Randomized Algorithms and Probabilistic Analysis of Algorithms
Summer 2016
Exercise Set 3

Exercise 1: (5 Points)
We now consider the more general balls-into-bins setting with \(m \) balls being thrown to \(n \) bins, \(n \neq m \). Show that the highest loaded bin contains \(O\left(\frac{mn}{n} + \log n\right) \) balls with high probability.

Exercise 2: (5 Points)
Consider a random variable \(X = X_1 + \ldots + X_n \) such that each \(X_i \) is independent and identically distributed with \(\Pr[X_i = 1] = p, \Pr[X_i = 0] = 1 - p \). To bound \(\Pr[X \geq (1 + \delta)E[X]] \), you can use Markov’s inequality, Chebyshev’s inequality, and the Chernoff bound. State the resulting bounds in terms of \(n \) and \(p \). For each of the three inequalities and each \(n \), give an example value of \(p \) and \(\delta \) such that its bound is the strongest of all three.

Exercise 3: (5 Points)
(Exercise 6.1. in Mitzenmacher/Upfal) Consider an instance of SAT with \(m \) clauses, where every clause has exactly \(k \) literals.

(1) Give a Las Vegas algorithm that finds an assignment satisfying at least \(m(1-2^{-k}) \) clauses, and analyze its expected running time.

(2) Give a derandomization of the randomized algorithm using the method of conditional expectations.

Exercise 4: (5 Points)
(Exercise 6.10 in Mitzenmacher/Upfal) A family \(\mathcal{F} \) of subsets of \(\{1, \ldots, n\} \) is an antichain if no set in \(\mathcal{F} \) is properly contained in another set of \(\mathcal{F} \).

(a) Give an example of an antichain of cardinality \(\binom{n}{\lfloor n/2 \rfloor} \).

(b) Let \(f_k \) be the number of sets in \(\mathcal{F} \) of size \(k \). Show that

\[
\sum_{0 \leq k \leq n} \frac{f_k}{\binom{n}{k}} \leq 1.
\]

(Hint: Choose a random permutation of the numbers from 1 to \(n \), and let \(X_k = 1 \) if the first \(k \) numbers in your permutation yield a set in \(\mathcal{F} \). Let \(X = \sum_{0 \leq k \leq n} X_k \). What can you say about \(X \)?)

(c) Prove that \(|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor} \) for every antichain \(\mathcal{F} \).
Exercise 5:
(Exercise 6.16 in Mitzenmacher/Upfal) If
\[
4 \binom{k}{2} \binom{n}{k-2} 2^{1-\binom{k}{2}} \leq 1,
\]
then it is possible to color the edges of K_n with two colors such that it has no monochromatic K_k subgraph. Use the Lovasz local lemma.