

Homework Sheet 3: Graph Spanners

Due Date: 21. May 2019

Sequential Algorithms

- 1. Recall the definition of a κ -core of a graph G, which is a maximal connected subgraph H, where each vertex has degree at least κ . Then recall the simple (greedy) algorithm to compute a κ -core: while there is a vertex of degree less than κ in the current graph, delete it from the graph; if all vertices in the current graph have degree at least κ . Prove that this algorithm is correct. What is the running time of this algorithm ?
- 2. Suppose X is the set of vertices deleted by the above algorithm for computing κ -core in a graph G. Then show that the total number of edges in E(G) incident on vertices of X is upper bounded by $\kappa \cdot |X|$.
- 3. Recall the definition of (α, β) -spanners. Show that if H is a (1, 2k)-spanner of G, then H is also a (2k + 1)-spanner of G. Then show that, assuming the Erdős Girth Conjecture, a (1, 2k)-spanner may have $\Omega(n^{1+\frac{1}{k+1}})$ edges in the worst case.
- 4. Recall the definition of a dominating set in a graph.

Fact 1. Let G be a graph and fix a parameter $\sigma \geq 1$. There exists a set $S \subseteq V(G)$ of $\tilde{O}(\frac{n}{\sigma})$ vertices such that every vertex v with $\delta(v) \geq \sigma$ is dominated by S.

The aim of this exercise is to prove Fact 1.

- (a) Prove that if the minimum degree of G is at least σ , then G admits a dominating set of size $\tilde{O}(\frac{n}{\sigma})$.
- (b) Show that a graph G with minimum degree smaller than σ can be transformed into a graph G' having minimum degree σ . The graph G' must satisfy the following property: if S' is a dominating set of G', then $S = S' \cap V(G)$ dominates all vertices v of G such that $\delta(v) \geq \sigma$.
- (c) Explain how (a) and (b) can be used to prove Fact 1. In particular provide a proof of the upper bound of $\tilde{O}(\frac{n}{\sigma})$ on |S|.
- 5. Use Fact 1 to design an algorithm that computes a (1, 2)-spanner with $\tilde{O}(n^{\frac{3}{2}})$ edges.