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I. Recap



Hard problems

given 𝑛 integers
do any three sum to 0?
conjecture: no 𝑂(𝑛%&') algorithm

3SUM:

conjecture: no 𝑂(𝑛)&') algorithm

given a weighted graph with 𝑛 vertices
compute the distance between any pair of vertices

APSP:

conjecture: no 𝑂(𝑛%&') algorithm

given 𝑛 vectors in {0,1}. (for small	𝑑)
are any two orthogonal?

OV:

conjecture: no 𝑂(2 2&' 3) algorithm (SETH)

given a formula in conj. normal form on 𝑛 variables
is it satisfiable?

SAT:



Fine-Grained Reductions

an algorithm 𝐴 for 𝑃 with oracle access to 𝑄 s.t.:

problem 𝑸

total time 
𝑟(𝑛)

size 𝑛2

reduction instance 𝐼1
problem 𝑷

size 𝑛

instance 𝐼

size 𝑛;
instance 𝐼𝑘

…

…

for any instance 𝐼, algorithm 𝐴(𝐼) correctly solves problem 𝑃 on 𝐼
𝐴 runs in time 𝑟(𝑛) = 𝑂(𝑇(𝑛)2&?) for some 𝛾 > 0

for any 𝜀 > 0 there is a 𝛿 > 0 s.t. ∑ 𝑇′(𝑛F)2&';
FG2 ≤ 𝑇(𝑛)2&I

Properties:

A fine-grained reduction from (𝑃, 𝑇)	to (𝑄,𝑇’) is



Complexity Inside P

SAT 23

OV 𝑛%
k-OV 𝑛;

LCS 𝑛%

LPalindromicS 𝑛%

Frechet 𝑛%

Diameter 𝑛%

NFA-Acceptance 𝑛%

2SAT+2Clauses 𝑛%

MaxInnerProduct 𝑛%

3SUM 𝑛%

X+Y 𝑛% GeomBase 𝑛%

Separator 𝑛%

PlanarMotion
Planning 𝑛%

Colinear 𝑛%

APSP 𝑛)

Metricity 𝑛)

Radius 𝑛)

Betweenness
Centrality 𝑛)

MaxSubmatrix 𝑛)

NegTriangle 𝑛)

BMM 𝑛K/𝑛)

SlidingWindowHammingDist 𝑛2.N

TransitiveClosure 𝑛K/𝑛)

OV-hard

3SUM-hard APSP
equivalent

BMM-hard

SETH

OMv 𝑛)
SSReach

SSSP OMv-hard



Conditional Lower Bounds …

… allow to classify polynomial time problems

… are an analogue of NP-hardness

yield good reasons to stop searching for faster algorithms

should belong to the basic toolbox of theoretical computer scientists

… allow to search for new algorithms with better focus

improve SAT before longest common subsequence

non-matching lower bounds suggest better algorithms

relax the problem and study approximation algorithms,

… motivate new algorithms

parameterized running time, …



Algorithms

fast matrix multiplication:  𝜔 < 3
BMM:

NodeWeightedNegativeTriangle 𝑂(𝑛K)

k-Clique 𝑂(𝑛K;/))

MaxCut 𝑂(2K3/)poly(𝑛))

4 Russians trick yields log-factor improvements
lower order improvements:

polynomial method:

OV in 𝑂(𝑛%&2/V WXY ./WXY	3	 ) or 𝑂(𝑛%/2Z( WXY 3))

APSP and OMv in 𝑂(𝑛)/2Z( WXY3))

incremental/decremental/fully dynamic, amortized/worst-case, 
update/query time for shortest path and reachability problems

dynamic graph algorithms:



More (Algorithmic) Concepts

𝑂[(𝑛)/%) for 3SUM
Decision Trees:

𝑂[(𝑛)/%) for 3SUM
(Co-)Nondeterministic Algorithms:

Nondeterministic SETH

Over the integers, or ℤ], or AND-OR
Polynomials and Circuits:

polynomial multiplication (FFT!), division, interpolation
multipoint evaluation



Modern Algorithms Philosophy

“Fast Matrix Multiplication and Fast Fourier Transform 

are the only non-trivial algorithmic tools that we have.”

“Whenever you design an algorithm, try to prove a matching 

conditional lower bound to show optimality.”



II. Further Directions

1. Hardness Under Multiple Hypotheses



Hardness Under Multiple Hypotheses

so far we identified a reason for the hardness of some problems

what about multiple reasons?

if a problem 𝑄 is SETH-hard and 3SUM-hard and APSP-hard

then it is as hard as it gets

we can forget about improved algorithms any time soon

𝑄 is hard under the following weak conjecture: 

At least one of SETH or 3SUM-H or APSP-H holds



Complexity Inside P

SAT 23 3SUM 𝑛% APSP 𝑛)

ZeroWeightTriangle 𝑛)

MatchingTriangles 𝑛)

NegTriangle 𝑛)

Decide whether there are vertices 𝒊, 𝒋, 𝒌 s.t.

Given a weighted directed graph 𝐺

𝑤 𝑗, 𝑖 + 𝑤 𝑖, 𝑘 +𝑤 𝑘, 𝑗 = 0

„Are there 𝑑 triangles with matching colors“?

Given a directed graph𝐺 with colored nodes, and number 𝑑

Are there colors 𝑎, 𝑏, 𝑐 s.t. 𝐺 contains at least 𝑑 triangles (𝑖, 𝑗, 𝑘)	
where 𝑖 has color 𝑎, 𝑗 has color 𝑏, and 𝑘 has color 𝑐?

[Vassilevska-W.,Williams‘09]

[Abboud,Vassilevska-W.,Yu‘15]



II. Further Directions

2. Ruling out Superpolylogarithmic Improvements



Ruling out Superpolylog Improvements

4 Russians trick: 𝑂(𝑛%/log%𝑛)

OV-hardness:  lower bound  Ω(𝑛%&')

we have seen for Longest Common Subsequence(LCS):

does the polynomial method apply? 

is LCS in time 𝑛%/2Z( WXY 3)?  or 𝑛%/logK(2)𝑛?

how to rule out superpolylogarithmic improvements?

SETH/OVH are too coarse!
OV has superpolylogarithmic improvements!



SAT

Is 𝐹 satisfiable?

𝐹: {0,1}3→ {0,1}

𝑥2 𝑥% 𝑥3…

Need Ω(23) queries, unless we analyze𝐹

Hardness of 𝐹-SAT depends
on our ability to analyze𝐹

𝐹 given by a...

DNF:  polytime

CNF:  SETH

Turing machine:  extremely hard

formula:  harder than SETH, but still easy to work with

𝐹

∧
∨

∧ ⨁ ∧

¬

formula = circuit over AND/OR/NOT 
(and maybe XOR/...), where every
gate has fanout 1, except for inputs

no 23/𝑛K(2)-algorithm known, even for 𝐹 = 𝑛V(2)



Formula-SAT Hardness

LCS

time 23/%𝑛V(2)

reductionFormula-SAT

on 𝑛 variables
formula 𝐹

of length 23/% ⋅ 𝑛V(2)

𝑂(𝑛%&') algorithm2 2&'/% 3 ⋅ 𝑛V 2 	algorithm ⟸

Thm: LCS has no 𝑛%/logK(2)𝑛 algorithm 
unless Formula-SAT has an 23/𝑛K(2) algorithm for 𝐹 = 𝑛V(2). 

[Abboud,Hansen,Vassilevska-W,Williams‘16]

strings 𝑥, 𝑦

size 𝐹 = 𝑛V(2)

𝑛%/logK(2)𝑛 algorithm23/𝑛K 2 	algorithm ⟸

no 23/𝑛K(2) algorithm known, 
even for 𝐹 = 𝑛V(2)

this only works for few problems!



II. Further Directions

3. Hardness Classes



Hardness Classes

the field of „fine-grained complexity“ is very problem-centric

everything evolves around hard problems

what about classes of problems, as in classic complexity?

can we prove hardness/completeness of a problem for a class
w.r.t. fine-grained reductions?



Hardness Classes

Thm: The following are equivalent: [Gao,Impagliazzo‘16]

- ∃𝜀, 𝛿 > 0: OV in dimension 𝑑 ≤ 𝑛I has an 𝑂(𝑛%&') algorithm  (¬OVH)

- ∀𝑘 ≥ 2: for any first-order formula 𝜙 with 𝑘 + 1 quantifiers there exists 𝜀{ > 0
s.t. 𝜙	can be decided in time 𝑂(𝑚;&'} ) on any given graph with 𝑚 edges

class of first-order graph properties:

given a graph 𝐺 with 𝑚 edges

given a first-order formula 𝜙 with 𝑘 + 1 quantifiers

check whether𝜙 evaluates to true on G

e.g. ∃𝑢∃𝑣∃𝑤: 𝐸 𝑢, 𝑣 ∧ 𝐸 𝑣, 𝑤 ∧ 𝐸(𝑢,𝑤)
„does 𝐺 contain a triangle?“

∀𝑢∀𝑣∃𝑤:𝐸 𝑢,𝑤 ∧ 𝐸 𝑤, 𝑣
„does 𝐺 have diameter=2?“

is in time 𝑂(𝑚;)
[Gao,Impagliazzo‘16]



II. Further Directions

4. Multivariate Analysis



Multivariate Analysis

LCS is OV-hard:  lower bound  Ω(𝑛%&')

what if 𝑦 = 𝑚 ≪ 𝑛 = |𝑥|? How fast can we compute LCS(𝑥, 𝑦)?
dynamic programming:  𝑂(𝑛𝑚)

Parameter Setting 𝐿𝐶𝑆(𝛽):  (0 ≤ 𝛽 ≤ 1)
.. is the LCS problem restricted to strings with 𝑚 = Θ(𝑛�)

what is the best running time 𝑛� � ��(2) for 𝐿𝐶𝑆(𝛽) for any 𝛽?

Cor: unless OVH fails, for any 𝛽 any algorithm for 𝐿𝐶𝑆(𝛽) takes time

Ω 𝑛 + 𝑛%�&�(2) = Ω 𝑛 +𝑚%&�(2)

for any 𝑛, 𝑚 = 𝑛� , for any (binary) strings with |𝑥’|, |𝑦’| = 𝑚 − 1:

𝑥 ∶= 	𝑥’		23&|�}|

𝑦:= 𝑦’		2�&|�}|
with length 

|𝑥| = 𝑛
|𝑦| = 𝑚

𝐿𝐶𝑆(𝑥, 𝑦) 	= 	𝐿𝐶𝑆(𝑥’, 𝑦’) +min	{𝑛 − |𝑥’|,𝑚 − |𝑦’|}

Proof:

where 2 is a 
fresh symbol



Multivariate Analysis

LCS is OV-hard:  lower bound  Ω(𝑛%&')

what if 𝑦 = 𝑚 ≪ 𝑛 = |𝑥|? How fast can we compute LCS(𝑥, 𝑦)?
dynamic programming:  𝑂(𝑛𝑚)

Parameter Setting 𝐿𝐶𝑆(𝛽):  (0 ≤ 𝛽 ≤ 1)
.. is the LCS problem restricted to strings with 𝑚 = Θ(𝑛�)

what is the best running time 𝑛� � ��(2) for 𝐿𝐶𝑆(𝛽) for any 𝛽?

Cor: unless OVH fails, for any 𝛽 any algorithm for 𝐿𝐶𝑆(𝛽) takes time

Ω 𝑛 + 𝑛%�&�(2) = Ω 𝑛 +𝑚%&�(2)

Algorithm with time 𝑂[(𝑛 + 𝑚%) exists! [Hirschberg’77]

LCS differs from other similarity measures that take time (𝑛𝑚)2&�(2)
[B.’14, B.,Künnemann’15]



Multivariate Analysis

Parameter Setting 𝐿𝐶𝑆(𝛽):  (0 ≤ 𝛽 ≤ 1)
.. is the LCS problem restricted to strings with 𝑚 = Θ(𝑛�)

what is the best running time 𝑛� � ��(2) for 𝐿𝐶𝑆(𝛽) for any 𝛽?

Cor: unless OVH fails, for any 𝛽 any algorithm for 𝐿𝐶𝑆(𝛽) takes time

Ω 𝑛 + 𝑛%�&�(2) = Ω 𝑛 +𝑚%&�(2)

Algorithm with time 𝑂[(𝑛 + 𝑚%) exists!

Multivariate fine-grained complexity



More Parameters for LCS

more parameters have been studied for LCS since the 70s:

𝑛 = |𝑥| = max	{|𝑥|, |𝑦|}

𝑚 = |𝑦| = min	{|𝑥|, |𝑦|}

𝐿 = LCS(𝑥, 𝑦)

|Σ|

Δ = 𝑛 − 𝐿

𝛿 = 𝑚− 𝐿

.. length of longer string

.. length of shorter string

.. length of LCS

.. size of alphabet Σ

.. number of deletions in 𝑥

.. number of deletions in 𝑦

𝑀	 = 	 {(𝑖, 𝑗)	|	𝑥[𝑖] = 𝑦[𝑗]} .. number of matching pairs

a b b c a d
a 1 1 1 1 1 1
c 1 1 1 2 2 2
d 1 1 1 2 2 3
a 1 1 1 2 3 3
a 1 1 1 2 3 3
b 1 2 2 2 3 3
d 1 2 2 2 3 4



More Parameters for LCS

more parameters have been studied for LCS since the 70s:

𝑛 = |𝑥| = max	{|𝑥|, |𝑦|}

𝑚 = |𝑦| = min	{|𝑥|, |𝑦|}

𝐿 = LCS(𝑥, 𝑦)

|Σ|

Δ = 𝑛 − 𝐿

𝛿 = 𝑚− 𝐿

.. length of longer string

.. length of shorter string

.. length of LCS

.. size of alphabet Σ

.. number of deletions in 𝑥

.. number of deletions in 𝑦

𝑀	 = 	 {(𝑖, 𝑗)	|	𝑥[𝑖] = 𝑦[𝑗]} .. number of matching pairs

a b b c a d
a 1 1 1 1 1 1
c 1 1 1 2 2 2
d 1 1 1 2 2 3
a 1 1 1 2 3 3
a 1 1 1 2 3 3
b 1 2 2 2 3 3
d 1 2 2 2 3 4

𝑑 .. number of dominant pairs

= “entry (𝑖, 𝑗)	is dominant if all entries to the top left of it are strictly smaller”



Known Algorithms

[Hunt,Szymanski’77]

What is the best possible algorithm for any “parameter setting”?

Õ(n+M)

Õ(n+ �m)

Õ(n+ d)

Õ(n+ Lm)

Õ(n+ ��)

[Hirschberg’77]

[Hirschberg’77]

[Apostolico’86]

[Wu,Manber,Myers,Miller’90]

[Wagner,Fischer’74]O(nm)

logfactor improvements:
[Masek,Paterson’80], 
[Apostolico,Guerra’87], 
[Eppstein,Galil,Giancarlo, 
Italiano’92], 
[Bille,Farach-Colton’08], 
[Iliopoulos,Rahman’09]

𝑛 = max	{|𝑥|,|𝑦|} 𝑚 = min	{|𝑥|, |𝑦|}
𝐿 = LCS(𝑥,𝑦) |Σ| alphabet size
Δ = 𝑛 − 𝐿
𝛿 = 𝑚 −𝐿

𝑀 matching pairs
𝑑 dominating pairs



Parameter Settings

let 

parameter setting LCS(𝜶): is the LCS problem restricted to strings 𝑥, 𝑦 with 

m = ⇥(n↵m) L = ⇥(n↵L) |⌃| = ⇥(n↵⌃) etc.(n = |x|)

↵ = (↵m,↵L,↵⌃,↵�,↵�,↵M ,↵d) 2 R7
�0

We have to understand the interdependencies of parameters first!

we always have 𝐿 ≤ 𝑚

so 𝛼  > 𝛼� is contradictory

in this case LCS(𝛼) has only finitely many instances = LCS(𝛼) is trivial

𝑛 = max	{|𝑥|,|𝑦|} 𝑚 = min	{|𝑥|, |𝑦|}
𝐿 = LCS(𝑥,𝑦) |Σ| alphabet size
Δ = 𝑛 − 𝐿
𝛿 = 𝑚 −𝐿

𝑀 matching pairs
𝑑 dominating pairs



Parameter Relations

For any strings 𝑥, 𝑦 we have:

w.l.o.g. every symbol in Σ appears in 𝑥 and in 𝑦
|⌃|  m

M � n

L  m  n

m � �  �  n

d  M

trivial

L  d  Lm

complex dependencies of the parameters!

|⌃|  d  L2|⌃|
d  2L(�+ 1)

L2/|⌃|  M  2Ln

𝑛 = max	{|𝑥|,|𝑦|} 𝑚 = min	{|𝑥|, |𝑦|}
𝐿 = LCS(𝑥,𝑦) |Σ| alphabet size
Δ = 𝑛 − 𝐿
𝛿 = 𝑚 −𝐿

𝑀 matching pairs
𝑑 dominating pairs

up to constants, this is a complete list of relations



Known Algorithms

[Hunt,Szymanski’77]Õ(n+M)

Õ(n+ �m)

Õ(n+ d)

Õ(n+ Lm)

Õ(n+ ��)

[Hirschberg’77]

[Hirschberg’77]

[Apostolico’86]

[Wu,Manber,Myers,Miller’90]

[Wagner,Fischer’74]O(nm)

Best algorithm:

parameter relations:

�  m  n

d  Lm

d  L2|⌃|

d  M

…

Õ(n+min{d, �m, ��})

𝑛 = max	{|𝑥|,|𝑦|} 𝑚 = min	{|𝑥|, |𝑦|}
𝐿 = LCS(𝑥,𝑦) |Σ| alphabet size
Δ = 𝑛 − 𝐿
𝛿 = 𝑚 −𝐿

𝑀 matching pairs
𝑑 dominating pairs



Parameter Settings

a parameter setting is nontrivial if it contains infinitely many instances

iff the target values (𝑛, 𝑛¡¢ , 𝑛¡£ , … ) satisfy our parameter relations (for 𝑛 → ∞)

What is the best possible running time 𝑛� ¡ ��(2) for any nontrivial LCS(𝛼)? 

let 

parameter setting LCS(𝜶): is the LCS problem restricted to strings 𝑥, 𝑦 with 

m = ⇥(n↵m) L = ⇥(n↵L) |⌃| = ⇥(n↵⌃) etc.(n = |x|)

↵ = (↵m,↵L,↵⌃,↵�,↵�,↵M ,↵d) 2 R7
�0

𝑛 = max	{|𝑥|,|𝑦|} 𝑚 = min	{|𝑥|, |𝑦|}
𝐿 = LCS(𝑥,𝑦) |Σ| alphabet size
Δ = 𝑛 − 𝐿
𝛿 = 𝑚 −𝐿

𝑀 matching pairs
𝑑 dominating pairs



Matching Lower Bound

Thm:
Unless OVH fails, for any non-trivial parameter setting LCS(𝛼)

What is the best possible running time 𝑛� ¡ ��(2) for any nontrivial LCS(𝛼)? 

any algorithm takes time at least 

Best algorithm: Õ(n+min{d, �m, ��})

Ω 𝑛 + min 𝑑, 𝛿𝑚, 𝛿Δ 2&�(2)

[B.,Künnemann’16+]

𝑛 = max	{|𝑥|,|𝑦|} 𝑚 = min	{|𝑥|, |𝑦|}
𝐿 = LCS(𝑥,𝑦) |Σ| alphabet size
Δ = 𝑛 − 𝐿
𝛿 = 𝑚 −𝐿

𝑀 matching pairs
𝑑 dominating pairs



III. Open Problems



Major Open Problems

… this is a young field of research! 

1) prove conditional lower bounds for more types of problems

2) relate SAT, 3SUM, APSP or show (more) barriers for such relations

4) explain gap between deterministic / randomized algorithms

5) average case hardness? distributed algorithm? other settings?

3) advance subquadratic approximation algorithms and 
develop tools for hardness of approximation



k-Longest Common Subsequence (k-LCS)

given strings 𝑥2,… , 𝑥;, each of length at most 𝑛, 
compute longest string 𝑧 that is a subsequence of all	𝑥F

natural dynamic program 𝑂(𝑛;)

reduction SAT → k-OV → k-LCS yields lower bound of Ω(𝑛;&')

Open Problem:  which log-factor improvements are possible?

but only for strings over alphabets of size Ω(𝑘)

Open Problem:  prove conditional lower bound Ω(𝑛;&')
for strings over alphabet size 𝑂(1), or even 2

[Abboud,Backurs,V-Williams‘15]



Dynamic Time Warping

3.2 1.4 0.7

2.6 0.3 1.3

2.5 0.7 2.2

2.0 0.4 2.2

0.8 1.8 2.8

0.5 2.1 3.2

𝑃1

𝑃2

natural dynamic programming algorithm: 𝑂(𝑛%)

𝑇 𝑖, 𝑗 = DTW(𝑃2 1. . 𝑖 , 𝑃% 1. . 𝑗 )

𝑇 𝑖, 𝑗 = 𝑃2 𝑖 − 𝑃% 𝑗 +
min 𝑇 𝑖 − 1, 𝑗 , 𝑇 𝑖, 𝑗 − 1 , 𝑇[𝑖 − 1, 𝑗 − 1]

= current distance

last step in 𝑃2 last step in 𝑃% last step in both

for curves 𝑃2,𝑃% = sequencesoverℝ%
same setting as for Frechet distance: DTW is a similarity measure



Dynamic Time Warping

natural dynamic programming algorithm: 𝑂(𝑛%)

for curves 𝑃2,𝑃% = sequencesoverℝ%
same setting as for Frechet distance: DTW is a similarity measure

OV-hardness:  lower bound  Ω(𝑛%&') [B.,Künnemann’15+, Abboud,Backurs,V-Williams‘15]

Open Problem:  log-factor improvement 𝑛%/ log 𝑛 Z 2 ?

Open Problem:  𝑛V(2) −approximation in time 𝑂(𝑛%&')	?

slight improvement:  𝑂(𝑛% log log log 𝑛 / log log 𝑛) [Gold,Sharir‘16]



3SUM

given sets 𝐴, 𝐵, 𝐶 of 𝑛 integers

are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 such that 𝑎 + 𝑏 + 𝑐 = 0?

log-factor improvement:  𝑂(𝑛% ⋅ (WXY WXY 3)
¬

WXY 3
) [Gronlund,Pettie’14]

we showed a simplified version:  𝑂(𝑛% ⋅ XW® WXY WXY 3
WXY 3

)

Open Problem:  𝑛%/2Z( WXY 3) algorithm?



Dynamic Single Source Reachability

we have seen:

incremental SSR in total update 𝑂(𝑚), query 𝑂(1)

decremental SSR in DAGs in total update 𝑂(𝑚), query	𝑂(1)

under OMv, no fully dynamic SSR with update 𝑂(𝑛2&'), query 𝑂(𝑛%&')

decremental SSR in total update 𝑂(𝑚𝑛), query 𝑂(1)

Open Problem:  faster decremental SSR? or lower bound?

fastest known:

decremental SSR in total update 𝑂[(𝑚 𝑛), query 𝑂[(1)



IV. Outro



Oral Exam

on a day in September

please mark possible dates for you in this doodle: 

(up to) 30 minutes

covers whole lecture and all exercises

http://doodle.com/poll/v9bktxdrktv5w98e



End of Course

“Fast Matrix Multiplication and Fast Fourier Transform 

are the only non-trivial algorithmic tools that we have.”

“Whenever you design an algorithm, try to prove a matching 

conditional lower bound to show optimality.”


