Exercise 1 (7 points) Recall the following formal definition of subcubic reductions: Let A and B be computational problems with a common size measure n on inputs. We say that there is a subcubic reduction from A to B if there is an algorithm A with oracle access to B satisfying three properties:

- For every instance x of A, $A(x)$ solves the problem A on x.
- For some $\gamma > 0$, A runs in $O(n^{3-\gamma})$ time on instances of size n.
- For every $\varepsilon > 0$ there is a $\delta > 0$ such that for every instance x of A of size n we have $\sum_i n_i^{3-\varepsilon} \leq n^{3-\delta}$, where n_i is the size of the ith oracle call to B in $A(x)$.

We use the notation $A \leq B$ to denote the existence of a subcubic reduction from A to B. Prove that subcubic reductions are transitive. In other words, prove that if $A \leq B$ and $B \leq C$ then $A \leq C$.

Solution:
By definition, we have:

$$(D_1)$$ There is some $\gamma > 0$ such that for every $\epsilon > 0$ there exists a $\delta > 0$ so that for large enough n there exist $\{n_i\}$ with $\sum_i n_i^{3-\varepsilon} \leq n^{3-\delta}$ and an oracle algorithm A_B for A which on instances of size n runs in $O(n^{3-\gamma})$ time and makes oracle calls to B with sizes n_i.

(D2) There is some $\gamma' > 0$ such that for every $\epsilon' > 0$ there exists a $\delta' > 0$ so that for all large enough n_i there exist $\{n_{ij}\}$ with $\sum_j n_{ij}^{3-\epsilon'} \leq n_i^{3-\delta'}$ and an oracle algorithm B_C for B which on instances of size n_i runs in time $O(n_i^{3-\gamma'})$ and makes oracle calls to C with sizes n_{ij}.

(D3) We will show that: There is some $\gamma'' > 0$ such that for every $\epsilon'' > 0$ there exists a $\delta'' > 0$ so that for all large enough n there exist $\{n_{ij}\}$ with $\sum_{ij} n_{ij}^{3-\epsilon''} \leq n^{3-\delta''}$ and an oracle algorithm A_C for A which on instances of size n runs in time $O(n^{3-\gamma''})$ and makes oracle calls to C with sizes n_{ij}.

Let $\epsilon'' > 0$ be given. Now we just replace oracle calls for B in A_B by oracle algorithm B_C. This gives us the desired oracle algorithm A_C, note that it only uses oracle calls to C. The running time of A_C is $O(n^{3-\gamma''} + \sum_i n_i^{3-\gamma'})$ and it makes oracle calls to C with input sizes n_{ij}. By D_1, there exists some $\alpha > 0$ such that $\sum_i n_i^{3-\gamma'} \leq n^{3-\alpha}$. By setting $\gamma'' = \min(\alpha, \gamma')$, we get that A_C runs in time $O(n^{3-\gamma''})$.

Now we consider the quantity $\sum_i \sum_j n_{ij}^{3-\epsilon''}$. Let $\beta > 0$ be the value corresponding to $\epsilon'' > 0$, as in D_2. Thus gives us that $\sum_j n_{ij}^{3-\epsilon''} \leq n_i^{3-\beta}$. Thus $\sum_i \sum_j n_{ij}^{3-\epsilon''} \leq \sum_i n_i^{3-\beta}$. Now we pick $\epsilon = 3\beta$ in D_1. This gives us a δ'' such that $\sum_i \sum_j n_{ij}^{3-\beta} \leq n^{3-\delta''}$. Thus $\sum_i \sum_j n_{ij}^{3-\epsilon''} \leq n^{3-\delta''}$.

Exercise 2 (8 points) The Metricity Problem is defined as follows: Given an $n \times n$ matrix A with entries in $\{0, \ldots, |v|^c\}$ for some constant $c > 0$, decide whether $\forall i, j, k \in [n]: A_{ij} \leq A_{ik} + A_{kj}$. Prove that Metricity Problem is equivalent to APSP under subcubic reductions.

Hint: Solve it using Min-Plus Product and reduce Negative Triangle to it.

Solution:
In the Min-Plus problem we compute $\min_k(A_{ik} + A_{kj})$ for all $i, j \in [n]$. Hence to check $\forall i, j, k \in [n]: A_{ij} \leq A_{ik} + A_{kj}$, it is enough to check if $A_{ij} \leq \min_k(A_{ik} + A_{kj})$. This checking only takes $O(n^2)$ time if we have solved the Min-Plus problem. Thus there is a subcubic reduction from Metricity Problem to Min-Plus problem.

Now we show the other direction. Let $G = (V, E)$ be a given graph with edge weights $w : E \rightarrow Z$ such that for all $e \in E$, $w(e) \in [-M, M]$ for some $M > 0$. Build a tripartite graph with n node partitions I, J, K and edge weights $W(\cdot)$ so that for any $i \in I, j \in J, k \in K$, $W(i, j) = 2M + w(i, j), W(j, k) = 2M + w(j, k)$ and $W(i, k) = 4M - w(k, i)$. For all pairs of distinct nodes a, b so that a, b are in the same partition, let $W(a, b) = 2M$. Finally, let $W(x, x) = 0$ for all x. For any three vertices x, y, z in the same partition $W(x, y) + W(y, z) = 4M > 2M = W(x, z)$.

Consider triples x, y, z of vertices so that x and y are in the same partition and z is in a different partition. We have: $W(x, z) + W(z, y) \geq M + M = 2M = W(x, y)$ and $W(x, z) - W(y, z) \leq 2M = W(x, y)$.

With little more effort, we can also show that the only possible triples which could violate the triangle inequality are triples with $i \in I, j \in J, k \in K$, and W is not a metric iff there exist $i \in I, j \in J, k \in K$ such that $W(i, j) + W(j, k) < W(i, k)$. That is, W is not a metric if and only if $w(i, j) + w(j, k) + w(k, i) < 0$ and i, j, k is a negative triangle in G.

Exercise 3 (9 points) Recall the following problem defined on the previous exercise sheet:
Hitting Set Problem: Given two lists of \(n \) subsets over a universe \(U \) of size \(d \), determine if there is a set in the first list that intersects every set in the second list, i.e. a “hitting set”.

The HSH (Hitting set Hypothesis) states that the Hitting Set Problem cannot be solved in time \(O(n^{2-\epsilon}) \cdot \text{poly}(d) \). Prove that HSH implies OVH.

Hint: In the lecture, we showed a reduction from All-Pairs-Negative-Triangle to Negative-Triangle. The same kind of reduction can work here.

Solution:
Assume that OVH fails. Thus Orthogonal vectors can be solved in time \(O(n^{2-\epsilon} \cdot \text{poly}(d)) \).

Let \(A, B \) be an instance of Hitting Set where \(|A| = |B| = n \). Let \(s \) be a parameter to be set later. Partition \(A \) into \(s \) sets \(A_1, \ldots, A_s \) of size at most \(\lceil \frac{n}{s} \rceil \) each. Similarly, partition \(B \) into \(B_1, \ldots, B_s \) of size at most \(\lceil \frac{n}{s} \rceil \) each. Now, for every choice of \(i, j \in [s] \) in turn: while \((A_i, B_j) \) contains an orthogonal pair \((u,v)\), remove \(u \) from \(A \) (and hence from all \(A_k \)) and ask about \((A_i, B_j)\) again; if no orthogonal pair is found, continue to the next choice of \((i,j)\). If at the end of this procedure \(A \) contains some \(u \), then \(u \) must be nonorthogonal to all vectors in \(B \), and hence the this Hitting Set instance is a “yes” instance. Otherwise, if \(A \) is empty, then every \(u \in A \) was orthogonal to some \(v \in B \) and the Hitting Set instance is a “no” instance.

The running time is as follows: every call to the Orthogonal vectors problem either returns an orthogonal pair \((u,v)\) or determines that no such pair exists in \(A_i \times B_j \). The number of times an orthogonal pair can be returned is at most \(s \) since when \((u,v)\) is discovered, \(u \) is removed from \(A \). On the other hand, each \((A_i, B_j)\) instance can be a “no”-instance of Orthogonal vectors at most once, so that the number of calls that return a “no” is at most \(s^2 \). Thus, if we set \(s = \sqrt{n} \), the number of instances created of Orthogonal vectors is at most \(2n \) and their sizes are all at most \(2\sqrt{n} \). Thus Hitting Set can be solved in time \(\sum_{i=1}^{2n} (\text{poly}(d) \cdot (\sqrt{n})^{2-\epsilon}) \leq O(n^{2-\frac{\epsilon}{2}} \cdot \text{poly}(d)) \).

Thus failure of OVH implies failure of HSH. Hence HSH implies OVH.

Exercise 4 (16 points) Recall the following problem from the lecture. Let \(A \) be a matrix with entries in \(\{[n^c],-[n^c]+1, \ldots, [n^c]\} \) for some constant \(c > 0 \). In the Maximum Submatrix problem the task is to find the maximum sum of all entries of any submatrix of \(A \). A submatrix here means a choice of some consecutive rows and some consecutive columns.

a) (7 points) Describe an \(O(n^3) \) time algorithm for the maximum submatrix problem (solve it directly without any reductions).

Solution:
Let \(A \) be the given matrix. We first compute all \(n^2 \) prefix sums of \(A \), i.e., all sums of submatrices with one corner equal to the upper left corner of \(A \). This can be done in time \(O(n^2) \). We shall construct \(\binom{n}{2} + n \) one dimensional arrays of length \(n \). Each such array corresponds to a choice of a pair \((k,l)\) of integers from \([n]\), where \(k \leq l \). Array corresponding to pair \((k,l)\) would equal to sum of rows of \(A \) from \(k \) to \(l \). In case \(k = l \), this array would be just the \(k \)-th row of \(A \). All these arrays can be constructed in \(O(n^3) \) time, using the precomputed prefix sums. Now it is clear that maximum sub-sub-matrix would correspond to a maximum sum subarray from one of these \(O(n^2) \) arrays. And this problem of maximum subarray can be solved in \(O(n) \) time using Kadane’s algorithm. See http://en.wikipedia.org/wiki/Maximum_subarray_problem for this algorithm. Thus the whole algorithm runs in time \(O(n^3) \). See also
b) (9 points) A submatrix of A is called **centered** if it contains the center (entry $A_{\lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor}$) of matrix A. Now the problem is to find a **Maximum Centered Submatrix**. Show that if APSP has subcubic algorithm then so does this problem, i.e., show that there is subcubic reduction from this problem to APSP.

Solution:

A centered submatrix can be described by quadruple (x_1, y_1, x_2, y_2) of integers from 1 to $\frac{n}{2}$. The centered submatrix corresponding to quadruple (x_1, y_1, x_2, y_2) looks like below:

![Centered Submatrix Diagram](image.png)

Sum of elements in the centered submatrix can be divided into four quadrant I, II, III, IV, as shown above. Now we create a graph G which would have 5 layers $\frac{n}{2}$ of nodes. Edges would be only between consecutive layers. First and fifth layer corresponds to choice of x_1. Three layers in between first and third layer correspond to choices of y_1, x_2 and y_2. Weight of edge between consecutive layers would be the negative of weight of corresponding. It can be summarized as below.

![Graph Diagram](image.png)

Now it is clear that value of maximum centered submatrix is negative of value of shortest path from some x_i in first layer to same x_i in last layer. Thus Maximum Centered Submatrix can be reduced to APSP by subcubic reductions.

Exercise 5 (10 Bonus points) Let $G = (V,E)$ be a directed weighted graph with edge weights in $\{-\lfloor n^c \rfloor, \ldots, \lfloor n^c \rfloor\}$. The **Betweenness Centrality** of a given node $v \in V$ is the number of pairs s, t such that v lies on a shortest path from s to t:

$$BC(v) = |\{(s,t) \mid s, t \in V \setminus \{v\}, s \neq t: d(s,t) = d(s,v) + d(v,t)\}|$$
Show that computing $BC(v)$ is equivalent to APSP under subcubic reductions.

Hint: Modify the reductions between Radius and APSP shown in the lecture.

Solution:

First we reduce negative triangle to Betweenness Centrality.

Let $(G = (V, E), w)$ be the input instance of Negative Triangle. In particular, $n = 2^k + 1$ is the number of nodes of G. WLOG assume that weight of any negative triangle is atmost -2 (multiply weights by 2 to achieve this).

We construct a weighted directed graph (G', w') as follows. Graph G' contains four sets of nodes $I, J, K,$ and L (layers). Each layer contains a copy of each node $v \in V$. Let v_I be the copy of v in I, and define analogously v_J, v_K and v_L. Let $Q = \Theta(M)$ be a sufficiently large integer. For each edge $uv \in E$, we add to G' the edges $u_Iv_J, u_Jv_K,$ and u_Kv_L, and assign to those edges weight $2Q + w(uv)$.

We add to G' a dummy node b, and edges v_Ib and bv_L for any $v \in V$, of weight $3Q - 1$ and $3Q$, respectively.

We also add to G' two sets of nodes $Z = \{z_0, \ldots, z_k\}$ and $O = \{o_0, \ldots, o_k\}$. For any $v \in V$, we add the following edges of weight $3Q - 1$ to G'. Let v_0, v_1, \ldots, v_k be a binary representation of v (interpreted as an integer between 0 and $n - 1 = 2^k - 1$). For each $j = 0, \ldots, k$, we add edges v_Iz_j and o_jv_L if $v_j = 0$, and edges v_Io_j and z_jv_L otherwise.

We also add edges o_jz_j and z_jo_j of weight $3Q - 1$ for $j = 0, \ldots, k$.

Observe that $k = O(\log n)$, hence there are $O(n \log n)$ edges of the latter type.

On (G', w') we compute $BC(b)$, and output YES to the input Negative Triangle instance iff $BC(b) < n$.

Let us prove its correctness. The only paths passing through b are of the form s_I, b, t_L and have weight $6Q - 1$. For $s \neq t$, there must exist a node $w \in Z \cup O$ such that s_I, w, t_L is a path of cost $6Q - 2$. Therefore, the only pairs of nodes that can contribute to $BC(b)$ are of the form (s_I, s_L). The shortest path of type s_I, v_J, w_K, s_L has weight at most $6Q - 2$ if s belongs to a negative triangle, and at least $6Q$ otherwise. Therefore $BC_{s_I, s_L}(b) = 1$ if s does not belong to any negative triangle, and $BC_{s_I, s_L}(b) = 0$ otherwise. The correctness follows.

For the other direction, we can easily reduce Betweenness Centrality to APSP.