Min k connected subgraph

Minimum k-connected subgraph

Input: (Diir.) Graph G which is k-connected

Output: Spanning subgraph H of G which is k-connected has minimum number of edges

Note: Edge Connectivity

Recall:
- Graph G is k-connected if and only if for every pair of vertices s, t \in V(G), there are k edge disjoint paths from s to t
- In directed graph G, we have such a collection of paths in both directions, s to t and t to s

Special Cases:
Special Cases:

- Undir Graphs, \(k = 1 \)
 Min Spanning Tree

- Digraphs, \(k = 1 \)
 Min Strong Spanning Subgraph

- Undir, \(k \geq 2 \)
 Min \(k \)-conn spanning subgraph

\text{NP-hard} \rightarrow \text{Approximation Algorithms}

- Given a digraph \(G_I \), the underlying graph \(U(G_I) \) is obtained by forgetting the direction of all edges of \(G_I \).

\text{Def.} \quad \text{Given a digraph } G_I, \text{ vertex } v \in V(G_I) \text{ an out-branching rooted at } v, \text{ denoted by } T_{v}, \text{ is a spanning subgraph such that } v.
denoted by \(T_n \), is a spanning subgraph such that:

- the underlying graph \(U(T_n) \) is a tree
- every vertex except \(s \) has exactly one in-edge

An in-branching is similarly defined.

Lemma: Digraph \(G_1 \) is \(k \)-connected if and only if, for any vertex \(s_1 \in V(G_1) \):

- there is a collection of \(k \) edge-disjoint in-branchings rooted at \(s_1 \) in \(G_1 \)
 \[Y_{in} = \bigcup_{i=1}^{k} T_{in} \]

- and, there is a collection of \(k \) edge-disjoint out-branchings rooted at \(s_1 \) in \(G_1 \)
 \[Y_{out} = \bigcup_{i=1}^{k} T_{out} \]
Further, $Y_{\text{out}}, Y_{\text{in}}$ can be constructed in polynomial time.

- Using the above lemma, we can obtain a 2-approximation algorithm for Min k-conn Spanning Subgraph.

- In digraph G

 - Let H^* be an optimum solution

 $|E(H^*)| \geq k(n-1)$

 - Let $H = \bigcup_{i=1}^{k} T_{\text{out}}^i \cup T_{\text{in}}^i$

 Clearly $|E(H)| \leq |Y_{\text{out}}| + |Y_{\text{in}}| \leq 2k(n-1)$

- In undigraph G':
 - Convert to digraph G'.
- Convert to digraph G':
 for edge $(u,v) \in E(G)$
 we have $u \to v$, $v \to u$ in $E(G')$
- Apply algorithm for digraph G'
 and obtain soln H'
- Convert directed H' to undir H
- Show H is k-connected (Exercise)
 and 2-approx soln

Proof of above lemma:

(Reverse Din)

Claim: Suppose we are given G_1, k, $x \in V(G_1)$, $y \in V(G_1)$.
Then G_1 is k-connected.

Proof: Exercise

(For every $s,t \in V(T)$ we have)
(For every $s, t \in V(T)$ we have k paths from s to t, and the reverse)

(Foward Direction)

Suppose we are given $G_1, k, s \in V(G_1)$.
Then we can construct Y_{out}, Y_{in} in polynomial time.

- Let us describe the construction of Y_{out}.
- Y_{in}: Construct out-brandings in G_{reverse}.

\[\text{reverse the dir of every edge in } G_1 \]

Claim: G_1 has k edge disjoint out-brandings rooted at $s \in V(G_1)$ if \[\forall X \subseteq V(G_1) - s, \quad d_{in}(X) \geq k \]

Proof: (\Rightarrow) Clearly, if we have T_1, \ldots, T_k for any $X \subseteq V(G_1) - s$, we have
at least k in-coming edges
to x, one from each $T_{i}\text{.}$

(\Leftarrow) Given $G, k, \pi \in \mathcal{V}(G)$,
we describe the construction
of an out-branching $T_{k}\text{,}$
such that,

$$\forall x \in V(G) - \pi, \quad d_{G - E(T_{k})}^{-}(x) \geq k - 1$$

Then after constructing $T_{k}\text{,}$
we construct $T_{k - 1}\text{,}$ in
$G - E(T_{k})\text{,}$ T_{out} in
$G - (E(T_{k}) \cup E(T_{k - 1}))$.

... and so on till $T_{1}\text{.}$

Let us describe the algorithm.

Start from T_{in} and arrow it
and arrow it
and grow it by adding out-edges one by one.

We will show that the following invariant is true at every step:

\[\forall x \in V(G) - \pi, \quad d_{G - E(T)}^\text{in}(x) \geq k - 1 \]

To grow \(T \) by one edge, we do the following:

- Clearly \(V(T) \subseteq V(G) \), otherwise we are done.
- Call \(x \in V(G) \) tight if \(d_{G - E(T)}^\text{in}(x) = k - 1 \).

Claim: If \(X \) and \(Y \) are tight and \(X \cap Y \neq \emptyset \), then \(X \cap Y \) is also tight.

Proof:...
- Note that $X \cup Y \leq V(G_i) - \pi$
- Let $G_i' = G_i - E(T)$

$$d^\text{in}_{G_i'}(X \cup Y) + d^\text{in}_{G_i'}(X \cap Y) \leq d^\text{in}_{G_i'}(X) + d^\text{in}_{G_i'}(Y)$$

We use submodularity of the function d^in in a digraph

- **Claim**: If X is tight, then $X \cap V(T) \neq \emptyset$

Proof: Initially, $\forall X \subseteq V(G_i) - \pi$

$$d^\text{in}_{G_i'}(X) \geq k$$

and $d^\text{in}_{G_i - E(T)}(X) = k - 1$

\Rightarrow some in-edge of X lies in $E(T)$

\Rightarrow the head of this in-edge lies in $X \cap V(T)$

- Let $W \Leftarrow$ Inclusion-wise minimal subset
Let \(W \subseteq \text{inclusion-wise minimal subset of } V(G) \)-\(\mathfrak{m} \) such that
- \(W \) is tight
- \(W \) is not a subset of \(V(T) \)

If such a \(W \) doesn't exist then let \(W = V(G) \)
- **Observe**: In this case, every tight set is a subset of \(V(T) \)

Claim: Given \(G_1, \mathfrak{m}, k, T \), \(W \) can be constructed in polynomial time.

Proof: Let \(G'_1 = G_1 - E(T) \).
- Find \(w \in V(G) - \mathfrak{m} \) such that
 \[|\text{mincut}(\mathfrak{m}, w)| = k-1 \]
 - by testing all \(w \in V(G) - \mathfrak{m} \) and MaxFlow algorithm
- Compute a closest-to-\(w \) mincut \(S \)
 \[W = \text{all vertices in } G'_1 - S \text{ that can reach } w \]
(*) Closest-to-ω mincut:
- $S_1 \leq (G, w) \text{ mincut}$
- $S_2 \leq (S_1, w) \text{ mincut}$
and so on, until S_i
where $|\text{mincut}(S_i, w)| > k$

Claim: There is an edge $u \rightarrow v$
where $u \in W \cap V(T)$
$v \in W - V(T)$

Proof: If $W = V(G)$ (and $V(T) \notin V(G)$)
then we can easily find $u \rightarrow v$

Else $W \notin V(G) - \pi$, and suppose there is no arc from $W \cap V(T)$
to $W - V(T)$. Then,

$\delta_{in}(W - V(T))$
\[d_{G_t}^{\text{in}}(W - V(T)) \]
\[= d_{G_t - E(T)}^{\text{in}}(W - V(T)) \]
\[\leq d_{G_t - E(T)}^{\text{in}}(W) \]
\[= k - 1 \]

But this contradicts our premise that for
\[X = W - V(T) \leq V(G_t) - \gamma \]
\[d_{G_t}^{\text{in}}(X) \geq k \]

Hence, there must be an arc from \(W \cap V(T) \) to \(W - V(T) \)

Our goal is to show that we can add \(u \rightarrow v \) to \(T \)

In other words, let \(T' = T + (u,v) \)

Then \(\forall X \leq V(G_t) - \gamma \), we have
\[d_{G_t - E(T')}^{\text{in}}(X) \geq k - 1 \]
The above condition fails only if there is some tight set \(X \) such that \(v \notin X \).

Claim: No such tight set exists

\[\text{Proof:} \] Suppose \(X \) exists, and so
\[v \notin V(T), \ X \notin V(T) \]
\[\implies W \neq V(G) \]
\[\Rightarrow v \in W \cap X, \ W \cap X \neq \emptyset \]
and \(X \cup W \subseteq V(G) - v \)
\[\Rightarrow X \cup W \neq V(G) \]
\[\Rightarrow \text{by submodularity of } d_{G - E(T)} \]
we have \(X \cup W \) is tight,
and it is not a subset of \(V(T) \) as \(v \notin X \cup W \).

This contradicts our choice of \(W \) as a inclusion-wise minimal tight set that is not a subset of \(V(T) \).
minimal right set that is not a subset of $V(T)$