
Karl Bringmann and Marvin Künnemann Summer 2019

Fine-Grained Complexity Theory, Exercise Sheet 4
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer19/fine-complexity/

Total Points: 40 + 2 bonus points Due: Tuesday, June 11, 2019

You are allowed to collaborate on the exercise sheets, but you have to write down a solution on your own, using
your own words. Please indicate the names of your collaborators for each exercise you solve. Further, cite
all external sources that you use (books, websites, research papers, etc.).

You need to collect at least 50% of all points on exercise sheets to be admitted to the exam.

Exercise©© 2 bonus points

Read the lecture notes (of the last three lectures), identify as many typos and other mistakes as you
can, and add them as a list to your solutions. You get one bonus point for at least one typo/mistake
and 2 bonus points for at least five typos/mistakes.

Exercise 1 10 points

Recall the k–Clique problem from the lecture:

k–Clique: Given an undirected, unweighted graph G, determine whether G contains a k–clique (that
is, a set of k vertices which are pairwise adjacent).

Show that if 3 | k, then k–Clique can be solved in time O(n
ωk
3).

What running time can you obtain when 3 - k?

Note: This is the best running time known for this problem.

Exercise 2 10 points

In the lecture we proved a subcubic reduction from All–Pairs Negative Triangle to Negative Tri-
angle. Adapt this reduction to obtain a “combinatorial” subcubic reduction from All–Pairs Triangle
to Triangle, that is, prove

(All–Pairs Triangle, n3) ≤fgr (Triangle, n3).

Why does this reduction not prove an Nω−o(1) lower bound for Triangle under the BMM hypothesis?

Exercise 3 5 points

Consider the following geometric problem:

Segment Visibility: Given a set S of N line segments and two distinguished line segments a and b.
Determine whether there are a point p on a and a point q on b such that the line through the points p
and q does not intersect any line segment in S (that is, we want to check whether a is “visible” from b).

Prove the following fine-grained reduction from 3SUM to Segment Visibility:

(3SUM, n2) ≤fgr (Segment Visibility, N2).

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer19/fine- complexity/

Exercise 4 15 points

Consider the following problem on directed acyclic graphs (DAGs):

All–Pairs Lowest Common Ancestor in DAGs (DAG–AP–LCA): Given a DAG G = (V,E),
determine for all vertices i, j ∈ V any lowest common ancestor v ∈ V .
Here, a vertex u ∈ V is a common ancestor of the vertices i and j if there is a path in G from u to i
and from u to j (that is, i and j are descendants of u). The vertex u is a lowest common ancestor of
the vertices i and j if no descendant of u is a common ancestor of i and j.

Note that in DAGs (as opposed to trees), the vertices i and j might have more than one lowest common
ancestor. (In this case, the problem just asks for any lowest common ancestor.)

a) (3 points) Show that DAG–AP–LCA has no algorithm running in time O(|V |ω−ε) (and no
“combinatorial” algorithm running in time O(|V |3−ε)) for any ε > 0, unless the BMM hypothesis
fails.

This lower bound suggests that in order to obtain strongly subcubic algorithms, we should use “non-
combinatorial” tools, that is, fast matrix multiplication. Indeed, we will see how to do this in the
remaining parts of this exercise.

We will use the following intermediate problem:

BMM–MaxWitness: Given Boolean matrices A = (aij), B = (bij) ∈ {0, 1}n×n, determine for all
1 ≤ i, j ≤ n the maximum index k such that aik = bkj = 1 if such a k exists (and ⊥ otherwise).

b) (3 points) Show that the transitive closure of a graph G = (V,E) can be computed using
O(log(|V |)) Boolean matrix multiplications.

c) (4 points) Prove that there is a (subcubic) fine-grained reduction from DAG–AP–LCA to
BMM–MaxWitness, that is, prove

(DAG–AP–LCA, |V |3) ≤fgr (BMM–MaxWitness, n3).

(Hint: Use a topological sort and part b).)

d) (5 points) Solve BMM–MaxWitness in subcubic time.

(Hint: Use (rectangular) matrix multiplication on suitably-sized subproblems.)

In total, this yields a strongly subcubic time algorithm for DAG–AP–LCA.

