \times V]$: submatrix of M induced by U and V

Data Structures

－$C \subseteq[n] \times[n]$
－List L of triples $\left(U_{k}, V_{k}, S_{k}\right)$ s．t．
－$U_{k} \subseteq[n]$
－$V_{k} \subseteq[n]$
－$\quad S_{k} \subseteq[n] \times[n]$

Invariants：

－S_{k} contains all pairs (i, j) with $i \in U_{k}, j \in V_{k}$ s．t．$M[i, j]=1$ Intuition：$\left(U_{k}, V_{k}\right)$ represents expensive query from the past
－$\quad C$ contains all pairs (i, j) that appear in no $U_{k} \times V_{k}$ of L Indicator matrix D s．t．$D[i, j]=1$ iff $(i, j) \in C$ Intuition：C contains unseen pairs

The Core Problem

At some point in algorithm: want to list all unseen pairs

Unseen Pairs: Given U and V, such that $|(U \times V) \cap C| \leq K$. Determine $W:=(U \times V) \cap C$

Idea: Reduce to listing orthogonal vectors:
C contains all pairs (i, j) that appear in no $U_{k} \times V_{k}$ of L
Define vectors $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$ of dimension $d:=|L|$
For every $i \in[n]: u_{i} \in\{0,1\}^{d}$ s.t. $u_{i}[k]=1$ iff $i \in U_{k}$
For every $j \in[n]: v_{j} \in\{0,1\}^{d}$ s.t. $v_{j}[k]=1$ iff $j \in V_{k}$
$(i, j) \in(U \times V) \cap C$ iff $(i, j) \in(U \times V)$ and $\neg \exists k:(i, j) \in U_{k} \times V_{k}$

$$
\text { iff }(i, j) \in(U \times V) \text { and }\left\langle u_{i}, v_{j}>=0\right.
$$

Observation: To compute ($U \times V$) $\cap C$ we can list all $\leq K$ pairs $(i, j) \in(U \times V)$ such that u_{i} and v_{j} are orthogonal.

Reminder: OV Algorithm

Set $A:=\left\{u_{1}, \ldots, u_{n}\right\}, B:=\left\{v_{1}, \ldots, v_{n}\right\}$

1. Divide A and B into $q=\left\lceil\frac{n}{s}\right\rceil$ subsets of size $\leq s$:

$$
A_{1}, \ldots, A_{q} \text { and } B_{1}, \ldots, B_{q}
$$

2. Construct polynomial

$$
P\left(a_{1}[1], \ldots a_{1}[d], \ldots, a_{s}[1] \ldots, a_{s}[d], b_{1}[1], \ldots b_{1}[d], \ldots, b_{s}[1] \ldots, b_{s}[1]\right)
$$

$P\left(A_{i}, B_{j}\right)=1$ if and only if A_{i}, B_{j} contains orthogonal pair ...with high probability
3. For every pair of subsets A_{i}, B_{j} : evaluate P on A_{i}, B_{j}

$$
\ldots \text { simultaneously! } \rightarrow O\left(\frac{n^{2}}{s^{2}} \text { polylog}(n)\right)
$$

4. Return "yes" if some A_{i}, B_{j} contains orthogonal pair, "no" otherwise

To bound \#monomials, set $s=2^{\epsilon \log n}$ for sufficiently small ϵ (*)

New:

For every pair A_{i}, B_{j} containing orthogonal pair:
Report all orthogonal pairs by checking for every corresponding pair (i, j) if $(i, j) \in C$ (constant time lookup in matrix $D!$)

Variant of Orthogonal Vectors

OV Listing Given two sets of vectors $U \subseteq\{0,1\}^{d}, V \subseteq\{0,1\}^{d}$ containing at with Oracle: most K orthogonal pairs and an oracle supporting $O(1)$ time access to $\langle u, v\rangle$ for any pair $u \in U$ and $v \in V$, report all orthogonal pairs in $U \times V$.

Time: $O\left(\frac{n^{2}}{s^{2}} \operatorname{polylog}(n)+K s^{2}\right)$

Note: Without oracle we just get $O\left(\frac{n^{2}}{s^{2}}\right.$ polylog $\left.(n)+K s^{2} d\right)$. This is not good enough in our application where we set $K=n^{2} / d$.

Algorithm Overview

1. Check for small submatrix
2. Check for dense submatrix
3. Check among previously seen pairs
4. Estimate number of unseen pairs
5. (a) If estimate is high, enumerate pairs and mark as seen
6. (b) If estimate is low, list unseen pairs

Parameters:

- $y:=n^{3 / 2}$
- $Z:=2^{\delta \sqrt{\log n}}$

Small Submatrix

1. Check for small submatrix

If $|U| \times|V|<\frac{n^{2}}{z}$:
Try all $i \in U, j \in V$
If $M[i, j]=1$ for some pair, then return 1

Dense Submatrix

2. Check for dense submatrix

Sample y uniform random pairs $(i, j) \in U \times V$
If $M[i, j]=1$ for some pair, then return 1
Claim: If $M[U \times V]$ has $\geq \frac{c n^{2} \log n}{y} 1$-entries, then $M[i, j]=1$ for some sample pair with probability at least $1-\frac{1}{n^{c}}$.

Proof:

Probability that a sampled pair (i, j) is a 1-entry of $M[U \times V]$:
$\frac{\# 1 \text { entries in } M[U \times V]}{|U \times V|} \geq \frac{c n^{2} \log n}{y|U \times V|} \geq \frac{c n^{2} \log n}{y n^{2}}=\frac{c \log n}{y}$
Probability that no sampled pair (i, j) is a 1-entry of $M[U \times V]$:

$$
\begin{aligned}
\left(1-\frac{c \log n}{y}\right)^{y}= & \left(\left(1-\frac{c \log n}{y}\right)^{\frac{y}{c \log n}}\right)^{c \log n} \leq\left(\frac{1}{e}\right)^{c \log n}=\frac{1}{n^{c}} \\
& \text { Fact: } \lim \left(1-\frac{1}{x}\right)^{x}=e
\end{aligned}
$$

Previously Seen Pairs

3. Check among pairs seen before

For all triples (U_{k}, V_{k}, S_{k}) in L and all pairs $(i, j) \in S_{k}$: If $(i, j) \in U \times V$, then return 1

Size Estimation

4. Estimate number of unseen pairs

Goal: estimate size of $W=(U \times V) \cap C$
$R:=$ sample of $\frac{n^{2}}{z}$ uniform random pairs from C
$b:=\frac{|R \cap(U \times V)|}{|R|} \cdot|C|$
Efficient sampling from C : keep C in tree data structure (or similar)

Claim: $\quad E[b]=|W|$

Proof: Random variables: $X_{i}=1$ if i-th sample of R in $U \times V$ $X_{i}=0$ otherwise
$\operatorname{Pr}\left[X_{i}=1\right]=\frac{|W|}{|C|}$

$$
\begin{aligned}
E[b] & =\frac{|C|}{|R|} \cdot E[|R \cap(U \times V)|]=\frac{|C|}{|R|} \cdot E\left[\sum_{i=1}^{|R|} X_{i}\right]=\frac{|C|}{|R|} \cdot \sum_{i=1}^{|R|} E\left[X_{i}\right] \\
& =\frac{|C|}{|R|} \cdot \sum_{i=1}^{|R|} \frac{|W|}{|C|}=|W|
\end{aligned}
$$

Chernoff Bound

Theorem: Let X_{1}, \ldots, X_{t} be a sequence of t independent Bernoulli trials s.t. $\operatorname{Pr}\left[X_{i}=1\right]=p$ and $\operatorname{Pr}\left[X_{i}=0\right]=1-p$ and $\mu:=E\left[\sum_{i=1}^{t} X_{i}\right]$.

1. For every $\delta>0$:

$$
\operatorname{Pr}\left[\sum_{i=1}^{t} X_{i} \geq(1+\delta) \mu\right] \leq \exp \left(-\frac{\delta^{2}}{2+\delta} \mu\right)
$$

2. For every $\delta \in[0,1]$:

$$
\operatorname{Pr}\left[\sum_{i=1}^{t} X_{i} \leq(1-\delta) \mu\right] \leq \exp \left(-\frac{\delta^{2}}{2} \mu\right)
$$

Applying Chernoff Bound

Theorem: Let X_{1}, \ldots, X_{t} be a sequence of t independent Bernoulli trials s.t. $\operatorname{Pr}\left[X_{i}=1\right]=p$ and $\operatorname{Pr}\left[X_{i}=0\right]=1-p$ and $\mu:=E\left[\sum_{i=1}^{t} X_{i}\right]$.
2. For every $\delta \in[0,1]$:

$$
\operatorname{Pr}\left[\sum_{i=1}^{t} X_{i} \leq(1-\delta) \mu\right] \leq \exp \left(-\frac{\delta^{2}}{2} \mu\right)
$$

Claim: Let $W=(U \times V) \cap C$. If $|W|>\frac{4 n^{2}}{z}$, then $b>\frac{2 n^{2}}{z}$ whp.

$$
\begin{aligned}
\mu= & E\left[\sum_{i=1}^{t} X_{i}\right]=\frac{|R| \cdot|W|}{|C|}=\frac{n^{2}}{z} \cdot \frac{|W|}{|C|} \geq \frac{4 n^{4}}{z^{2}|C|} \geq \frac{4 n^{2}}{z^{2}} \geq 4 \log ^{2} n \quad\left(z \leq \frac{n}{\log n}\right) \\
\operatorname{Pr}[b & \left.<\frac{2 n^{2}}{z}\right]=\operatorname{Pr}\left[|R \cap(U \times V)|<\frac{2 n^{2}|R|}{z|C|}\right]=\operatorname{Pr}\left[\sum_{i=1}^{t} X_{i}<\frac{2 n^{2}|R|}{z|C|}\right] \\
& \leq \operatorname{Pr}\left[\sum_{i=1}^{t} X_{i}<\frac{1}{2} \cdot \frac{|R| \cdot|W|}{|C|}\right]=\operatorname{Pr}\left[\sum_{i=1}^{t} X_{i}<\left(1-\frac{1}{2}\right) \cdot \mu\right] \\
& \leq \exp \left(-\frac{1}{8} \mu\right) \leq \exp \left(-\frac{\log ^{2} n}{2}\right) \leq \exp (-\log n)=\frac{1}{n}
\end{aligned}
$$

Applying Chernoff Bound

Theorem: Let X_{1}, \ldots, X_{t} be a sequence of t independent Bernoulli trials with $\operatorname{Pr}\left[X_{i}=1\right]=p$ and $\operatorname{Pr}\left[X_{i}=0\right]=1-p$.

1. For every $\delta>0$ and $\mu^{\prime} \geq \mu$:

$$
\operatorname{Pr}\left[\sum_{i=1}^{t} X_{i} \geq(1+\delta) \mu^{\prime}\right] \leq \exp \left(-\frac{\delta^{2}}{2+\delta} \mu^{\prime}\right)
$$

Claim: Let $W=(U \times V) \cap C$. If $|W| \leq \frac{n^{2}}{z}$, then $b<\frac{2 n^{2}}{z}$ whp

$$
\begin{gathered}
\mu^{\prime}:=\frac{n^{2}}{z} \cdot \frac{|R|}{|C|} \geq \frac{|R|}{z}=\frac{n^{2}}{z^{2}} \geq \log ^{2} n \quad\left(z \leq \frac{n}{\log n}\right) \\
\mu=E\left[\sum_{i=1}^{t} X_{i}\right]=\frac{|R| \cdot|W|}{|C|} \leq \frac{n^{2}}{z} \cdot \frac{|R|}{|C|}=\mu^{\prime} \\
\operatorname{Pr}\left[b \geq \frac{2 n^{2}}{z}\right]=\operatorname{Pr}\left[\sum_{i=1}^{t} X_{i} \geq \frac{2 n^{2}|R|}{z|C|}\right]=\operatorname{Pr}\left[\sum_{i=1}^{t} X_{i} \geq 2 \mu^{\prime}\right] \\
\leq \exp \left(-\frac{1}{3} \mu^{\prime}\right) \leq \frac{1}{n} \\
\text { II maxp prank instiuu } \\
\text { inderanaik }
\end{gathered}
$$

Exhaustive Search

5. (a) If estimate is high, enumerate pairs and mark as seen

If $b>\frac{2 n^{2}}{z}$:

- Compute answer to query (U, V)
- Determine $S=\{(i, j) \in U \times V \mid M[i, j]=1\}$
$|S| \leq \frac{c n^{2} \log n}{y}$ (with high probability)
- Determine $W=(U \times V) \cap C$

If $|W|<\frac{n^{2}}{z}$ or $|S|>\frac{c n^{2} \log n}{Y}$: immediately return answer to query
(happens with low probability)

- Add triple (U, V, S) to L
- Remove all $(i, j) \in U \times V$ from C
(Zero out entries of D)
- Return answer to query (U, V)

List Unseen Pairs

6．（b）If estimate is low，list unseen pairs
If $b \leq \frac{2 n^{2}}{z}$ ：
－Determine $W=(U \times V) \cap C$

$$
|W| \leq \frac{4 n^{2}}{z}(\text { with high probability })
$$

－Use OV Listing algorithm
－Check if there is $(i, j) \in W$ s．t．$M[i, j]=1$

Running Time Analysis

Crucial observations:

1. Every time a triple (U, V, S) is added to the list, C is reduced by at least $\frac{n^{2}}{z}$
\Rightarrow length of list: $|L| \leq \frac{n^{2}}{n^{2} / z}=z$
2. Every time a triple (U, V, S) is added to the list, we have $|S| \leq O\left(\frac{n^{2} \log n}{y}\right)$

First Part of Algorithm

1. Check for small submatrix

If $|U| \times|V|<\frac{n^{2}}{z}$:
Try all $i \in U, j \in V$
If $M[i, j]=1$ for some pair, then return 1
2. Check for dense submatrix

Sample y uniform random pairs $(i, j) \in U \times V$
If $M[i, j]=1$ for some pair, then return 1
Otherwise: Submatrix $M[U \times V]$ has $\leq \frac{c n^{2} \log n}{y} 1$-entries
3. Check among pairs seen before

For all triples $\left(U_{k}, V_{k}, S_{k}\right)$ in L and all pairs $(i, j) \in S_{k}$:
If $(i, j) \in U \times V$, then return 1

$$
O\left(\sum_{k=1}^{|L|}\left|S_{k}\right|\right) \leq O\left(\sum_{k=1}^{|L|} \frac{n^{2} \log n}{y}\right) \leq O\left(\frac{z n^{2} \log n}{y}\right)
$$

4. Estimate number of unseen pairs
$R:=$ sample of $\frac{n^{2}}{z}$ uniform random pairs from C

Exhaustive Search

5. (a) If estimate is high, enumerate pairs and mark as seen

If $b>\frac{2 n^{2}}{z}$:

- Compute answer to query (U, V)
- Determine $S=\{(i, j) \in U \times V \mid M[i, j]=1\}$
$|S| \leq \frac{c n^{2} \log n}{y}$ (with high probability)
- Determine $W=(U \times V) \cap C$

If $|W|<\frac{n^{2}}{z}$ or $|S|>\frac{c n^{2} \log n}{Y}$: immediately return answer to query
(happens with low probability)

- Add triple (U, V, S) to L
- Remove all $(i, j) \in U \times V$ from C
(Zero out entries of D)
- Return answer to query (U, V)
$O\left(n^{2}\right)$
Expensive, but can be amortized!
Executed at most z times

List Unseen Pairs

6. (b) If estimate is low, list unseen pairs

If $b \leq \frac{2 n^{2}}{z}$:

- Determine $W=(U \times V) \cap C$

$$
|W| \leq \frac{4 n^{2}}{z} \text { (with high probability) }
$$

- Use OV Listing algorithm with table-lookup oracle
- Check if there is $(i, j) \in W$ s.t. $M[i, j]=1$

$$
O\left(\left(\frac{n}{s}\right)^{2}+\frac{n^{2}}{z} \cdot s^{2}\right)
$$

Total Running Time

q : number of queries

Check for dense submatrix

List unseen pairs

Check for small submatrix /
Size estimation

Check among previously seen pairs

Parameter choice: $\quad \Rightarrow$ amortized $O\left(n^{2} / 2^{\delta \sqrt{\log n}}\right)$ per query

- $y=n^{3 / 2}$
- $z=2^{\delta \sqrt{\log n}}$ (for some $\delta>0$)
- $s=2^{\epsilon \delta \sqrt{\log n}}$ (for sufficiently small $\epsilon>0$)

Summary

1. Algorithmic use of OMv to OuMv reduction
2. Essentially: OuMv to OV reduction
3. 3 sources of randomization:

- Hitting set
- Size estimation
- Probabilistic polynomial

