
Lecture 10

Consensus

One of the key components in the self-stabilizing pulse synchronization algo-
rithm we will see two lectures from now is consensus. Consensus is a funda-
mental and extremely well-studied fault-tolerance primitive. There are a large
number of variants of the problem, varying in terms of the model and the re-
quirements on the solution. The common theme is the following question: In
a system with faults, how can the non-faulty nodes agree on a decision that is
consistent with given inputs?

Today, we study a very basic formulation of the consensus problem. We
assume a synchronous system (like in Chapter 5 for approximate agreement)
with n nodes and f < n/3 Byzantine faults, where nodes have unique identifiers
1, . . . , n known to all nodes. Each node is given a binary input bi 2 {0, 1}. To
solve (binary) consensus, an algorithm must compute output values oi 2 {0, 1}

at all correct nodes i 2 Vg meeting the following conditions:

Agreement: There is o 2 {0, 1} so that oi = o for all i 2 Vg. We refer to o as
the output of the consensus algorithm.

Validity: If there is b 2 {0, 1} so that for all i 2 Vg it holds that bi = b, then
o = b.

Termination: There is r 2 N satisfying that each i 2 Vg terminates and outputs
oi by the end of round r.

In general, the round r when all correct nodes have terminated may depend
on the execution. However, we are interested in algorithms which guarantee
termination within R(f) 2 N rounds, regardless of the inputs and the behavior
of faulty nodes. We refer to R(f) as the running time or round complexity of
the algorithm.

Remarks:

• For f � n/3, no algorithm solves consensus deterministically. The reasons
are very similar to what we saw in Chapter 4.

• Even randomized algorithms fail with a large probability. One could say
that the n/3 barrier is “hard.” However, under cryptographic assumptions
one can “force” faulty nodes to communicate consistently (either not send-
ing a message or sending the same to everyone), so long as f < n/2. Then,
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104 LECTURE 10. CONSENSUS

in the synchronous model, the task is trivial: All nodes broadcast their
input, and choose the output as a function of the received values ensuring
validity.

• Beside the round complexity, we care about the amount of communication.
Relevant criteria here are the maximum message size (i.e., the number of
bits in the largest message an algorithm uses) and the number of bits
nodes send in total.

10.1 The Phase King Algorithm

Algorithm 10.1: Phase King Algorithm at node i 2 Vg. Each broad-
cast takes one round. Note that faulty nodes are not required to broad-
cast, i.e., they can send conflicting messages to di↵erent nodes.

1 opi := bi

2 for j = 1 . . . f + 1 do

3 // first broadcast
4 strong := 0
5 broadcast opi (also to self)
6 if received at least n � f times b 2 {0, 1} then

7 opi := b
8 strong := 1
9 // second broadcast

10 if strong = 1 then

11 broadcast opi

12 if received fewer than n � f times opi then

13 strong := 0
14 // king’s broadcast part I
15 if i = j and received at least f + 1 times b 2 {0, 1} then

16 broadcast b
17 // king’s broadcast part II
18 if i = j and received at most f times b 2 {0, 1} then

19 broadcast opi

20 // if not sure, obey the king
21 if strong = 0 and received b 2 {0, 1} from node j then

22 opi := b
23 return opi

In the above algorithm, we refer to one iteration of the loop as a phase.

Lemma 10.1. If, for some b 2 {0, 1} and all i 2 Vg, opi = b at the beginning

of the phase, then the same holds at the end of the phase.

Proof. As |Vg| � n � f , each i 2 Vg will not change opi and set strong to 1
after the first broadcast. Thus, in the second broadcast, |Vg| � n� f nodes will
broadcast b, and all correct nodes will maintain strong = 1. Thus, opi is not
changed by the king’s broadcast.

Corollary 10.2. Algorithm 10.1 satisfies validity.
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Proof. Suppose bi = b for some b 2 {0, 1} and all i 2 Vg. Then each i 2 Vg

initializes opi := b, which by inductive use of Lemma 10.1 never changes. Thus
each i 2 Vg outputs b.

Lemma 10.3. Suppose node j 2 Vg. Then there is some b 2 {0, 1} so that

opi = b for all i 2 Vg at the end of phase j.

Proof. Fix the phase to be j. We claim that there is b 2 {0, 1} satisfying that
each i 2 Vg with strong = 1 after the first broadcast satisfies opi = b. Otherwise,
as correct nodes broadcast, it would hold that

2n � 2f = 2(n � f)  |Vg| + 2(n � |Vg|) = 2n � |Vg| ,

i.e., |Vg|  2f < n � f , as f < n/3 —which implied that there are n � |Vg| > f
faulty nodes.

Thus, only faulty nodes may send a value di↵erent from b in the second
broadcast. We distinguish two cases. The first is that there is no i 2 Vg

with strong = 1 after the second broadcast. In this case, each i 2 Vg sets
opi := b0

2 {0, 1}, where b0 is the value broadcasted by the king, i.e., node j.
The other case is that some node received n � f times b in the second

broadcast, the king (i.e., node j) received at least n � 2f � f + 1 times b. On
the other hand, there are at most f faulty nodes, so the king did not receive
more than f times 1 � b. It follows that the king broadcasts b in the king’s
broadcast. As f < n � f , any i 2 Vg with opi = 1 � b satisfies that strong = 0
when receiving this message and sets opi := b.

Corollary 10.4. Algorithm 10.1 satisfies agreement.

Proof. As there are at most f faults, [f + 2] \ Vg 6= ;. Let j 2 [f + 2] \ Vg.
By Lemma 10.3, at the end of phase j, we have that there is some b 2 {0, 1} so
that opi = b for all i 2 Vg. By inductive use of Lemma 10.1, these variables do
not change any more. Hence all i 2 Vg output b.

Theorem 10.5. Algorithm 10.1 solves binary consensus in the synchronous

model. It runs for R(f) = 3(f+1) 2 O(f) rounds and broadcasts 1-bit messages.

Proof. Agreement and validity hold by Corollary 10.4 and Corollary 10.2, re-
spectively. The running time bound follows from the facts that each phase
takes three rounds, one for each broadcast, and that there are f + 1 phases.
The message size bound is immediate from the pseudocode.

Remarks:

• Depending on the precise model of communication, message size may also
be 2 bits; the bound above exploits the option of sending no message,
which may not always be possible.

• The message size is trivially optimal — but that does not mean the overall

number of communicated bits is.

• Deterministic algorithms need to send ⌦(nf) bits, which follows from the
simple observation that each correct node needs to receive more than f
bits to even know that anyone else would pick a certain output value.
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• The running time is asymptotically optimal: no algorithm can be faster
than f +1 rounds in the worst case. We will show this later in this lecture.

• Both the bit complexity and running time lower bound can be beaten by
randomized algorithms; this is beyond the scope of this lecture, though.

10.2 Recursive Phase King

The Phase King protocol is doing well in terms of running time and resilience,
i.e., f . However, it uses much more communication than the (trivial) lower
bound of ⌦(nf) requires. We can overcome this by avoiding to have all nodes
communicate to each other for f times. The key to achieving this is to make sure
that the “king” is more likely to be reliable. We do this by calling the protocol
on roughly half of the participating nodes. There are not enough faulty nodes to
make both instances fail, and in the recursive calls, fewer nodes need to send and
receive messages. In the following recursive variant of the protocol, “broadcast”
means to sent a message to all nodes participating in the instance.

Lemma 10.6. Algorithm 10.2 satisfies agreement and validity.

Proof. We reason similarly to our analysis of Algorithm 10.1, with the di↵erence
that the role of the “king” is now filled by V 0. We show the claim by induction
on |V |; it is trivial for |V | = 1. For |V | > 1, observe that the statement of
Lemma 10.1 can be shown analogously for Algorithm 10.2.

Next, note that f is the number of faults we expect Algorithm 10.2 to with-
stand. If |V | > 1, define that a recursive call is successful if |V 0

| > 3|V 0
\ Vg|,

i.e., there are few enough faults such that validity and agreement hold for the
recursive call by the induction hypothesis. We show that at least one of the two
recursive calls is successful. To this end, recall that for j = 1 V 0 is chosen such
that the recursive call is successful, if |V 0

\Vg|  d(f �1)/2e. Concerning f = 2,
note that

3
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Hence, the second recursive call is successful, if |V 0
\Vg|  b(f � 1)/2c. Overall,
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faults, at least one of the recursive calls is successful.
Now recall Lemma 10.3. Instead of requiring that j 2 Vg, we instead demand

that the jth recursive call succeeds. We proceed as in the proof of Lemma 10.3
until the case distinction. If there is no correct node with strong = 1, then
by the agreement property, all correct nodes in V 0 broadcast the same value
b 2 {0, 1}, and because |V 0

| > 3|V 0
\ Vg|, this is for each node the majority

value received from nodes in V 0. Thus, each node sets opi = b, as desired. On
the other hand, if there is a correct node i with strong = 1, then the same
reasoning as in Lemma 10.3 shows that each node in V 0

\ Vg uses input opi

for the recursive call. By validity, this means that this is the output of the
recursive call, which is broadcasted to all nodes by the majority of nodes in
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Algorithm 10.2: Recursive Phase King Algorithm at node i 2 Vg.
For simplicity, recursive calls on k nodes assume the identifiers to be
{1, . . . , k}.

1 if |V | = 1 then

2 return bi

3 opi := bi

4 for j = 1, 2 do

5 strong := 0
6 broadcast opi (also to self)
7 if received at least n � f times b 2 {0, 1} then

8 opi := b
9 strong := 1

10 if strong = 1 then

11 broadcast opi

12 if received fewer than n � f times opi then

13 strong := 0
14 // recursive call
15 f := dn/3e � 1
16 if j = 1 then

17 V 0 := {1, . . . , 3d(f � 1)/2e + 1}

18 else

19 V 0 := {3d(f � 1)/2e + 2, . . . , |V |}

20 if i 2 V 0
then

21 b0

i := 0
22 if received at least f + 1 times 1 then

23 b0

i := 1
24 denote by o0

i the output of recursive call on node set V 0 with
inputs b0

i

25 broadcast o0

i

26 if strong = 0 then

27 set opi to majority value received from nodes in V 0 (breaking a
tie arbitrarily)

28 return opi

V 0. We conclude that Lemma 10.3 applies to Algorithm 10.2 with the above
modification to the statement.

As we have also shown that at least one of the recursive calls succeeds,
agreement and validity follow as in Corollaries 10.2 and 10.4, respectively.

Lemma 10.7. Algorithm 10.2 terminates in O(n) rounds.

Proof. We claim that the total number of (recursive) calls of Algorithm 10.2 is
2n� 1. This follows from the fact that the resulting binary recursion tree has n
leafs (the instances with a single node) and each inner node except for the root
has degree 3, i.e., the number of leaves equals the number of inner nodes plus 2.

As, apart from the recursive calls, each instance requires 6 rounds, the claim
follows.
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Lemma 10.8. The total number of bits communicated by the nodes in Vg when

executing Algorithm 10.2 is O(n2).

Proof. Denote by B(n) the number of bits communicated in an instance with
n nodes. Clearly, in six rounds of communication, at most 6n2 bits are sent.
Hence, B(n)  6n2 +B(n1)+B(n2), where n1 +n2 = n. Note that in the algo-
rithm f 2 n/3+⇥(1) and, in each of the two recursive calls, |V 0

| 2 3f/2+⇥(1).
Hence, if n is at least a su�ciently large constant, we have that max{n1, n2} 

2n/3. Otherwise, the remaining number of recursive calls is constant, and we
can bound B(n) 2 O(n2). Therefore, B(n) 2 2B(2n/3) + O(n2) for all n 2 N.
By the master theorem, this implies that B(n) 2 O(n2).

Theorem 10.9. Binary consensus in systems with f < n/3 faults can be solved

in O(f) rounds with 1-bit messages, where the total number of communicated

bits is O(nf).

Proof. For f 2 ⌦(n), this is shown for Algorithm 10.2 by Lemmas 10.6, 10.7,
and Lemma 10.8. For smaller values of f , run the algorithm on 3f + 1 nodes,
have them broadcast their output, and let each node output the majority value.
This adds one round and O(fn) bits to the previously spent O(f) rounds and
O(f2) bits.

10.3 Running Time Lower Bound

As promised earlier, we prove now that any (deterministic) consensus algorithm
must run for at least f + 1 rounds in the worst case. In fact, we will show this
for a much weaker fault model: crash faults.

Definition 10.10 (Crash Faults). If node v 2 V crashes in round r 2 N, it

operates like a non-faulty node in rounds 1, . . . , r � 1, does nothing at all in

rounds r+1, r+2, . . ., and in round r sends an arbitrary subset of the messages

it would send according to the algorithm.

Crashing nodes fail in a well-organized fashion. They do not lie, we do not
have to care about getting them up to speed again later, and by requiring that
nodes always send messages to each other in each round, nodes will learn that
a node failed from not receiving a message from the node. None of this a↵ects
the worst-case running time lower bound in any way — regardless of whether we
consider Byzantine or crash faults, the bound of f + 1 rounds turns out to be
tight.

We will show this lower bound now by a straightforward inductive argument.
The key ingredient is the following definition.

Definition 10.11 (Pivotal Nodes). Observe that an execution in the synchronous

model with crash faults is fully determined by specifying the node inputs and,

for each node, whether it crashes and, if so, in which round and which of its

messages of this round get sent. Given an execution E of a consensus algorithm

with at most n � 2 crash faults and a node v 2 V that does not crash in E,

we call v pivotal in round r (of E) if changing E by crashing v in round r of

E without v sending any messages results in an execution with di↵erent output

(the execution does have an output, because at least one node does not crash).
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In order to anchor the induction, we need to show that such nodes exist.

Lemma 10.12. There is a fault-free execution with a node that is pivotal in

round 1.

Proof. Consider executions Ei, i 2 [n + 1], which are fault-free with node j 2 V
having input 0 if j > i and input 1 otherwise. By validity, E0 has output 0 and
E1 has output 1. Thus, there must be some i 2 [n] with the property that Ei

has output 0 and Ei+1 has output 1. Consider the execution E
0 obtained by

crashing node i + 1 in round 1, without i + 1 getting any messages out. If E
0

has output 0, i + 1 is pivotal in round 1 of execution Ei+1; if E
0 has output 1,

i + 1 is pivotal in round 1 of execution Ei.

The induction step works the same way, except that the inputs are replaced
by, for each node, the decision whether the pivotal node crashing in round r
sends a message to the node or not.

Lemma 10.13. Suppose 0  f  n � 3 and E is an execution with f failing

nodes, one in each round 1, . . . , f , that has a pivotal node in round f +1. Then

there is an execution E
0
which di↵ers from E only in that this pivotal node

crashes in round f + 1 and satisfies that there is a pivotal node in round f + 2.

Proof. For i 2 [n + 1], define Ei by having the pivotal node of E crash in round
f + 1 and succeed in sending its message for that round to node j 2 {1, . . . , n}

if and only if j > i. As we crashed a pivotal node, we know that E0 and En

have di↵erent outputs. Thus, there must be some i for which Ei and Ei+1 have
di↵erent outputs. Now consider the executions E

0

i and E
0

i+1 obtained from Ei and
Ei+1, respectively, in which node i + 1 crashes in round f + 2 without sending
any messages. The only di↵erence between these executions is whether i + 1
received the message from the crashing node in round f +1 or not; as i+1 does
not get a message out telling anyone of this di↵erence, the outputs of E

0

i and
E

0

i+1 are the same. Thus, either Ei and E
0

i have di↵erent outputs or Ei+1 and
E

0

i+1 have di↵erent outputs, i.e., either i + 1 is pivotal in round f + 2 of Ei or it
is pivotal in round i + 1 or Ei+1.

Corollary 10.14. Any consensus algorithm has an execution with a pivotal

node in round min{f, n � 2}.

Theorem 10.15. Any consensus algorithm has worst-case running time at least

min{f + 1, n � 1}.

Proof. Consider the execution E with a pivotal node in round min{f, n � 2}

guaranteed to exist by Corollary 10.14, as well as the execution E
0 obtained

by crashing the pivotal node in round min{f, n � 2}. The two executions have
di↵erent output, but at all nodes but the pivotal one, the only di↵erence to be
observed before round min{f +1, n�1} is whether the respective message from
the pivotal node in round min{f, n � 2} was received or not.

Assume for contradiction that, in both executions, the (at least two) non-
crashed nodes terminate by the end of round min{f, n� 2}. Let i, j 2 V be two
such nodes crashing in neither E nor E

0. These nodes must also terminate in
the execution E

00 in which the pivotal node sends its message to i, but does not
send its message to j: To i, this execution is indistinguishable from E before
round min{f + 1, n � 1}, and for j it is indistinguishable from E . However, this
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indistinguishability implies that they also output the same values as in E and
E

0, respectively. As these values di↵er, this violates agreement and hence is a
contradiction. We conclude that our assumption must be wrong and there is
some execution of the algorithm in which not all nodes terminate before round
min{f + 1, n � 1}.

Remarks:

• The above proof was for binary consensus, but it also works if more than
two output values are possible. The salient point is that there are di↵erent
outputs!

• The same arguments apply even if we restrict the fault model further.

We could require that, in each round, nodes send their outgoing messages
in some specific order; the algorithm could even choose. Thus, a crash
would not result in an arbitrary subset of nodes receiving their messages,
but rather a prefix of the message sequence being received. Still, the same
lower bound applies, with the same proof, where the only di↵erence is that
the order in which we list the nodes when defining executions is given by
the pivotal nodes’ sending sequence for the respective round.

• As mentioned before, randomization can result in faster algorithms.

Bibliographic Notes

Consensus and its variants is a central problem in distributed computing. Thus,
any list of references would be no more than a scratch in the tip of the iceberg.
Some books addressing the topic are [Lyn96, Ray10]. The Phase King protocol
by Berman, Garay, and Perry was introduce in [BGP89]. The recursive version
is provided in [BGP92]. The time lower bound was shown by Fischer and
Lynch [FL82].

A lower bound of ⌦(nf) on the message complexity is shown in [DR85].
Arguably, this bound is trivial, but the interesting part is that the paper shows
a tight bound of ⇥(n + f2) on the number of messages required with crypto-
graphic signatures. In this case, the total number of bits is still ⌦(nf), but the
signatures permit to prove that an output is valid with a single message. As a
remark on connectivity requirements, both with and without cryptography node
degrees must be larger than f . However, without cryptography, it’s not hard to
see that the majority of neighbors of each non-faulty nodes must be non-faulty,
while with cryptographic signatures, it is su�cient, if the network is still con-
nected when removing faulty nodes. With cryptographic assumptions, it is also
su�cient if f < n/2. Naturally, all of this requires the ability to perform de-
coding and encoding operations, cryptographic hardness assumptions (i.e., the
adversary can’t break protocols by brute force), and that the adversary can’t
directly obtain information about internal states of correct nodes.
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