

Complexity Theory of Polynomial-Time Problems

Lecture 12: More on OMv

Sebastian Krinninger (Based on reading group talk of Pavel Kolev)

Online Boolean Matrix Multiplication

Input: Boolean $n \times n$ matrix MOnline sequence of vectors $v_1, ..., v_n \in \{0,1\}^n$

Output: Mv_i before v_{i+1} arrives ("query") Mv_i M v_i n n

OMv Conjecture: No algorithm with total time $O(n^{3-\epsilon})$ (for some $\epsilon > 0$). (not even with polynomial-time preprocessing)

[Henzinger et al.'15]

A New Upper Bound

[Larsen, Williams'16]

Amortized time per query: $n^2/2^{\Omega(\sqrt{\log n})}$ for sequence of $\geq 2^{\Omega(\sqrt{\log n})}$ queries (and no preprocessing time)

Lemma: If OuMv can be solved in total time $O(n^3/f(n))$, then OMv can be solved in total time $O(n^3/\sqrt{f(n)})$.

[Henzinger et al.'15]

This application:
$$f(n) = n^2/2^{\Omega(\sqrt{\log n})}$$

OuMv: Vector-Matrix-Vector Multiplication

Observation: uMv iff submatrix of M induced by u and v contains a 1

Notation:

- $U \subseteq [n]$: set of indices with 1-entries in u
- $V \subseteq [n]$: set of indices with 1-entries in v
- $M[U \times V]$: submatrix of M induced by U and V

Data Structures

- $C \subseteq [n] \times [n]$
- List *L* of triples (U_k, V_k, S_k) s.t.
 - $U_k \subseteq [n]$
 - $V_k \subseteq [n]$
 - $S_k \subseteq [n] \times [n]$

Invariants:

- S_k contains all pairs (i, j) with $i \in U_k, j \in V_k$ s.t. M[i, j] = 1Intuition: (U_k, V_k) represents expensive query from the past
- C contains all pairs (i, j) that appear in no U_k × V_k of L Indicator matrix D s.t. D[i, j] = 1 iff (i, j) ∈ C Intuition: C contains unseen pairs

The Core Problem

At some point in algorithm: want to list all unseen pairs

Unseen Pairs: Given U and V, such that $|(U \times V) \cap C| \leq K$. Determine $W \coloneqq (U \times V) \cap C$

Idea: Reduce to listing orthogonal vectors:

C contains all pairs (i, j) that appear in no $U_k \times V_k$ of L

Define vectors $u_1, ..., u_n, v_1, ..., v_n$ of dimension $d \coloneqq |L|$ For every $i \in [n]$: $u_i \in \{0,1\}^d$ s.t. $u_i[k] = 1$ iff $i \in U_k$ For every $j \in [n]$: $v_j \in \{0,1\}^d$ s.t. $v_j[k] = 1$ iff $j \in V_k$

 $(i, j) \in (U \times V) \cap C$ iff $(i, j) \in (U \times V)$ and $\neg \exists k: (i, j) \in U_k \times V_k$ iff $(i, j) \in (U \times V)$ and $\langle u_i, v_j \rangle = 0$

Observation: To compute $(U \times V) \cap C$ we can list all $\leq K$ pairs $(i, j) \in (U \times V)$ such that u_i and v_j are orthogonal.

Reminder: OV Algorithm

Set $A \coloneqq \{u_1, ..., u_n\}$, $B \coloneqq \{v_1, ..., v_n\}$ 1. Divide A and B into $q = \left\lceil \frac{n}{s} \right\rceil$ subsets of size $\leq s$: $A_1, ..., A_q$ and $B_1, ..., B_q$ 2. Construct polynomial $P(a_1[1], ..., a_1[d], ..., a_s[1] ..., a_s[d], b_1[1], ..., b_1[d], ..., b_s[1] ..., b_s[1])$ $P(A_i, B_j) = 1$ if and only if A_i , B_j contains orthogonal pairwith high probability 3. For every pair of subsets A_i , B_j : evaluate P on A_i , B_j

...simultaneously! $\rightarrow O\left(\frac{n^2}{s^2} \operatorname{polylog}(n)\right)$

4. Return "yes" if some A_i , B_j contains orthogonal pair, "no" otherwise

To bound #monomials, set $s = 2^{\epsilon \log n}$ for sufficiently small ϵ (*)

New:

max planck institut informatik

For every pair A_i , B_j containing orthogonal pair: Report all orthogonal pairs by checking for every corresponding pair (i, j) if $(i, j) \in C$ (constant time lookup in matrix D!)

(*) Requires tighter analysis than provided in lecture 3 (where we had $s = 2^{\epsilon \log n / \log d}$)

 $O(Ks^2)$

Variant of Orthogonal Vectors

OV Listing Given two sets of vectors $U \subseteq \{0,1\}^d$, $V \subseteq \{0,1\}^d$ containing at **with Oracle:** most *K* orthogonal pairs and an oracle supporting O(1) time access to $\langle u, v \rangle$ for any pair $u \in U$ and $v \in V$, report all orthogonal pairs in $U \times V$.

Time: $O\left(\frac{n^2}{s^2} \operatorname{polylog}(n) + Ks^2\right)$

Note: Without oracle we just get $O\left(\frac{n^2}{s^2} polylog(n) + Ks^2d\right)$. This is not good enough in our application where we set $K = n^2/d$.

Algorithm Overview

- 1. Check for small submatrix
- 2. Check for dense submatrix
- 3. Check among previously seen pairs
- 4. Estimate number of unseen pairs
- 5. (a) If estimate is high, enumerate pairs and mark as seen
- 6. (b) If estimate is low, list unseen pairs

Parameters:

•
$$y \coloneqq n^{3/2}$$

• $z \coloneqq 2^{\delta \sqrt{\log n}}$

Small Submatrix

1. Check for small submatrix If $|U| \times |V| < \frac{n^2}{z}$: Try all $i \in U, j \in V$ If M[i, j] = 1 for some pair, then return 1

Dense Submatrix

2. Check for dense submatrix Sample *y* uniform random pairs $(i, j) \in U \times V$ If M[i, j] = 1 for some pair, then return 1

Claim: If
$$M[U \times V]$$
 has $\geq \frac{cn^2 \log n}{y}$ 1-entries, then $M[i, j] = 1$ for some sample pair with probability at least $1 - \frac{1}{n^c}$.

Proof:

Probability that a sampled pair (i, j) is a 1-entry of $M[U \times V]$: $\frac{\#1 \text{ entries in } M[U \times V]}{|U \times V|} \ge \frac{cn^2 \log n}{y |U \times V|} \ge \frac{cn^2 \log n}{y n^2} = \frac{c \log n}{y}$

Probability that no sampled pair (i, j) is a 1-entry of $M[U \times V]$:

$$\left(1 - \frac{c\log n}{y}\right)^{y} = \left(\left(1 - \frac{c\log n}{y}\right)^{\frac{y}{c\log n}}\right)^{c\log n} \le \left(\frac{1}{e}\right)^{c\log n} = \frac{1}{n^{c}}$$

Fact:
$$\lim \left(1 - \frac{1}{x}\right)^x = e$$

Previously Seen Pairs

3. Check among pairs seen before For all triples (U_k, V_k, S_k) in *L* and all pairs $(i, j) \in S_k$: If $(i, j) \in U \times V$, then return 1

Size Estimation

4. Estimate number of unseen pairs *Goal: estimate size of* $W = (U \times V) \cap C$ $R \coloneqq \text{sample of } \frac{n^2}{z}$ uniform random pairs from C $b \coloneqq \frac{|R \cap (U \times V)|}{|R|} \cdot |C|$ *Efficient sampling from* C: keep C in tree data structure (or similar)

Claim:

$$E[b] = |W|$$

Proof: Random variables: $X_i = 1$ if *i*-th sample of *R* in $U \times V$ $X_i = 0$ otherwise $\Pr[X_i = 1] = \frac{|W|}{|C|}$

$$E[b] = \frac{|C|}{|R|} \cdot E[|R \cap (U \times V)|] = \frac{|C|}{|R|} \cdot E\left[\sum_{i=1}^{|R|} X_i\right] = \frac{|C|}{|R|} \cdot \sum_{i=1}^{|R|} E[X_i]$$
$$= \frac{|C|}{|R|} \cdot \sum_{i=1}^{|R|} \frac{|W|}{|C|} = |W|$$

Chernoff Bound

Applying Chernoff Bound

Theorem: Let $X_1, ..., X_t$ be a sequence of t independent Bernoulli trials s.t. $\Pr[X_i = 1] = p$ and $\Pr[X_i = 0] = 1 - p$ and $\mu \coloneqq E[\sum_{i=1}^t X_i]$. 2. For every $\delta \in [0,1]$: $\Pr\left[\sum_{i=1}^t X_i \le (1-\delta)\mu\right] \le \exp\left(-\frac{\delta^2}{2}\mu\right)$

Claim: Let $W = (U \times V) \cap C$. If $|W| > \frac{4n^2}{z}$, then $b > \frac{2n^2}{z}$ whp.

$$\mu = E\left[\sum_{i=1}^{t} X_i\right] = \frac{|R| \cdot |W|}{|C|} = \frac{n^2}{z} \cdot \frac{|W|}{|C|} \ge \frac{4n^4}{z^2 |C|} \ge \frac{4n^2}{z^2} \ge 4\log^2 n \quad (z \le \frac{n}{\log n})$$

 $\Pr\left[b < \frac{2n^2}{z}\right] = \Pr\left[|R \cap (U \times V)| < \frac{2n^2 |R|}{z |C|}\right] = \Pr\left[\sum_{i=1}^t X_i < \frac{2n^2 |R|}{z |C|}\right]$ $\leq \Pr\left[\sum_{i=1}^t X_i < \frac{1}{2} \cdot \frac{|R| \cdot |W|}{|C|}\right] = \Pr\left[\sum_{i=1}^t X_i < \left(1 - \frac{1}{2}\right) \cdot \mu\right]$ $\leq \exp\left(-\frac{1}{8}\mu\right) \leq \exp\left(-\frac{\log^2 n}{2}\right) \leq \exp(-\log n) = \frac{1}{n}$

Applying Chernoff Bound

Theorem: Let $X_1, ..., X_t$ be a sequence of t independent Bernoulli trials with $\Pr[X_i = 1] = p$ and $\Pr[X_i = 0] = 1 - p$. 1. For every $\delta > 0$ and $\mu' \ge \mu$: $\Pr\left[\sum_{i=1}^t X_i \ge (1+\delta)\mu'\right] \le \exp\left(-\frac{\delta^2}{2+\delta}\mu'\right)$

Claim: Let
$$W = (U \times V) \cap C$$
. If $|W| \le \frac{n^2}{z}$, then $b < \frac{2n^2}{z}$ whp

$$\mu' \coloneqq \frac{n^2}{z} \cdot \frac{|R|}{|C|} \ge \frac{|R|}{z} = \frac{n^2}{z^2} \ge \log^2 n \qquad (z \le \frac{n}{\log n})$$
$$\mu = E\left[\sum_{i=1}^t X_i\right] = \frac{|R| \cdot |W|}{|C|} \le \frac{n^2}{z} \cdot \frac{|R|}{|C|} = \mu'$$

16/19

Exhaustive Search

5. (a) If estimate is high, enumerate pairs and mark as seen

If $b > \frac{2n^2}{z}$:

- Compute answer to query (U, V)
- Determine $S = \{(i, j) \in U \times V \mid M[i, j] = 1\}$ $|S| \le \frac{cn^2 \log n}{v}$ (with high probability)
- Determine $W = (U \times V) \cap C$ If $|W| < \frac{n^2}{z}$ or $|S| > \frac{cn^2 \log n}{Y}$: immediately return answer to query (happens with low probability)
- Add triple (U, V, S) to L
- Remove all $(i, j) \in U \times V$ from C (Zero out entries of D)
- Return answer to query (U, V)

List Unseen Pairs

6. (b) If estimate is low, list unseen pairs

If
$$b \leq \frac{2n^2}{z}$$
:

- Determine $W = (U \times V) \cap C$ $|W| \le \frac{4n^2}{z}$ (with high probability)
- Use OV Listing algorithm
- Check if there is $(i, j) \in W$ s.t. M[i, j] = 1

Running Time Analysis

Crucial observations:

- 1. Every time a triple (U, V, S) is added to the list, *C* is reduced by at least $\frac{n^2}{z}$ \Rightarrow length of list: $|L| \le \frac{n^2}{n^2/z} = z$
- 2. Every time a triple (U, V, S) is added to the list, we have $|S| \le O\left(\frac{n^2 \log n}{y}\right)$

First Part of Algorithm

- 1. Check for small submatrix If $|U| \times |V| < \frac{n^2}{z}$: Try all $i \in U, j \in V$ If M[i, j] = 1 for some pair, then return 1 2. Check for dense submatrix Sample *y* uniform random pairs $(i, j) \in U \times V$ If M[i, j] = 1 for some pair, then return 1 *O(y)* Submatrix $M[U \times V]$ has $\leq \frac{cn^2 \log n}{y}$ 1-entries
- 3. Check among pairs seen before For all triples (U_k, V_k, S_k) in *L* and all pairs $(i, j) \in S_k$: If $(i, j) \in U \times V$, then return 1

$$O\left(\sum_{k=1}^{|L|} |S_k|\right) \le O\left(\sum_{k=1}^{|L|} \frac{n^2 \log n}{y}\right) \le O\left(\frac{z n^2 \log n}{y}\right)$$

4. Estimate number of unseen pairs $R \coloneqq \text{sample of } \frac{n^2}{z} \text{ uniform random pairs from } C$ $b \coloneqq \frac{|R \cap (U \times V)|}{|R|} \cdot |C|$ $max \text{ planck institut informatik}}$ $O\left(\frac{n^2}{z}\right)$

July 22, 2016

Exhaustive Search

5. (a) If estimate is high, enumerate pairs and mark as seen

If
$$b > \frac{2n^2}{z}$$

- Compute answer to query (U, V)
- Determine $S = \{(i, j) \in U \times V \mid M[i, j] = 1\}$ $|S| \le \frac{cn^2 \log n}{v}$ (with high probability)
- Determine $W = (U \times V) \cap C$ If $|W| < \frac{n^2}{z}$ or $|S| > \frac{cn^2 \log n}{y}$: immediately return answer to query (happens with low probability)
- Add triple (U, V, S) to L
- Remove all $(i, j) \in U \times V$ from C (Zero out entries of D)
- Return answer to query (U, V)

$O(n^{2})$

Expensive, but can be amortized! Executed at most *z* times

List Unseen Pairs

6. (b) If estimate is low, list unseen pairs

If
$$b \leq \frac{2n^2}{z}$$
:
• Determine $W = (U \times V) \cap C$
 $|W| \leq \frac{4n^2}{z}$ (with high probability)

- Use OV Listing algorithm with table-lookup oracle
- Check if there is $(i, j) \in W$ s.t. M[i, j] = 1

$$O\left(\left(\frac{n}{s}\right)^2 + \frac{n^2}{z} \cdot s^2\right)$$

Total Running Time

q: number of queries

Summary

- 1. Algorithmic use of OMv to OuMv reduction
- 2. Essentially: OuMv to OV reduction
- 3. 3 sources of randomization:
 - Hitting set
 - Size estimation
 - Probabilistic polynomial

