Exercise 6: Containment

Task 1: Containing Choice

The goal in this exercise is to prove Lemma 6.5.

a) Show the equivalence stated in the lemma.

b) Construct a k-bit MUX_M implementation out of two $(k-1)$-bit MUX_M implementations and a CMUX. (Hint: To show correctness, make a case distinction on the k^{th} control bit, which is fed to the CMUX.)

c) What is the size of the resulting MUX_M implementation when applying the construction from b) recursively?

Task 2: Copy and Conquer

Masking registers allow to mask internal metastability, resulting in, e.g., the sequence $0 \ldots 0 \text{M} \ldots 1$ when reading sequentially from a mask-0 register. The key property for this exercise is that there is only a single M read from the register. We consider a function $f : \{0, 1\}^n \to \{0, 1\}$ in this exercise.

a) Suppose inputs are stored in masking registers, which we read $2^n + 1$ times, each time making a separate copy $x^{(i)}$, $i \in \{1, \ldots, 2^n + 1\}$, of the input x. If $f_M(x) \neq \text{M}$, what can you say about the collection of $2^n + 1$ outputs generated from feeding each $x^{(i)}$ to a copy of a (non-containing) circuit implementing f?

b) Come up with a small circuit that sorts its n inputs according to the total order $0 \leq \text{M} \leq 1$. (Hint: Figure out a solution sorting two values and then plug it into a sorting network to get the general circuit. You don’t have to (re)invent sorting networks, you may just point to a reference.)

c) Combine a) and b) to derive a circuit implementing f_M from any (non-containing) circuit implementing f! Your solution should only be by a factor of $n^{O(1)}$ larger than to the non-containing solution.

Task 3*: Clocked Circuits

a) How would a model for clocked circuits based on the same worst-case assumptions look like? (Hint: Reading up on it is fine.)

b) Standard registers, when being read, will output M if they’re internally metastable and 0 or 1, respectively, when they’re stable. Show that they add no power in terms of the functions that can be computed! (Hint: Unroll the circuit, i.e., perform the multi-round computation in a single round with a larger circuit.)

c) In Task 2, you saw that masking registers allow for more efficient metastability-containing circuits. Show that they are also computationally more powerful, i.e., they can compute functions that cannot be computed with masking registers! (Hint: You already used this in Task 2!)