Exercise 2 bonus points

Read the lecture notes (of the last three lectures), identify as many typos and other mistakes as you can, and add them as a list to your solutions. You get one bonus point for at least one typo/mistake and 2 bonus points for at least five typos/mistakes.

Exercise 1 6 + 6 points

Recall that in the lecture, we generalized OV to the following problem:

k–OV: Let k sets $A_1, A_2, \ldots, A_k \subseteq \{0, 1\}^d$ with $|A_1| = |A_2| = \ldots = |A_k| = n$ be given. Decide whether there exist $a^{(1)} \in A_1, a^{(2)} \in A_2, \ldots, a^{(k)} \in A_k$ such that in every dimension the corresponding component of at least one of the vectors $a^{(1)}, a^{(2)}, \ldots, a^{(k)}$ is 0.

Consider the following hypothesis about this family of problems:

$kOVH$: For no $k \geq 2$ and $\varepsilon > 0$, there is an algorithm for k–OV running in time $O(n^{k-\varepsilon} \cdot \text{poly}(d))$.

a) In the lecture, we introduced the q–Dominating Set problem:

q–DomSet: Given a graph $G = (V, E)$, decide whether there is a subset of the vertices $S \subseteq V$ of size q, such that for any vertex $v \in V$, either $v \in S$ or $\{u, v\} \in E$ for some $u \in S$.

Prove that q–DomSet cannot be solved in time $O(n^{q-\varepsilon})$ for all $\varepsilon > 0$ and integers $q \geq 3$, unless $kOVH$ fails.

b) Consider the following variant of $kOVH$:

$kOVH'$: For no $k \geq 100$ and $\varepsilon > 0$, there is an algorithm for k–OV running in time $O(n^{k-\varepsilon} \cdot \text{poly}(d))$.

Show that $kOVH$ and $kOVH'$ are equivalent.
In this exercise, we will prove further results about \(\text{OV} \).

a) Give an algorithm for \(\text{OV} \) running in time \(\tilde{O}(n^2) = O(n^2 \cdot \text{poly log}(n)) \) for vectors of dimension \(d = n^{0.1} \).

b) Show that if \(\text{OV} \) can be solved in time \(T(n, d) \), then given any \(\text{OV} \) instance we can also find an orthogonal pair, if it exists, in time \(O(T(n, d)) \).

c) Adapt the \(\text{OV} \) algorithm from the lecture to also find an orthogonal pair, if it exists, in the same asymptotic running time of \(n^{2 - 1/\text{O(log } c)} \). (Recall that for the algorithm from the lecture, the vectors have a dimension of \(d = c \cdot \text{log}(n) \) with \(c = n^{o(1)} \).) Your solution to this exercise must be different from your solution of part b) above.

Exercise 3
8 points + 10 bonus points + 5 points

Recall the Longest Common Substring With Don’t Cares problem from the previous exercise sheet:

Longest Common Substring With Don’t Cares: Given a string \(A \) of length \(n \) over some alphabet \(\Sigma \) and string \(B \) of length \(n \) over the alphabet \(\Sigma \cup \{\ast\} \), find the length \(L(A, B) \) of the longest string that is a substring of both \(A \) and \(B \), where a “\(\ast \)” in \(B \) can be treated as any character from the alphabet \(\Sigma \).

In this exercise, we consider only the binary alphabet \(\Sigma = \{0, 1\} \).

a) Let strings \(A \in \{0, 1\}^n, B \in \{0, 1, \ast\}^n \) be such that their longest common substring has length \(L(A, B) \leq c \cdot \text{log}(n) \) with \(c = n^{o(1)} \).

Show how to compute the length \(L(A, B) \) of the longest common substring of \(A \) and \(B \) in time \(n^2 - 1/\text{O(log } c) \).

⋆) Given strings \(A \in \{0, 1\}^n, B \in \{0, 1, \ast\}^n \) and \(\Delta \in \mathbb{N} \). Show how to determine whether the longest common substring of \(A \) and \(B \) has a length of at least \(\Delta \), that is, whether \(L(A, B) \geq \Delta \), and if so, how to compute \(L(A, B) \); both in time \(O(n^2/\sqrt{\Delta}) \).

Hint 1: You may assume you can solve the following problem in time \(O(n \cdot \text{log } m) \): Given a text \(T \in \{0, 1\}^n \) and a pattern \(P \in \{0, 1, \ast\}^m \) (with wildcards), determine all occurrences of \(P \) in \(T \), that is, all indices \(1 \leq i \leq n - m + 1 \) such that \(T[i..i+m-1] \) and \(P \) match.

Hint 2: Use the following approach: Divide \(T, P \) into blocks and try to find completely matching block pairs to establish a good lower bound on \(L \). Once you were successful, try to extend matching substrings as much as possible.

b) Show that Longest Common Substring With Don’t Cares can be solved in time \(n^2/2^{\Omega(\sqrt{\text{log } n})} \).

(Note: You can use a) and ⋆) even if you didn’t solve them.)