

Complexity Theory of Polynomial-Time Problems

Lecture 13: Recap, Further Directions, Open Problems

Karl Bringmann

I. Recap

- **II.** Further Directions
- **III. Open Problems**

I. Recap

Hard problems

- **SAT:** given a formula in conj. normal form on *n* variables is it satisfiable? conjecture: no $O(2^{(1-\varepsilon)n})$ algorithm (SETH)
- **OV:** given *n* vectors in $\{0,1\}^d$ (for small *d*) are any two orthogonal? conjecture: no $O(n^{2-\varepsilon})$ algorithm
- **APSP:**given a weighted graph with n verticescompute the distance between any pair of verticesconjecture: no $O(n^{3-\varepsilon})$ algorithm
- **3SUM:**given n integersdo any three sum to 0?
 - conjecture: no $O(n^{2-\varepsilon})$ algorithm

max planck institut informatik

Fine-Grained Reductions

A fine-grained reduction from (P,T) to (Q,T') is an algorithm *A* for *P* with oracle access to *Q* s.t.:

Properties:

max planck institut informatik

for any instance *I*, algorithm A(I) correctly solves problem *P* on *I A* runs in time $r(n) = O(T(n)^{1-\gamma})$ for some $\gamma > 0$ for any $\varepsilon > 0$ there is a $\delta > 0$ s.t. $\sum_{i=1}^{k} T'(n_i)^{1-\varepsilon} \leq T(n)^{1-\delta}$

Complexity Inside P

Conditional Lower Bounds ...

... allow to classify polynomial time problems

... are an analogue of NP-hardness

yield good reasons to stop searching for faster algorithms should belong to the basic toolbox of theoretical computer scientists

... allow to search for new algorithms with better focus

improve SAT before longest common subsequence non-matching lower bounds suggest better algorithms

... motivate new algorithms

relax the problem and study approximation algorithms, parameterized running time, ...

Algorithms

BMM:

```
fast matrix multiplication: \omega < 3
```

```
NodeWeightedNegativeTriangle O(n^{\omega})
```

```
k-Clique O(n^{\omega k/3})
```

```
MaxCut O(2^{\omega n/3} \text{poly}(n))
```

lower order improvements:

4 Russians trick yields log-factor improvements polynomial method:

```
OV in O(n^{2-1/O(\log(d/\log n))}) or O(n^2/2^{\Omega(\sqrt{\log n})})
APSP and OMv in O(n^3/2^{\Omega(\sqrt{\log n})})
```

dynamic graph algorithms:

incremental/decremental/fully dynamic, amortized/worst-case, update/query time for shortest path and reachability problems

More (Algorithmic) Concepts

Decision Trees:

 $\tilde{O}(n^{3/2})$ for 3SUM

(Co-)Nondeterministic Algorithms:

 $\tilde{O}(n^{3/2})$ for 3SUM Nondeterministic SETH

Polynomials and Circuits:

Over the integers, or \mathbb{Z}_p , or AND-OR polynomial multiplication (FFT!), division, interpolation multipoint evaluation

Modern Algorithms Philosophy

"Fast Matrix Multiplication and Fast Fourier Transform are the only non-trivial algorithmic tools that we have."

"Whenever you design an algorithm, try to prove a matching conditional lower bound to show optimality."

II. Further Directions

1. Hardness Under Multiple Hypotheses

Hardness Under Multiple Hypotheses

so far we identified **a reason** for the hardness of some problems

what about **multiple reasons**?

if a problem *Q* is SETH-hard **and** 3SUM-hard **and** APSP-hard then it is as hard as it gets we can forget about improved algorithms any time soon

> *Q* is hard under the following weak conjecture: At least one of SETH or 3SUM-H or APSP-H holds

Complexity Inside P

Are there colors a, b, c s.t. G contains at least d triangles (i, j, k)where i has color a, j has color b, and k has color c?

[Abboud,Vassilevska-W.,Yu'15]

II. Further Directions

2. Ruling out Superpolylogarithmic Improvements

Ruling out Superpolylog Improvements

we have seen for Longest Common Subsequence (LCS):

4 Russians trick: $O(n^2/\log^2 n)$

OV-hardness: lower bound $\Omega(n^{2-\varepsilon})$

does the polynomial method apply? is LCS in time $n^2/2^{\Omega(\sqrt{\log n})}$? or $n^2/\log^{\omega(1)}n$?

how to rule out superpolylogarithmic improvements?

SETH/OVH are too coarse!

OV has superpolylogarithmic improvements!

SAT

 $F: \{0,1\}^n \to \{0,1\}$

Is F satisfiable?

Need $\Omega(2^n)$ queries, unless we analyze F

Hardness of *F*-SAT depends on our ability to analyze *F*

formula = circuit over AND/OR/NOT (and maybe XOR/...), where every gate has fanout 1, except for inputs

F given by a...

DNF: polytime

CNF: SETH

Turing machine: extremely hard

formula: harder than SETH, but still easy to work with

no $2^n/n^{\omega(1)}$ -algorithm known, even for $|F| = n^{O(1)}$

Formula-SAT Hardness

Thm: LCS has no $n^2/\log^{\omega(1)}n$ algorithm unless Formula-SAT has an $2^n/n^{\omega(1)}$ algorithm for $|F| = n^{O(1)}$.

this only works for few problems!

II. Further Directions

3. Hardness Classes

Hardness Classes

the field of "fine-grained complexity" is very **problem-centric** everything evolves around hard problems

what about **classes of problems**, as in classic complexity?

can we prove hardness/completeness of a problem for a class w.r.t. fine-grained reductions?

Hardness Classes

```
class of first-order graph properties:

given a graph G with m edges

given a first-order formula \phi with k + 1 quantifiers

check whether \phi evaluates to true on G

is in time O(m^k)

[Gao,Impagliazzo'16]

e.g. \exists u \exists v \exists w : E(u, v) \land E(v, w) \land E(u, w)

"does G contain a triangle?"

\forall u \forall v \exists w : E(u, w) \land E(w, v)
```

"does G have diameter=2?"

Thm: The following are equivalent:

[Gao,Impagliazzo'16]

- $\exists \varepsilon, \delta > 0$: OV in dimension $d \leq n^{\delta}$ has an $O(n^{2-\varepsilon})$ algorithm (¬OVH)
- $\forall k \ge 2$: for any first-order formula ϕ with k + 1 quantifiers there exists $\varepsilon' > 0$ s.t. ϕ can be decided in time $O(m^{k-\varepsilon'})$ on any given graph with m edges

II. Further Directions

4. Multivariate Analysis

Multivariate Analysis

LCS is OV-hard: lower bound $\Omega(n^{2-\varepsilon})$

what if $|y| = m \ll n = |x|$? How fast can we compute LCS(*x*, *y*)? dynamic programming: O(nm)

Parameter Setting *LCS*(β): $(0 \le \beta \le 1)$... is the LCS problem restricted to strings with $m = \Theta(n^{\beta})$

what is the best running time $n^{f(\beta)+o(1)}$ for $LCS(\beta)$ for any β ?

Cor: unless OVH fails, for any β any algorithm for $LCS(\beta)$ takes time $\Omega(n) + n^{2\beta - o(1)} = \Omega(n) + m^{2-o(1)}$

Proof: for any $n, m = \lfloor n^{\beta} \rfloor$, for any (binary) strings with |x'|, |y'| = m - 1: $x := x' 2^{n-|x'|}$ with length $\begin{vmatrix} x \\ y \end{vmatrix} = n$ where 2 is a |y| = m fresh symbol $\|y\| = m$ fresh symbol

Multivariate Analysis

LCS is OV-hard: lower bound $\Omega(n^{2-\varepsilon})$

what if $|y| = m \ll n = |x|$? How fast can we compute LCS(*x*, *y*)? dynamic programming: O(nm)

Parameter Setting $LCS(\beta)$: $(0 \le \beta \le 1)$

.. is the LCS problem restricted to strings with $m = \Theta(n^{\beta})$

what is the best running time $n^{f(\beta)+o(1)}$ for $LCS(\beta)$ for any β ?

Cor: unless OVH fails, for any β any algorithm for $LCS(\beta)$ takes time $\Omega(n) + n^{2\beta-o(1)} = \Omega(n) + m^{2-o(1)}$

Algorithm with time $\tilde{O}(n + m^2)$ exists!

[Hirschberg'77]

LCS differs from other similarity measures that take time $(nm)^{1-o(1)}$ [B.'14, B.,Künnemann'15]

Multivariate Analysis

Multivariate fine-grained complexity

Parameter Setting $LCS(\beta)$: $(0 \le \beta \le 1)$

.. is the LCS problem restricted to strings with $m = \Theta(n^{\beta})$

what is the best running time $n^{f(\beta)+o(1)}$ for $LCS(\beta)$ for any β ?

Cor: unless OVH fails, for any β any algorithm for $LCS(\beta)$ takes time $\Omega(n) + n^{2\beta - o(1)} = \Omega(n) + m^{2-o(1)}$

Algorithm with time $\tilde{O}(n + m^2)$ exists!

More Parameters for LCS

more parameters have been studied for LCS since the 70s:

$n = x = \max\{ x , y \}$	length of longer string
$m = y = \min\{ x , y \}$	length of shorter string
$L = \mathrm{LCS}(x, y)$	length of LCS
$ \Sigma $	size of alphabet Σ
$\Delta = n - L$	\dots number of deletions in x
$\delta = m - L$	number of deletions in y
$M = \{(i,j) \mid x[i] = y[j]\}$	number of <i>matching pairs</i>

More Parameters for LCS

more parameters have been studied for LCS since the 70s:

$n = x = \max\{ x , y \}$	length of longer string
$m = y = \min\{ x , y \}$	length of shorter string
$L = \mathrm{LCS}(x, y)$	length of LCS
$ \Sigma $	size of alphabet Σ
$\Delta = n - L$	number of deletions in x
$\delta = m - L$	number of deletions in y
$M = \{(i,j) \mid x[i] = y[j]\}$	number of matching pairs
d	number of dominant pairs

= "entry (i, j) is dominant if all entries to the top left of it are strictly smaller"

Known Algorithms

O(nm)	[Wagner,Fischer'74]
$\tilde{O}(n+M)$	[Hunt,Szymanski'77]
$\tilde{O}(n+\delta m)$	[Hirschberg'77]
$\tilde{O}(n+Lm)$	[Hirschberg'77]
$\tilde{O}(n+d)$	[Apostolico'86]
$\tilde{O}(n+\delta\Delta)$	[Wu,Manber,Myers,Miller'90]

 $n = \max\{|x|, |y|\} \quad m = \min\{|x|, |y|\}$ $L = LCS(x, y) \qquad |\Sigma| \text{ alphabet size}$ $\Delta = n - L \qquad M \text{ matching pairs}$ $\delta = m - L \qquad d \text{ dominating pairs}$

logfactor improvements:

[Masek,Paterson'80], [Apostolico,Guerra'87], [Eppstein,Galil,Giancarlo, Italiano'92], [Bille,Farach-Colton'08], [Iliopoulos,Rahman'09]

What is the best possible algorithm for any "parameter setting"?

Parameter Settings

$n = \max\{ x , y \}$	$m = \min\{ x , y \}$
L = LCS(x, y)	Σ alphabet size
$\Delta = n - L$	M matching pairs
$\delta = m - L$	d dominating pairs

let
$$\alpha = (\alpha_m, \alpha_L, \alpha_\Sigma, \alpha_\Delta, \alpha_\delta, \alpha_M, \alpha_d) \in \mathbb{R}^7_{\geq 0}$$

parameter setting LCS(α): is the LCS problem restricted to strings x, y with

 $(n=|x|) \quad m=\Theta(n^{\alpha_m}) \quad \ L=\Theta(n^{\alpha_L}) \quad \ |\Sigma|=\Theta(n^{\alpha_\Sigma}) \quad \text{ etc.}$

we always have $L \leq m$

so $\alpha_L > \alpha_m$ is contradictory

in this case $LCS(\alpha)$ has only finitely many instances = $LCS(\alpha)$ is **trivial**

We have to understand the interdependencies of parameters first!

Parameter Relations

For any strings *x*, *y* we have:

$$\left. \begin{array}{l}
L \leq m \leq n \\
m \geq \delta \leq \Delta \leq n \\
d \leq M
\end{array} \right\} \quad \text{trivial}$$

$$\left. \begin{array}{c} |\Sigma| \leq m \\ M \geq n \end{array} \right\} \quad \text{w.l.o.g. every symbol in } \Sigma \text{ appears in } x \text{ and in } y$$

$$L \le d \le Lm$$
$$|\Sigma| \le d \le L^2 |\Sigma|$$
$$d \le 2L(\Delta + 1)$$
$$L^2/|\Sigma| \le M \le 2Ln$$

complex dependencies of the parameters!

 $n = \max\{|x|, |y|\} \quad m = \min\{|x|, |y|\}$ $L = LCS(x, y) \qquad |\Sigma| \text{ alphabet size}$ $\Delta = n - L \qquad M \text{ matching pairs}$ $\delta = m - L \qquad d \text{ dominating pairs}$

Known Algorithms

[Wagner, Fischer'74]

[Hunt,Szymanski'77]

[Hirschberg'77]

[Hirschberg'77]

[Apostolico'86]

[Wu,Manber,Myers,Miller'90]

$n = \max\{ x , y \}$	$m = \min\{ x , y \}$
L = LCS(x, y)	Σ alphabet size
$\Delta = n - L$	M matching pairs
$\delta = m - L$	d dominating pairs

parameter relations:

 $\delta \le m \le n$ $d \le M$ $d \le Lm$ $d \le L^2 |\Sigma|$

. . .

Best algorithm: $\tilde{O}(n + \min\{d, \delta m, \delta \Delta\})$

Parameter Settings

$n = \max\{ x , y \}$	$m = \min\{ x , y \}$
L = LCS(x, y)	Σ alphabet size
$\Delta = n - L$	M matching pairs
$\delta = m - L$	d dominating pairs

$$\mathsf{let} \ \ \alpha = (\alpha_m, \alpha_L, \alpha_\Sigma, \alpha_\Delta, \alpha_\delta, \alpha_M, \alpha_d) \in \mathbb{R}^7_{\geq 0}$$

parameter setting LCS(α): is the LCS problem restricted to strings x, y with

 $(n=|x|) \quad m=\Theta(n^{\alpha_m}) \quad \ L=\Theta(n^{\alpha_L}) \quad \ |\Sigma|=\Theta(n^{\alpha_\Sigma}) \quad \text{ etc.}$

a parameter setting is **nontrivial** if it contains infinitely many instances

iff the target values $(n, n^{\alpha_m}, n^{\alpha_L}, ...)$ satisfy our parameter relations (for $n \to \infty$)

What is the best possible running time $n^{f(\alpha)+o(1)}$ for any nontrivial LCS(α)?

Matching Lower Bound

Best algorithm: $\tilde{O}(n + \min\{d, \delta m, \delta \Delta\})$

 $n = \max\{|x|, |y|\} \quad m = \min\{|x|, |y|\}$ $L = LCS(x, y) \qquad |\Sigma| \text{ alphabet size}$ $\Delta = n - L \qquad M \text{ matching pairs}$ $\delta = m - L \qquad d \text{ dominating pairs}$

What is the best possible running time $n^{f(\alpha)+o(1)}$ for any nontrivial LCS(α)?

Thm:[B.,Künnemann'16+]Unless OVH fails, for any non-trivial parameter setting LCS(α)any algorithm takes time at least $\Omega(n) + \min\{d, \delta m, \delta \Delta\}^{1-o(1)}$

III. Open Problems

Major Open Problems

1) prove conditional lower bounds for more types of problems

2) relate SAT, 3SUM, APSP or show (more) barriers for such relations

3) advance **subquadratic approximation algorithms** and develop tools for **hardness of approximation**

4) explain gap between **deterministic / randomized** algorithms

5) average case hardness? distributed algorithm? other settings?

... this is a young field of research!

k-Longest Common Subsequence (k-LCS)

given strings $x_1, ..., x_k$, each of length at most n, compute longest string z that is a subsequence of all x_i

```
natural dynamic program O(n^k)
```

```
[Abboud,Backurs,V-Williams'15]
reduction SAT \rightarrow k-OV \rightarrow k-LCS yields lower bound of \Omega(n^{k-\varepsilon})
```

but only for strings over alphabets of size $\Omega(k)$

Open Problem: prove conditional lower bound $\Omega(n^{k-\varepsilon})$ for strings over alphabet size O(1), or even 2

Open Problem: which log-factor improvements are possible?

Dynamic Time Warping

Dynamic Time Warping

same setting as for Frechet distance: DTW is a similarity measure for curves P_1, P_2 = sequences over \mathbb{R}^2

natural dynamic programming algorithm: $O(n^2)$ OV-hardness: lower bound $\Omega(n^{2-\varepsilon})$ [B.,Künnemann'15+, Abboud,Backurs,V-Williams'15] slight improvement: $O(n^2 \log \log \log n / \log \log n)$ [Gold,Sharir'16]

Open Problem: log-factor improvement $n^2/(\log n)^{\Omega(1)}$?

Open Problem: $n^{O(1)}$ –approximation in time $O(n^{2-\varepsilon})$?

3SUM

given sets A, B, C of n integers

are there $a \in A, b \in B, c \in C$ such that a + b + c = 0?

log-factor improvement: $O(n^2 \cdot \frac{(\log \log n)^2}{\log n})$

[Gronlund,Pettie'14]

we showed a simplified version: $O(n^2 \cdot \frac{\text{poly} \log \log n}{\sqrt{\log n}})$

Open Problem: $n^2/2^{\Omega(\sqrt{\log n})}$ algorithm?

Dynamic Single Source Reachability

we have seen:

under OMv, no fully dynamic SSR with update $O(n^{1-\varepsilon})$, query $O(n^{2-\varepsilon})$ incremental SSR in total update O(m), query O(1)decremental SSR in DAGs in total update O(m), query O(1)decremental SSR in total update O(mn), query O(1)

fastest known:

decremental SSR in total update $\tilde{O}(m\sqrt{n})$, query $\tilde{O}(1)$

Open Problem: faster decremental SSR? or lower bound?

IV. Outro

Oral Exam

on a day in September

(up to) 30 minutes

covers whole lecture and all exercises

please mark possible dates for you in this doodle:

http://doodle.com/poll/v9bktxdrktv5w98e

End of Course

"Fast Matrix Multiplication and Fast Fourier Transform are the only non-trivial algorithmic tools that we have."

"Whenever you design an algorithm, try to prove a matching conditional lower bound to show optimality."

