
Karl Bringmann and Marvin Künnemann Summer 2019

Fine-Grained Complexity Theory, Exercise Sheet 2
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer19/fine-complexity/

Total Points: 40 + 12 bonus points Due: Tuesday, May 14, 2019

You are allowed to collaborate on the exercise sheets, but you have to write down a solution on your own, using
your own words. Please indicate the names of your collaborators for each exercise you solve. Further, cite
all external sources that you use (books, websites, research papers, etc.).

You need to collect at least 50% of all points on exercise sheets to be admitted to the exam.

Exercise©© 2 bonus points

Read the lecture notes (of the last three lectures), identify as many typos and other mistakes as you
can, and add them as a list to your solutions. You get one bonus point for at least one typo/mistake
and 2 bonus points for at least five typos/mistakes.

Exercise 1 6 + 6 points

Recall that in the lecture, we generalized OV to the following problem:

k–OV: Let k sets A1, A2, . . . , Ak ⊆ {0, 1}d with |A1| = |A2| = . . . = |Ak| = n be given.
Decide whether there exist a(1) ∈ A1, a

(2) ∈ A2, . . . , a
(k) ∈ Ak such that in every dimension the

corresponding component of at least one of the vectors a(1), a(2), . . . , a(k) is 0.

Consider the following hypothesis about this family of problems:

kOVH: For no k ≥ 2 and ε > 0, there is an algorithm for k–OV running in time O(nk−ε · poly(d)).

a) In the lecture, we introduced the q–Dominating Set problem:

q–DomSet: Given a graph G = (V,E), decide whether there is a subset of the vertices S ⊆ V
of size q, such that for any vertex v ∈ V , either v ∈ S or {u, v} ∈ E for some u ∈ S.

Prove that q–DomSet cannot be solved in time O(nq−ε) for all ε > 0 and integers q ≥ 3, unless
kOVH fails.

b) Consider the following variant of kOVH:

kOVH′: For no k ≥ 100 and ε > 0, there is an algorithm for k–OV running in time O(nk−ε ·
poly(d)).

Show that kOVH and kOVH′ are equivalent.

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer19/fine- complexity/

Exercise 2 5 + 5 + 5 points

In this exercise, we will prove further results about OV.

a) Give an algorithm for OV running in time Õ(n2) = O(n2 · poly log(n)) for vectors of dimension
d = n0.1.

b) Show that if OV can be solved in time T (n, d), then given any OV instance we can also find an
orthogonal pair, if it exists, in time O(T (n, d)).

c) Adapt the OV algorithm from the lecture to also find an orthogonal pair, if it exists, in the
same asymptotic running time of n2−1/O(log c). (Recall that for the algorithm from the lecture,
the vectors have a dimension of d = c · log(n) with c = no(1).)
Your solution to this exercise must be different from your solution of part b) above.

Exercise 3 8 points + 10 bonus points + 5 points

Recall the Longest Common Substring With Don’t Cares problem from the previous exercise sheet:

Longest Common Substring With Don’t Cares: Given a string A of length n over some alphabet
Σ and string B of length n over the alphabet Σ∪{∗}, find the length L(A,B) of the longest string that
is a substring of both A and B, where a “∗” in B can be treated as any character from the alphabet Σ.

In this exercise, we consider only the binary alphabet Σ = {0, 1}.

a) Let strings A ∈ {0, 1}n, B ∈ {0, 1, ∗}n be such that their longest common substring has length
L(A,B) ≤ c · log(n) with c = no(1).
Show how to compute the length L(A,B) of the longest common substring of A and B in time
n2−1/O(log c).

?) Given strings A ∈ {0, 1}n, B ∈ {0, 1, ∗}n and ∆ ∈ N. Show how to determine whether the longest
common substring of A and B has a length of at least ∆, that is, whether L(A,B) ≥ ∆, and if
so, how to compute L(A,B); both in time O(n2/

√
∆).

Hint 1: You may assume you can solve the following problem in time O(n logm): Given a text
T ∈ {0, 1}n and a pattern P ∈ {0, 1, ∗}m (with wildcards), determine all occurrences of P in T ,
that is, all indices 1 ≤ i ≤ n−m + 1 such that T [i..i + m− 1] and P match.

Hint 2: Use the following approach: Divide T , P into blocks and try to find completely matching
block pairs to establish a good lower bound on L. Once you were successful, try to extend matching
substrings as much as possible.

b) Show that Longest Common Substring With Don’t Cares can be solved in time
n2/2Ω(

√
logn).

(Note: You can use a) and ?) even if you didn’t solve them.)

