
Karl Bringmann and Marvin Künnemann Summer 2019

Fine-Grained Complexity Theory, Exercise Sheet ©©
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer19/fine-complexity/

Total Points: 0 Due: The Day before Yesterday

You are allowed to collaborate on the exercise sheets, but you have to write down a solution on your own, using
your own words. Please indicate the names of your collaborators for each exercise you solve. Further, cite
all external sources that you use (books, websites, research papers, etc.).

You need to collect at least 50% of all points on exercise sheets to be admitted for the exam.

Exercise 1

For each of the following problems, determine whether it can be solved in strongly subquadratic time
(that is in time O(n2−ε) for some ε > 0).
Prove your claims by giving either an algorithm running in strongly subquadratic time or a hardness
proof that rules out such an algorithm under some conjecture discussed in the course.

a) Longest Palindromic Subsequence: Given a string S of length n, find the longest subsequence
that is a palindrome (that is, a sequence of characters which reads the same backwards and
forwards).

b) Non-Dominating Vectors (Constant Dimension): Given a set A ⊆ Zd of n integer vectors,
d = O(1), compute the set A′ ⊆ A of non-dominated vectors.
(A vector a ∈ A dominates another vector a′ ∈ A if ai ≥ a′i for all 1 ≤ i ≤ d and a 6= a′.)

c) Non-Dominating Vectors (Low Dimension): Given a set A ⊆ Zd of n integer vectors,
d = log3 n, compute the set A′ ⊆ A of non-dominated vectors.

Exercise 2

The Minimum Consecutive Sums Problem is defined as follows:

MCSP: Given n integers x1, x2, . . . , xn, determine for any 1 ≤ k ≤ n the minimal sum of any k
consecutive of these integers, that is, compute for any 1 ≤ k ≤ n the number

min{xi + . . .+ xi+k−1 | 1 ≤ i ≤ n− k + 1}.

Prove that (min,+)–Convolution and MCSP are equivalent in the following sense:

(MCSP, n2) ≤fgr ((min,+)–Convolution, n2) ≤fgr (MCSP, n2).

1

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer19/fine- complexity/

Exercise 3

Recall the Longest Common Subsequence problem from the lecture:

Longest Common Subsequence: Given string S and T of length n each, compute the length
L = L(S, T) of the longest string C that is a subsequence of both S and T .

Recall that we proved an n2−o(1) lower bound for this problem under SETH during the lecture.

a) Given t instances (S1, T1), . . . , (St, Tt) of the LCS problem, show that we cannot compute the
maximum LCS of the instances, that is maxi L(Si, Ti), in time O((tk2)1−ε), for any ε > 0
(conditioned on SETH), where each string has length at most k.

b) Prove an (m · L)1−o(1) lower bound for the LCS problem (conditioned on SETH), where L =
L(S, T) is the length of the longest common subsequence of S and T and m = min{|S|, |T |} is
the length of the shorter string.

2

