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Exercise 1

For each of the following problems, determine whether it can be solved in strongly subquadratic time
(that is in time O(n2−ε) for some ε > 0).
Prove your claims by giving either an algorithm running in strongly subquadratic time or a hardness
proof that rules out such an algorithm under some conjecture discussed in the course.

a) Longest Palindromic Subsequence: Given a string S of length n, find the longest subsequence
that is a palindrome (that is, a sequence of characters which reads the same backwards and
forwards).

b) Non-Dominating Vectors (Constant Dimension): Given a set A ⊆ Zd of n integer vectors,
d = O(1), compute the set A′ ⊆ A of non-dominated vectors.
(A vector a ∈ A dominates another vector a′ ∈ A if ai ≥ a′i for all 1 ≤ i ≤ d and a 6= a′.)

c) Non-Dominating Vectors (Low Dimension): Given a set A ⊆ Zd of n integer vectors,
d = log3 n, compute the set A′ ⊆ A of non-dominated vectors.

Exercise 2

The Minimum Consecutive Sums Problem is defined as follows:

MCSP: Given n integers x1, x2, . . . , xn, determine for any 1 ≤ k ≤ n the minimal sum of any k
consecutive of these integers, that is, compute for any 1 ≤ k ≤ n the number

min{xi + . . .+ xi+k−1 | 1 ≤ i ≤ n− k + 1}.

Prove that (min,+)–Convolution and MCSP are equivalent in the following sense:

(MCSP, n2) ≤fgr ((min,+)–Convolution, n2) ≤fgr (MCSP, n2).
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Exercise 3

Recall the Longest Common Subsequence problem from the lecture:

Longest Common Subsequence: Given string S and T of length n each, compute the length
L = L(S, T ) of the longest string C that is a subsequence of both S and T .

Recall that we proved an n2−o(1) lower bound for this problem under SETH during the lecture.

a) Given t instances (S1, T1), . . . , (St, Tt) of the LCS problem, show that we cannot compute the
maximum LCS of the instances, that is maxi L(Si, Ti), in time O((tk2)1−ε), for any ε > 0
(conditioned on SETH), where each string has length at most k.

b) Prove an (m · L)1−o(1) lower bound for the LCS problem (conditioned on SETH), where L =
L(S, T ) is the length of the longest common subsequence of S and T and m = min{|S|, |T |} is
the length of the shorter string.
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