
Lecture 9

Self-Stabilization

So far we have considered permanently damaged (Byzantine) nodes. What
if faults are transient? There are plenty of causes for such transient faults:
radiation, power fluctuations, etc. One way of dealing with transient faults
is to just consider the nodes undergoing faults becoming Byzantine, but then
this may be to pessimistic: after the transient faults cease, they can recover a
correct state and be good citizens again. Also, we may be able to recover from
n/3 or more nodes undergoing transient faults. In fact, we want that the system
recovers even if all nodes fail and f < n/3 of them remain faulty!

But what does “recover” from transient faults mean? We need to capture this
in a way enabling us to prove (or disprove) this property for a given algorithm.

Definition 9.1 (Self-Stabilization). Given a system, denote by S its state space,

i.e., the possible values that transient memory of nodes, message bu↵ers, and

any other state-holding device in the system can hold. An execution trace is a

path in S consistent with the obeying the restrictions the system model imposes

on how the state may evolve over time. A good trace is one satisfying desired

properties (depending on the task at hand). An algorithm is self-stabilizing, if

it guarantees that any trace has a good su�x, i.e., any trace satisfies that there

is a time such that its subtrace starting at this time is good. If this time until

this subtrace starts is bounded, the stabilization time is a (possibly parametrized)

worst-case upper bound on this time di↵erence.

Example 9.2 (Approximate Agreement (Flawed)). Consider a synchronous

system in which the nodes perform approximate agreement (Definition 5.2) us-

ing some algorithm A. The state of the system is described by the subset of

correct nodes Vg ✓ V , their current values rv 2 R, and whether they termi-

nated, i.e., S =
Sn

g=n�f ({0, 1} ⇥ R)g
(plus any additional state the algorithm

may maintain). A trace is an execution of the algorithm starting from any round

r and state, which is completely defined by the messages faulty nodes send in

rounds i, i + 1, . . . A good trace is one in which all correct nodes eventually are

terminated with values within " of each other. No matter what A we choose, it

will not be self-stabilizing: We choose as initial state one where all correct nodes

are terminated, but their values are not within " of each other. No correct node

will change state anymore, so there is no good subtrace.

Example 9.3 (Approximate Agreement (Fixed)). Consider a synchronous sys-

tem in which the nodes keep executing approximate agreement steps (i.e., per-

89

90 LECTURE 9. SELF-STABILIZATION

form Algorithm 5.1) in each round. The state of the system is fully described

by the subset of correct nodes Vg ✓ V and their current values rv 2 R, i.e.,

S =
Sn

g=n�f Rg
. A trace is an execution of the algorithm starting from any

round i and state, which is completely defined by the messages faulty nodes send

in rounds i, i+1, . . . We decide that a good trace satisfies that the diameter of all

state vectors is smaller than " and, in each round, values are within the range

spanned by the correct nodes’ values in the previous round. From Lemmas 5.4

and 5.5, we get that this holds for any round j � i + log(k~rik/").

Example 9.4 (GCS). Consider the task of gradient clock synchronization. The

state space at time t is given by the nodes’ hardware and logical clock values,

their estimates of neighbors’ clocks, the content of messages that are in transit

and their sending times t � d < ts t, and any other state a node may hold

according to the algorithm (none in case of our GCS algorithm—at least in

the abstract model we considered!). A trace starting at time t is given by an

arbitrary such state (even if it can’t be reached in an execution faithful to the

model!), from which we run the system in accordance with the model. A good

trace starting at time t0 is a trace satisfying a bound L on the local skew at all

times t00 � t0. A self-stabilizing algorithm now guarantees that for any trace

starting at time t, there is some time t0 � t so that the subtrace starting at

time t0 satisfies the local skew bound. The stabilization time of an algorithm is

the maximum di↵erence t0 � t over all traces (possibly parametrized by, e.g., the

number of nodes n, etc.).

Remarks:

• As the examples illustrate, the definition is quite flexible and can be ap-
plied to discrete and continuous systems, as well as those with and without
permanent faults.

• “Time” is not clearly defined, as it depends on the system what this
means. For example, in synchronous systems, time progresses discre(e)tely
in rounds, while in GCS we have a continuous reference time.

• Even in the fixed approximate agreement example, the stabilization time is
unbounded (i.e., 1): the bound from Lemma 5.5 is tight in the worst case,
and transient faults could bring the stored values arbitrarily far apart. We
will show a stabilization time of O(G/µ) for the GCS algorithm. This is
good in case there is a self-stabilizing mechanism ensuring a small global
skew without interfering with the GCS algorithm (after stabilizing itself).
If not, this is no better than the situation for approximate agreement:
transient faults may bring the logical clocks arbitrarily far apart.

• It is important to carefully contemplate what “recovering correct opera-
tion” after transient faults actually means. This strongly a↵ects whether
a solution is possible and how e�cient it can be. For instance, the ap-
proximate agreement example begs the question whether after transient
faults, the (now arbitrarily corrupted) values nodes store hold any relevant
information.

• The first example was bad because we asked for nodes to terminate. As
we show below, self-stabilizing algorithms must never terminate, simply
because a transient fault then could result in wrong output.

91

• The algorithm’s code and the model assumptions are untouchable to tran-
sient faults. In the former case, that’s obviously necessary: If transient
faults can corrupt the algorithm itself, the algorithm designer has no
chance to ensure recovery. It is thus advisable to hardwire the algorithm
and/or store code in non-volatile memory. The model assumptions should
be examined carefully, however. One will actually have to implement all
this reliably, or the system might end up experiencing “transient” faults
in perpetuity!

• For instance, this is relevant to the synchronous model. If the synchronous
abstraction is implemented using an unreliable clocking method, a single
“transient” fault may permanently disrupt the clocking scheme. Yes, the
synchronous self-stabilizing algorithm will recover right after the clocking
scheme — but the clocking scheme will never do so.

Lemma 9.5. A self-stabilizing algorithm can never terminate, unless for each

node there is a single output that is always correct.

Proof. Suppose there are two possible conflicting outputs for a node v. More
precisely, there is a terminal state (of the system as a whole) in which some
possible di↵ering terminal state of v is incorrect. We simply set the system to
this state, but v to the incorrect one. As all nodes are in a terminal state, no
further changes of node states is possible, implying that this combination of
terminal states is preserved forever. Thus, the trace has no good su�x, showing
that the algorithm is not self-stabilizing.

Corollary 9.6. Suppose � = µ/(#�1) 2 1+⌦(1). Then Algorithm 2.1 stabilizes

in O(G/µ) time.

Proof. W.l.o.g., consider traces that start at time 0. We claim that, for all s 2 N
and times t � Ts :=

Ps
s0=1 G/(µ�s�1),

 s(t)
G

�s
.

The statement of the corollary then follows as in Theorem 2.9 for any time

t � sup
s2N

{Ts} =
1X

s0=1

G

µ�s0�1
=

�G

µ(� � 1)
2 O

✓
G

µ

◆

due to the assumption on �.
The claim is shown as for Theorem 2.16, with the modification that the

time of violation now must be at least Ts, where s is the minimal level on
which the bound is violated. This is only relevant in a single step of the proof,
when invoking Lemma 2.15: here, the proof exploits that s�1(t0) t1 � t0 =
G/(µ(�s�1)). As Ts � Ts�1 = G/(µ(�s�1)), t1 � Ts implies that t0 � Ts�1, i.e.,
this condition is satisfied.

92 LECTURE 9. SELF-STABILIZATION

Remarks:

• You might think “this was almost too easy.” The response to this has two
parts. The first is that the algorithmic approach just happens to be that
the algorithm continuously struggles on each level to distribute the skew
in a way keeping s small. The property of being self-stabilizing then
emerges naturally. The second is that the model is hiding a lot of things.
In order to make the algorithm self-stabilizing, one needs self-stabilizing
solutions for maintaining a small global skew, computing estimates, and
providing all the other convenient abstractions the model assumes.

• Fortunately, the algorithm really is doing a great job (which is rather co-
incidental, given that it was not designed with the goal of self-stabilization
in mind). You’ll show in the exercises that the necessary adaptions are
minimal.

9.1 Making Lynch-Welch Self-Stabilizing

Why the Lynch-Welch algorithm again? Well, it achieves asymptotically op-
timal skew, tolerates the maximum possible number of dn/3e � 1 Byzantine
faults, and it’s simple to implement. As we showed in the previous lectures, we
can even handle metastability, which is a concern if we perform the iterations
so quickly that it matters. Combining all of this with self-stabilization would
result in an extremely robust algorithm!

Alas, we won’t get self-stabilization “for free” as with the GCS algorithm.
The Lynch-Welch algorithm relies on some initial degree of synchronization to
maintain the abstraction of rounds it uses. It is simulating synchronous execu-
tion, but self-stabilization requires that we can deal with a complete (initial)
lack of synchrony! It turns out that this is an incredibly hard problem, and we
will only take a first step today. This step is reducing the task to finding an
(e�cient) self-stabilizing solution to pulse synchronization with a much weaker
bound on the skew.

Good traces are easily defined: There should be a time t from which on the
algorithm behaves just like expected, i.e., as if it was initialized at this time and
thus exhibits the skew and period bounds from Theorem 5.10.

9.2 First Attempt: Reset on Heartbeats

In the following, we assume that we already have a self-stabilizing pulse syn-
chronization algorithm with skew �h in place. Thus, there is some time t when
it stabilized from which on it generates pulses hv,i, v 2 Vg, i 2 N, satisfying
that maxi2N maxv,w2Vg{|hv,i �hw,i|} �h. Moreover, we have lower and upper
bounds on the time between pulses. We will refer to these pulses as heartbeats,

or simply beats. They are supposed to be fairly slow in comparison to the pulses
of the (modified) Lynch-Welch algorithm; from now on, when we talk of pulses,
these will be those of the Lynch-Welch algorithm only.

There’s a single hurdle keeping the LW algorithm from being self-stabilizing:
the need for a (known) bound on the initial deviation between the nodes’ local
times. The heartbeats provide exactly that —they are at most �h apart from

9.3. SECOND ATTEMPT: ADDING FEEDBACK 93

each other. So we could simply reset the LW algorithm on every heartbeat,
setting S := �h for the initialization of the algorithm. That’s going to work
splendidly, as we won’t even have to change the analysis —until the next beat
comes along and messes things up. As the beats are not as well-synchronized
as the LW pulses (otherwise we wouldn’t go through this trouble), the reset
will destroy the better synchronization guarantee again. Even worse, it may
interrupt the LW algorithm generating a pulse!

Remarks:

• Actually, one needs to be slightly more careful when resetting, in that any
messages sent by a node just before it is reset by its beat should not be
confused with his “round 1”-message following the reset. This is easily
addressed by o↵setting the first round by #d local time compared to hv,i,
or by using the last message received during the time window in which
receivers listen for messages from other nodes.

• It’s important not to overlook such “details” when designing self-stabili-
zing algorithms. Another example is to make sure that variables that are
stored in a way admitting infeasible values need to be regularly tested for
having a valid value and reset to some default if not.

• It’s also important to not lose sight of the big picture due to such details,
though. A good way of designing self-stabilizing algorithms is to eliminate
obstacles one by one, starting with establishing very basic properties and
increasing the amount of “control” one has over the system state step by
step. The more restricted the state beomes, the easier it typically becomes
to reason about it and establish more complicated constraints.

• One could see what we’re doing now as doing this process in reverse: We
want to solve self-stabilizing pulse synchronization with asymptotically
optimal skew, and reduce this task to solving self-stabilizing pulse syn-
chronization with (fairly) large skew.

9.3 Second Attempt: Adding Feedback

The naive solution does not work, because heartbeats may arrive at inconvenient
times. However, the “first” beat (in our analysis) establishes a timing relation
between the LW instance and the instance of the self-stabilizing pulse synchro-
nization algorithm generating the beats. If we add the additional requirement
that the pulse synchronization algorithm accepts some external input that can
shift the time when the next beat occurs (within certain bounds), we could align
them with the pulses generated by the LW instance.

More specifically, after a (suitably chosen) fixed number of LW pulses, nodes
will issue a NEXT signal to the part of them running the algorithm generat-
ing the heartbeats. Thus, the beat generation mechanism needs only be “re-
sponsive” to the NEXT signal within a specific time window in relation to the
previous beat. Under some mild conditions on #, this will turn out to be a
fairly harmless constraint. We use this to trigger the next beat, aligned up
to O(�h + S) time with when the nodes issue the NEXT signals (where S is
the skew of the LW algorithm). This can be kept within a single round of the

94 LECTURE 9. SELF-STABILIZATION

LW algorithm (without a↵ecting more than constants), as both �h 2 O(d) and
S 2 O(d), and the round duration of the LW algorithm T 2 ⌦(d) anyway.

Is this good enough? Not yet, as reset approach will cause large skew ev-
ery time —unless, in addition, we require that well-synchronized NEXT signals
result in an equally well-synchronized heartbeat. Instead of adding even more
constraints on the self-stabilizing algorithm (not knowing whether they can be
satisfied), we use a di↵erent solution.

9.4 Third Attempt: Reset on Unexpected Heart-
beats Only

The final adjustment is to not perform a reset when a beat arrives on schedule,
i.e., within a time window of size O(�h + S) around the point when it would
occur in a world of perfect synchrony. The size of this window is chosen such that
once the heartbeat generation has stabilized, after the first “proper” heartbeat
it never happens again that a node is reset. Yet, the reset mechanism still
guarantees that a heartbeat will enforce synchronization up to a skew of O(�h +
S): either a node is not reset (defining a O(�h + S)-sized window of possible
local times) or it is (forcing the local time into the window).

It remains to formalize this approach and prove it correct. W.l.o.g., we
assume in the following that the heartbeats stabilized by time 0, and start to
reason from there. (Note, however, that this means that arbitrary messages may
be in transit at time 0!). Let us first specify our expecations on the feedback
mechanism.

Definition 9.7 (Feedback Mechanism). Nodes v 2 Vg generate beats at times

hv,i 2 R, i 2 N, such that for parameters 0 < B1 < B2 < B3 2 R the following

properties hold for all i 2 N.

1. For all v, w 2 Vg, we have that |hv,i � hw,i| �h.

2. If no v 2 Vg triggers its NEXT signal during [minw2Vg{hw,i} + B1, t] for
some t < minw2C{hw,i} + B3, then minw2Vg{hw,i+1} > t.

3. If all v 2 Vg trigger their NEXT signals during [minw2Vg{hw,i} + B2, t]
for some t minw2Vg{hw,i} + B3, then maxw2Vg{hw,i+1} t + �h.

B1, B2, and B3 cannot be chosen arbitrarily for our approach to work. We
will determine su�cient constraints from the analysis.

In order to describe the algorithm, we assume that each node is running an
instance of Algorithm 5, the beat generation algorithm, and some additional
high-level control we give now. The high-level control may (re-)initialize the
instance of Algorithm 5, which is described in the subroutine reset(⌧) it may
call. It has a few parameters:

M : The pulses of Algorithm 5 are counted modulo M . Every M pulses, a
heartbeat is expected.

R�: If a beat arrives at time t and the pulse number is 0 mod M , it should take
at least R� local time before the node generates the next pulse. Instead
of trying to compute upfront when Algorithm 5 would generate a pulse,

9.4. THIRD ATTEMPT: RESET ONUNEXPECTED HEARTBEATS ONLY95

we simply “catch” the event and perform a reset if the pulse would be
generated too early.

R+: This is the matching upper bound, i.e., under the same conditions, it
should take at most R+ local time before the node generates the next
pulse.

S(r): This denotes the skew bound guaranteed by Algorithm 5 for pulse 1 <
r 2 N, provided the algorithm is initialized with skew S(1), i.e., in the
code of Algorithm 5, S is replaced by S(1). Algorithm 6 needs to make
use of S(1) and S(M) only.

Algorithm 9.1: Interface algorithm, actions for node v 2 Vg in re-
sponse to a local event at time t. Runs in parallel to local instances of
the beat generation algorithm and Algorithm 5.

1 // algorithm maintains local variable i 2 [M]
2 if v generates a pulse at time t then
3 i := i + 1 mod M ;
4 if i = 0 then

5 wait until local time Hv(t) + #S(M);
6 trigger NEXT signal;
7 if v generates a beat at time t then
8 if i 6= 0 then

9 // beats should align with every M th pulse, hence reset
10 reset(R+);
11 else if Algorithm 5 would require v to generate a pulse before local

time Hv(t) + R�
then

12 // reset to avoid early pulse or message
13 reset(R+

� (Hv(t0) � Hv(t))), where t0 is the current time;
14 else if next pulse is not generated by local time Hv(t) + R+

then

15 // reset to avoid late pulse and start listening for other nodes’
pulses on time

16 reset(0);
17 Function reset(⌧)
18 halt local instance of Algorithm 5;
19 wait for ⌧ local time;
20 i := 0;
21 Lv(t0) := S(1), where t0 is current time;
22 generate pulse and restart loop of Algorithm 5 (in round r = 1);

Figure 9.1 illustrates how the control algorithm ensures stabilization. In
words, Algorithm 6 triggers the NEXT signal #S(M) local time after generating
a beat (i.e., at the earliest time when certainly all nodes have generated the
beat), and checks whether pulse 1 modulo M occurs between R� and R+ local
time after the beat (which necessitates that the beat occurs after pulse 0 modulo
M). If this is not the case, the algorithm generates a pulse and restarts the loop
of Algorithm 5 exactly R+ local time after the beat was generated. Moverover,
it ensures that no other pulse is generated between the beat and then.

96 LECTURE 9. SELF-STABILIZATION

[]

[] [] [] [] []

[]
unstable

~p1 ~p2 ~pM�1 ~pM ~pM+1

h + B1 h + B2 h + B3
k~pMk + P

unstable

valid time range for ~pM

beat
could be
triggered
w/o NEXT
signals

spurious
NEXT
signals

~h1

~h2

Figure 9.1: Interaction of the beat generation and Algorithm 5 in the stabiliza-
tion process, controlled by Algorithm 6. Beat ~h1 forces pulse ~p1 to be roughly
synchronized. The approximate agreement steps then result in tightly synchro-
nized pulses. By the time the nodes trigger beat ~h2 by providing NEXT signals
based on ~pM , synchronization is tight enough to guarantee that the beat results
in no resets.

This properly “initializes” Algorithm 5 with skew S(1) := R+ + �h � R�/#,
which then ensures that the skew has been reduced to S(M) by the time the
next beat is due. By choosing all parameters right, we ensure that the M th

pulse (after stabilization) falls in the time window provided by Definition 9.7
for making use of the NEXT signals, which then trigger the next beat such that
no v 2 Vg performs another reset. From there, inductive reasoning shows that
no v 2 Vg ever performs a reset again (so as long as there are no more transient
faults), and the analyis of Algorithm 5 from Chapter 5 yields a bound on the
skew achieved. Figure 9.2 illustrates how the nodes locally check whether they
should perform a reset or not.

NEXT

#S(M)

pulse 0 mod M

R�

R+

beat

Figure 9.2: After M pulses a node v waits for S(M) local time and then gen-
erates the NEXT signal. After stabilization, the next heartbeat occurs shortly
after. If the next pulse (which is going to be generated by the Lynch-Welch
algorithm), with number i = 1, is not generated at least R� and at most R+

local time after the heartbeat (the green box), the node resets the Lynch-Welch
algorithm, restarting its loop R+ local time after the beat.

9.5. ANALYSIS 97

9.5 Analysis

In the following, we assume that in Algorithm 5, S is replaced by S(1) in the
code, estimates are computed according to Lemma 5.9 (yielding � = u + (# �

1)d + 2(#2 + #)S(1)), and T := #((#2 + # + 1)S(1) + #d) (in accordance with
Lemma 5.8); as we require that S(1) � S(r) for all r 2 N (which is implied
by (9.8)), this means that T is large enough for all rounds. For the outlined
approach to work in addition the following constraints need to be satisfied.

S(1) � 2

✓
� +

✓
1 �

1

#

◆
T

◆
(9.1)

R�

#
� �h + #S(1) + d (9.2)

B2

#
> �h + R+ + T + 2S(1) (9.3)

B1 > �h + R+ (9.4)

B3 > R+ + (M � 1)(T + S(1)) + (# + 1)S(M) + �h (9.5)

B2
R�

#
+ (M � 1)

✓
T

#
� S(1)

◆
+ S(M) (9.6)

R+

#
� (# + 1)S(M) + �h (9.7)

2(S(1) � S(M)) � �h (9.8)

We will worry later about satisfying all of these constraints. For now, we assume
that they hold; what follows is conditional on this assumption.

We first establish that the first beat guarantees to “initialize” the synchro-
nization algorithm such that it will run correctly from this point on (neglecting
for the moment the possible intervention by further beats). We use this do
define the “first” pulse times pv,1, v 2 Vg, as well; we enumerate consecutive
pulses accordingly.

Lemma 9.8. Let h := minv2Vg{hv,1} and S(1) := R+ + �h � R�/#. We have

that

1. Each v 2 Vg generates a pulse at a unique time pv,1 2 [h+R�/#, h+�h +
R+].

2. k~p(1)k S(1).

3. At time pv,1, v 2 Vg sets i := 1.

4. At the time minv2Vg{pv,1}, no message (of Algorithm 5) sent by node

v 2 Vg before time pv,1 is in transit any more.

Proof. Assume for the moment that minv2Vg{hv,2} is su�ciently large, i.e., no
second beat will occur at any correct node for the times relevant to the proof
of the lemma; we will verify this at the end of the proof.

From the pseudocode given in Algorithm 6, it is straightforward to verify
that v 2 Vg generates a pulse at a local time from [Hv(hv,1)+R�, Hv(hv,1)+R+],
and does not generate a pulse at a local time from [Hv(hv,1), Hv(hv,1)+R�). By
Algorithm 5 and the choice of S(1), no v 2 Vg will send a message or generate

98 LECTURE 9. SELF-STABILIZATION

another pulse during [pv,1, pv,1 + S(1)], where pv,1 � hv,1 + R�/# + S(1) �

h + �h + R+. Since hv,1 2 [h, h + �h] for all v 2 Vg by Definition 9.7, hence the
times pv,1 2 [h + R�/#, h + �h + R+], v 2 Vg, are indeed unique. The second
claim is now immediate from the choice of S(1).

Concerning the third claim, observe that if at time hv,1 it held that the i-
variable of v 2 Vg was not 0, it was set to 0. Thus, when v generates its next
pulse at time pv,1, it is increased to 1. Concerning the final claim, we have
established that v 2 V generates no pulse during [h + �h, h + R�/#); thus, it
sends no message during [h + �h + #S(1), h + R�/#) (cf. Algorithm 5), and
Inequality (9.2) ensures that no message of v 2 Vg sent before time hv,1 is in
transit any more at time pw,1 for any w 2 Vg.

It remains to show that indeed minv2Vg{hv,2} is su�ciently large to not
interfere with the above reasoning. Clearly, this is the case if round 1 ends
at all nodes before this time. Let H be infimal with the property that any
v 2 Vg executes reset at a time larger that pv,1. Clearly, H � minv2Vg{hv,2}.
By Definition 9.7 and Inequality (9.3), we can conclude that H � h + B2 �

h+�h +R+ +T +2S(1). All parts of the statements of this lemma that refer to
times smaller than H hold. As H > h+ �h + R+, this implies that Algorithm 5
behaves exactly as if it was initialized with skew S(1) at time h + R�/#. We
can thus apply all results from Chapter 5 (for times t < H) accordingly. In
particular, we get the same results as in Theorem 5.10 (as Inequality (9.1) and
our choice of T and � make sure that we can apply all lemmas), yielding that

max
v2Vg

{pv,2} min
v2Vg

{pv,1} + Pmax h + �h + R+ + T + 2S(1) < H .

Lemma 9.8 serves as induction anchor for the argument showing that all
rounds of the algorithm are executed correctly. Let H be defined as in the
previous proof. From the results in Chapter 5, we can bound S(r) for rounds
r 2 N that are complete before time H.

Corollary 9.9. Suppose for r 2 N that maxv2Vg{pv,r} < H. Then

k~prk S(r)

:=
S(1)

2r�1
+

✓
2 �

1

2r�2

◆✓
� +

✓
1 �

1

#

◆
T

◆

<
S(1)

2r�1
+ 2(u + (#2

� 1)d + (# � 1)(#2 + 3# + 1)S(1)) ,

which for su�ciently large r 2 N is in O (u + (# � 1)(d + S(1))). Moreover, the

generated pulses satisfy Pmin � T/# � 2S(1) and Pmax T + 2S(1).

Proof. We inductively apply Lemmas 5.8, and 5.5, yielding

k~prk
S(1)

2r�1
+

rX

r0=2

1

2r�r0

✓
� +

✓
1 �

1

#

◆
T

◆

=
S(1)

2r�1
+

✓
2 �

1

2r�2

◆✓
� +

✓
1 �

1

#

◆
T

◆
.

Plugging in � and our choice of T and bounding 2�2�(r�2) < 2 yields the stated
upper bound on this term. By Inequality (9.8), we have that S(1) � S(r) for all
r 2 N. Thus, the inductive use of the lemmas (cf. Statement (iii) of Lemma 5.8)
also shows the bounds on the period.

9.5. ANALYSIS 99

In other words, all we need to show is that H = 1, i.e., no further resets
occur after the first beat. In fact, it su�ces to show this for the second beat,
as this constitutes the necessary induction step. To this end, we first show
that the NEXT signals occur within the “window of opportunity” provided by
Definition 9.7.

Lemma 9.10. For all v 2 Vg, it holds that hv,2 2 (pv,M + S(M), pv,M + (# +
1)S(M) + �h]. In particular, no node calls the reset subroutine due to its

second beat.

Proof. Checking Algorithm 6 (and noting that by Lemma 9.8 we have that i is
set to 1 at time pv,1), we see that after time pv,1, v 2 Vg will not locally trigger a
NEXT signal before either time pv,M +S(M) or H. Denote p := minv2Vg{pv,M}.
As Lemma 9.8 and Inequality (9.4) show that maxv2Vg{pv,1} h + �h + R+

h+B1, no NEXT signal is triggered during [h+B1, min{p+S(M), H}]. However,
by Definition 9.7, in absence of any NEXT signal, h0 := minv2Vg{hv,2} satisfies
h0

� h+B3, implying that no NEXT signal is triggered during [h+B1, min{p+
S(M), h+B3}]. By Definition 9.7, this entails that H � h0

� min{p+S(M), h+
B3}, where equality can hold only if h0 = h + B3.

Next, we show that h0 < h + B3. Assuming the contrary, we have that
H � h0

� h + B3, and get from Lemma 9.8 and Corollary 9.9 that

p + (# + 1)S(M) + �h

 min

⇢
max
v2Vg

{pv,1} + (M � 1)(T + S(1)) + (# + 1)S(M) + �h, H

�

 min
�
h + �h + R+ + (M � 1)(T + S(1)) + (# + 1)S(M) + �h, h + B3

< h + B3 ,

where the last step uses Inequality (9.5). Thus, as H is larger than this time,
each v 2 Vg triggers its NEXT signal before time h + B3 � �h, because the
corollary also shows that maxv2Vg{pv,M} p + S(M), and nodes wait for
#S(M) local time before triggering the signal. On the other hand, Lemma 9.8,
Corollary 9.9, and Inequality (9.6) show that

p + S(M) � min
v2Vg

{pv,1} + (M � 1)

✓
T

#
� S(1)

◆
+ S(M)

� h +
R�

#
+ (M � 1)

✓
T

#
� S(1)

◆
+ S(M)

� h + B2 ,

i.e., all of these NEXT signals are triggered no earlier than time h + B2. By
Definition 9.7, this entails that h0

 p+(#+1)S(M)+�h < h+B3, contradicting
the assumption that h0

� h + B3.
Knowing that h0 < h + B3, we can conclude that maxv2Vg{pv,M} p +

S(M) < h0
 H. As we can derive the same bounds as above, we also get that

maxv2Vg{hv,2} p + (# + 1)S(M) + �h = minv2Vg{pv,M} + (# + 1)S(M) + �h,
provided that no node performs a reset before triggering its NEXT signal, i.e.,
H > p + (# + 1)S(M) + �h. Recalling that we already established that H �

h0 > maxv2Vg{pv,M}, the local i variables have been set to 0 mod M again, and
will not change before the next pulse. Checking Algorithm 6, we see that such a

100 LECTURE 9. SELF-STABILIZATION

reset thus would either occur R+ local time after the (local) beat or due to the
next pulse occuring before local time hv,2 + R�. As R+/# � (# + 1)S(M) + �h

by Inequality (9.7), the former cannot happen.
Observe that if the latter does not take place either, it would indeed follow

that no node performs a reset on its second beat. Therefore, we conclude that
H � minv2Vg{pv,M+1, p+(#+1)S(M)+�h} (where we slightly abuse notation
in that if v would generate pulse M + 1, but Algorithm 6 prevents this and
performs a reset instead, we still denote this time by pv,M+1). Finally, assume
for contradiction that H < p + (# + 1)S(M) + �h. Thus, there is some v 2 Vg

so that H = pv,M+1 < p + (# + 1)S(M) + �h. However, as v is the first node
performing a reset, the period bound applies, i.e.,

pv,M+1 � p +
T

#
� S(1)

= p + (#2 + #)S(1) + #d

> p + (# + 1)S(M) + 2(S(1) � S(M))

� p + (# + 1)S(M) + �h ,

where the last step uses Inequality (9.8). Thus all possible cases lead to the
desired bounds on hv,2 for all v 2 Vg.

We summarize today’s findings in the following theorem.

Theorem 9.11. Assume that 3+4#�4#2
�2#3 > 0 and Inequalities (9.1)-(9.8)

hold. Set T := #((#2 + # + 1)S(1) + #d), where S(1) := R+ + �h � R�/#. If the

beats behave as required by Definition 9.7, Algorithm 6 running in conjunction

with Algorithm 5 (where estimates are computed according to Lemma 5.9) is

a self-stabilizing solution to the pulse synchronization problem. Its skew is in

O (u + (# � 1)(d + S(1))) and the generated pulses satisfy Pmin � T/# � 2S(1)
and Pmax T + 2S(1). The stabilization time (not accounting for the beats) is

O(MT).

Proof. We apply Lemma 9.10 to each beat but the first, showing that H = 1.
Corollary 9.9 then yields the claims.

Bibliographic Notes

The concept of self-stabilization was introduced by Dijkstra [Dij74]. The defi-
nition here is more general, but in turn also somewhat informal —notions like
“time” need to be assigned meaning according to the specific system model.
There are some generic constructions for self-stabilizing algorithms. For in-
stance, Awerbuch et al. showed that any synchronous message-passing algorithm
can be modified into a self-stabilizing asynchronous message-passing algorithm
that stabilizes in the same time as needed to compute the solution from scratch
[APSV91]. The approach for making the Lynch-Welch algorithm self-stabilizing
discussed in this lecture is taken from [KL18].

Bibliography

[APSV91] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-
Stabilization By Local Checking and Correction. In In Proceedings

BIBLIOGRAPHY 101

of IEEE Symposium on Foundations of Computer Science (FOCS),
1991.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11):943–644, November
1974.

[KL18] Pankaj Khanchandani and Christoph Lenzen. Self-Stabilizing Byzan-
tine Clock Synchronization with Optimal Precision. Theory of Com-

puting Systems, 2018.

