Homework Sheet 1: Minimum Dominating Set (MDS)

Due Date: 30-04-2019

Sequential Algorithms

- 1. Recall the greedy sequential algorithm for DOMINATING SET, and let S be the solution output by it. Construct an example where $\frac{|S|}{|S^*|} \ge \log(\Delta)$, where S^* is an optimal solution and Δ is the maximum degree.
- 2. Extend that the greedy sequential algorithm to the weighted case. Here, the input is a graph G(V, E) and a weight function $w : V \to \mathbb{N}$, and we want to compute a *minimum weight* dominating set of G. Show that this algorithm is a $(\ln(\Delta+1))+1$ -factor approximation to the optimal solution.

Distributed Algorithms

- 3. Consider the DOMINATING SET problem on trees. Design a distributed algorithm that outputs a constant factor approximation, and terminates in constantly many rounds.
- 4. (Bonous Exercise) Let G = (V, E) be a graph, $G^2 = (V, E(G^2))$ is defined as a graph with vertex set $V(G^2) = V(G)$ and the edge set

 $E(G^2) = \{\{u, v\} \mid \text{distance}(u, v) \text{ in } G \text{ is at most } 2\}.$

The graph G^2 is called power of the graph G. Provide a local algorithm that runs in constant number of rounds and outputs a constant factor approximation for the MDS in power graph of trees (in T^2).