
2
(Strong) Exponential Time Hypothesis

Version: 174

In this chapter, we will introduce one of the main hardness assump-
tions used in this course, the Strong Exponential Time Hypothesis.
To this end, we first discuss current algorithms for Satisfiability. We
then postulate increasingly strong assumptions about its time com-
plexity: P 6= NP, the Exponential Time Hypothesis (ETH), and the
Strong Exponential Time Hypothesis (SETH). To illustrate them, we
give conditional lower bounds for the dominating set problem based
on these assumptions. Finally, we show that SETH implies the OV
hypothesis, making it a stronger assumption.

Let us first introduce the satisfiability problem. Recall that a Boolean
formula φ is in conjunctive normal form (CNF) if it is a conjunction of
clauses. A clause is a disjunction of literals, and each literal is either a
Boolean variable xi or its negation xi.

(x1 ∨ x2 ∨ x3)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x4)

Figure 2.1: Example of a CNF formula

Problem 2.1. Let k ∈N.

k-SAT
Given: CNF formula φ with:

• N variables

• clause width k

• M clauses

Determine: Is there a satisfying assignment for φ?
A satisfying assignment for φ is an as-
signment of true/false values to the vari-
ables such that all the clauses of φ are
satisfied, i.e, it contains xi where xi is set
to true or a negation xi where xi is set to
false.
Note: There are at most (N

k)2
k distinct

clauses of width k. Thus, for fixed k ∈
N, we typically assume without loss of
generality that M ≤ (N

k)2
k = O(Nk); i.e.,

the input for k-SAT is of polynomial size
in N.

By Cook’s Theorem, we know that k-SAT is NP-hard for k ≥ 3.
Thus, P 6= NP implies that there is no polynomial-time algorithm for
k-SAT for k ≥ 3. (For k = 2, we can solve the problem in polynomial
time.)

Let us introduce our running example for this chapter: the domi-
nating set problem.

Problem 2.2.

2 fine-grained complexity theory

Dominating Set (DomSet)
Given: Undirected graph G = (V, E) with n vertices,

integer q ∈N.
Determine: Is there a dominating set S of size q?

A dominating set S is a subset
of V such that each v ∈ V is
dominated by S, i.e., we either
have v ∈ S or there exists an
edge {u, v} ∈ E such that u ∈ S.

A baseline algorithm solves Dominating Set in time O
(
(n

q) · qn
)

:
For each size-q subset of V, we check whether each v ∈ V satisfies
v ∈ S or has an edge to some u ∈ S. The latter test can be done in
time O(q) per vertex v, and there are (n

q) size-q subsets of V, thus the
running time bound follows. Unfortunately, as q can be as large as
Θ(n), this gives no polynomial-time algorithm in the worst case.

2.1 Lower Bounds under P 6= NP

Could there be a polynomial-time algorithm for Dominating Set? We
give a negative answer, assuming P 6= NP. This gives a simple example
for a huge number of lower bounds that were proven under the P 6=
NP conjecture throughout decades of research since Karps’s list of 21

NP-complete problems.

Theorem 2.3. Dominating Set cannot be solved in polynomial-time unless
P = NP.

Proof. We give a standard polynomial-time reduction from the NP-
hard problem 3SAT to Dominating Set:

3-SAT

• N variables

• M clauses

time O(N + M)−−−−−−−−→

Dominating Set

• n = 3N + M nodes

• q = N

Since the above reduction runs in polynomial time O(N + M), a
polynomial-time algorithm for dominating set would allow us to de-
cide any 3SAT instance in polynomial-time, which would contradict
P 6= NP.

Let us give a reduction as specified above. Let φ be a 3-CNF for-
mula. We construct a graph G as follows: For each variable xi, we
introduce literal vertices xi, xi and a dummy vertex di. We connect these
three vertices to form a triangle. Additionally, for each clause Cj, we
introduce a clause vertex representing Cj. Finally, we connect a literal
vertex ` to a clause vertex Cj if and only if Cj contains the literal `, i.e.,
C = (` ∨ `′ ∨ `′′) for some literals `′, `′′. Observe that G has 3N + M
vertices.

...
...

...
...

...

Figure 2.2: Illustration of constructed
graph G.

Claim 2.4. G has a dominating set of size N if and only if φ is satisfiable.

(strong) exponential time hypothesis, version: 174 3

Proof. If there is a satisfying assignment for φ, then let S be the set
of literal vertices ` such that ` is true under this assignment. Note
that S includes for any variable xi precisely one of xi and xi and thus
|S| = N. We show that S is a dominating set. For each variable xi, the
vertices xi, xi, di are dominated: one of xi and xi is in S, and the other
two vertices are connected to this vertex. Furthermore, each clause
vertex Cj is dominated: Our satisfying assignment sets some literal `
of Cj to true. Thus, the literal vertex `, which is contained in S, has an
edge to the clause vertex for Cj, which is thus dominated by S.

Conversely, let S be a dominating set in G of size N. To dominate all
vertices xi, xi, di for i ∈ [N], S must contain, for each i ∈ [N], precisely
one of xi, xi, di. We define an assignment for φ, by setting each xi to
true if xi ∈ S, to false if xi ∈ S and to an arbitrary value, say true, if
di ∈ S. We claim that this assignment satisfies φ: Each clause vertex Cj

must be dominated by some literal vertex ` in S, which by definition
requires that Cj contains `. As our assignment is chosen such as to set
every literal ` ∈ S to true, Cj must be satisfied.

The above claim proves correctness of the reduction. Furthermore,
observe that the graph G can be constructed in time O(N + M). Con-
sequently, if Dominating Set is solvable in polynomial time, then 3-SAT
is solvable in polynomial time.

2.2 Lower Bounds under ETH

Given that we do not expect polynomial-time algorithms for k-SAT and
Dominating Set, what are the fastest (superpolynomial) algorithms for
these problems?

Let us first consider this question for 3-SAT. It is hardly surprising
that an extensive line of research has tried to obtain faster and faster
algorithms for this problem:

Notation: O∗(·) hides polynomial fac-
tors.

3-SAT Algorithms (partial list):

• O∗
(
2N)

: trivial – check each of the 2N assignments in poly(N) time

• O∗
(
1.6181N)

: Monien and Speckenmeyer1

1 Burkhard Monien and Ewald Specken-
meyer. Solving satisfiability in less than
2n steps. Discrete Applied Mathematics, 10

(3):287–295, 1985

• O∗
(
1.3334N)

: Schöning2, randomized

2 Uwe Schöning. A probabilistic algo-
rithm for k-SAT and constraint satisfac-
tion problems. In FOCS’99, pages 410–
414, 1999• O∗

(
1.3334N)

: Moser, Scheder3

3 Robin A. Moser and Dominik Scheder.
A full derandomization of Schöning’s k-
SAT algorithm. In STOC’11, pages 245–
252, 2011

• ...
• O∗

(
1.3280N)

: Liu4

4 Sixue Liu. Chain, generalization of cov-
ering code, and deterministic algorithm
for k-SAT. In ICALP’18, pages 88:1–88:13,
2018

• O∗
(
1.3071N)

: PPSZ algorithm5 with modifications by Hertli6, ran-

5 Ramamohan Paturi, Pavel Pudlák,
Michael E. Saks, and Francis Zane.
An improved exponential-time algo-
rithm for k-SAT. J. ACM, 52(3):337–364,
2005

6 Timon Hertli. 3-SAT faster and simpler
- Unique-SAT bounds for PPSZ hold in
general. SIAM J. Comput., 43(2):718–729,
2014

domized

A natural question is: When the research effort of the community

4 fine-grained complexity theory

tends to infinity, what is the fastest algorithm that we will obtain?
More formally, we define the following constant:

Definition 2.5. For any k ≥ 3, we define

sk := inf{δ | k-SAT has an O(2δN)-time algorithm}.

Intuitively, we would hope that if we continue our collective search
for faster algorithms, eventually, we will find O(2sk ·n+ε)-time k-SAT
algorithms for some very small ε > 0.

Currently, it is far from clear what the true value of, e.g., s3 should
be. If P = NP, or if 3-SAT has a subexponential algorithm (e.g., run-
ning in time O(2

√
N)), then s3 = 0. The fastest algorithm in the list

above gives the upper bound s3 < 0.3863.
Given the importance of 3-SAT for theoretical computer science, and

the extensive effort of algorithmic research on this problem, it is plau-
sible to conjecture that in fact s3 > 0 – this is in essence the conjecture
that 3-SAT has no subexponential-time algorithms. This conjecture
is called the Exponential Time Hypothesis postulated by Impagliazzo
and Paturi7. 7 Russell Impagliazzo and Ramamohan

Paturi. On the complexity of k-SAT. Jour-
nal of Computer and System Sciences, 62(2):
367–375, 2001

Hypothesis 2.6 (Exponential Time Hypothesis (ETH)). The Exponential
Time Hypothesis postulates that

s3 > 0.

An equivalent formulation is the following:

There is some δ > 0 such that 3-SAT cannot be solved in time O(2δN).

A note on randomness: In the definition of sk (and thus in the hy-
pothesis above), we allow for both deterministic and randomized
algorithms. This is sometimes called randomized ETH – however,
we will not distinguish between deterministic and randomized
ETH. In fact, throughout this course, we will conjecture lower
bounds both for deterministic and randomized algorithms (un-
less specifically stated otherwise).

Note that this assumption is stronger than P 6= NP. As such, we
can actually get stronger lower bounds based on this conjecture (than
based on P 6= NP). In fact, the reduction above immediately gives the
following lower bound for dominating set:

Theorem 2.7 (Simple ETH lower bound). There is some δ > 0 such that
Dominating Set cannot be solved in time O(2δn1/3

) unless ETH fails.

(strong) exponential time hypothesis, version: 174 5

Proof. Assume that the converse is true, i.e., that for all δ > 0, Domi-
nating Set has an O(2δn1/3

)-time algorithm. Given an arbitrary 3SAT
instance φ, we use the reduction of the proof of Theorem 2.3 to con-
struct, in polynomial time, a graph G on n = 3N + M nodes such that
φ is satisfiable if and only if G has a dominating set of size N. Note that
we may assume without loss of generality that φ has M ≤ (N

3)2
3 ≤ 8N3

clauses. Thus, n = 3N + M ≤ 11N3. Consequently, constructing G
takes time poly(N) and the above Dominating Set algorithm decides
whether G has a dominating set of size N in time O(2δn1/3

) = O(2δ′N)

with δ′ = 3
√

11 · δ. As this holds for all δ, we obtain a O(2δ′N)-time
3SAT algorithm for all δ′ > 0, which would refute the Exponential
Time Hypothesis.

Why do we only obtain a lower bound of 2Ω(n1/3) instead of 2Ω(n)?
The crucial point is that the number of nodes in the Dominating Set in-
stance may get as large as Θ(M) = Θ(N3) instead of Θ(N). However,
if we could, for some reason, assume that already 3SAT on a linear
number of clauses M = O(N) has no subexponential time algorithms,
then we would get a stronger lower bound. Surprisingly, this is pos-
sible because of the following result, the Sparsification Lemma due to
Impagliazzo, Paturi and Zane8. Let us first state the basic intuition of 8 Russell Impagliazzo, Ramamohan Pa-

turi, and Francis Zane. Which problems
have strongly exponential complexity? J.
Comput. Syst. Sci., 63(4):512–530, 2001

this result:

Intuition: Sparsification Lemma
The hard case for k-SAT consists of sparse formulas.
That is, in reductions from k-SAT, we may assume that M = O(N).

More formally, the lemma describes an algorithm that reduces satis-
fiability of an N-variable k-CNF formula to a subexponential number of
satisfiability instances consisting of sparse N-variable k-CNF formulas
(i.e., formulas with M = O(N) clauses).

Theorem 2.8 (Sparsification Lemma). Let k ∈ N and ε > 0. There is a
constant C = C(k, ε) and an algorithm such that

1. given a k-CNF formula φ, the algorithm computes formulas φ1, . . . , φt,

2. φ is satisfiable if and only if there is some i ∈ [t] such that φi is satisfiable,

3. we have t ≤ 2εN and the algorithm runs in time O(2εNpoly(N)), and

4. each φi is a k-CNF formula with N variables and Mi ≤ C · N clauses.

The proof of this result is beyond the scope of this course.
Let us use the Sparsification Lemma to obtain a stronger lower

bound for Dominating Set under ETH.

Theorem 2.9. There is some δ > 0 such that Dominating Set cannot be
solved in time O(2δn).

6 fine-grained complexity theory

Proof. Let δ > 0, ε := δ/2 and set

δ′ :=
δ

2(3 + C(3, ε))
.

Assume there is an algorithmA solving dominating set in timeO(2δ′n).
Given a 3-CNF formula φ, we compute φ1, . . . , φt with t ≤ 2εN as in
the Sparsification Lemma. For each φi, we construct Gi using the re-
duction in the proof of Theorem 2.3. Note that Gi has ni = 3N + Mi

many nodes where Mi ≤ C(3, ε) ·N. Thus, running A on Gi takes time

O
(

2δ′(3N+Mi)
)
= O

(
2δ′(3+C(3,ε))N

)
= O

(
2δN/2

)
.

Thus, the total running time to decide satisfiability of all φi, and thus
the satisfiability of φ, is bounded by

t · O
(

2δN/2
)
= O

(
2(ε+δ/2)N

)
= O

(
2δN

)
.

Thus, if there is an O(2δ′N)-time dominating set algorithm for all
δ′ > 0, we obtain an O(2δN)-time algorithm for 3-SAT for all δ > 0,
contradicting ETH.

In summary, with the above conditional lower bound, we obtain the
following state of the art:

1. An O(1.4969n)-time algorithm solves dominating set.9 9 Johan M. M. van Rooij and Hans L.
Bodlaender. Exact algorithms for dom-
inating set. Discrete Applied Mathematics,
159(17):2147–2164, 2011

2. Dominating Set requires time Ω(cn) for some constant c > 0, assum-
ing ETH.

Let us turn to the question what ETH might say about the polynomial-
time regime. In particular consider the problem of finding small (i.e.,
constant-sized) dominating sets.

Problem 2.10. Let q ∈N.

q-Dominating Set
Given: Undirected graph G = (V, E)
Determine: Does G have a dominating set of size q?

Note that for any fixed q, the problem q-Dominating Set is solv-

able in polynomial time: The O
(
(n

q) · qn
)

-time algorithm runs in time

O(nq+1) for any constant q. Interestingly, for every q ≥ 7, there is
even an nq+o(1)-time algorithm for q-Dominating Set10,11, shaving off 10 Friedrich Eisenbrand and Fabrizio

Grandoni. On the complexity of fixed
parameter clique and dominating set.
Theor. Comput. Sci., 326(1-3):57–67, 2004

11 Mihai Patrascu and Ryan Williams.
On the possibility of faster SAT algo-
rithms. In Proc. of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms
(SODA’10), pages 1065–1075, 2010

an almost linear factor.

Let us investigate whether a running time of nq+o(1) should or should
not be essentially best possible. Could there be a O(n

√
q)-time algo-

rithm? Maybe such algorithms are not possible, but a O(nq−2)-time
algorithm exists? We will see that ETH implies that no O(n

√
q)-time

(strong) exponential time hypothesis, version: 174 7

algorithms exists for some sufficiently large q. For the second question,
however, we will not obtain an answer based on the ETH; instead this
will be a task for a stronger variant of ETH.

Theorem 2.11. Assuming the ETH, there is some δ > 0 such that q-
Dominating Set has no O(nδq)-time algorithms for all sufficiently large q.

Proof. We will generalize our reduction from Theorem 2.3 to the fol-
lowing reduction:

k-SAT

• N variables

• M clauses

time O(22N/q)−−−−−−−−→

q-Dominating Set

• n = q2N/q + q + M nodes

Note: This reduction has an exponen-
tial blow-up: the number of nodes con-
structed is Θ(2N/q). This is indeed nec-
essary to connect the exponential time
regime of ETH to the polynomial-time
regime of our desired lower bound.

Given this reduction, it suffices to show that for any δ > 0, an
O(nδq)-time algorithm for q-Dominating set for some q ≥ 2/δ would
give aO(2δN)-time algorithm for k-SAT, and thus in particular, 3-SAT12.

12 Note that we have given a general re-
duction from k-SAT, although we only
need a reduction from 3-SAT at this
point – we will make use of the more
general reduction in the next section.

To see this, note that the resulting instance consists of n = q2N/q + q +
M = O(2N/q) nodes – here, we use that M = O(NK) = O(2N/q), as
q is a fixed constant. Thus, running the O(nδq)-time algorithm on this
instance takes time

O
((

2N/q
)δq

)
= O

(
2δN

)
.

The reduction time is bounded by O(22N/q) = O(2δN) using q ≥ 2/δ.
Thus, we obtain an O(2δN)-time algorithm for 3-SAT, and the claim
follows.

It remains to design the above reduction. Consider the following
basic idea: In the reduction for Theorem 2.3, each vertex of the dom-
inating set “chose” an assignment of true or false for some variable.
In our setting, the dominating set has a much smaller size of q – thus,
each vertex in the dominating set needs to choose an assignment for a
larger number of variables, specifically, for N/q variables.

Formally, let φ be a given k-CNF formula and construct a graph
G as follows. We partition the variables into q groups G(1), . . . , G(q),
where G(i) = {x(i−1)N/q+1, . . . , xiN/q}. For each i ∈ [q] and every pos-
sible assignment of true/false values to the variables in group G(i), we
define a corresponding partial assignment vertex a(i)p , where p ∈ [2N/q]

(as there are precisely N/q variables in each group). Additionally,
for each group G(i), we define a dummy vertex d(i). For each i ∈ [q],
we connect all nodes a(i)1 , . . . , a(i)

2N/q , d(i) to each other; i.e., the vertices

corresponding to a group G(i) form a clique.
Furthermore, we introduce a clause vertex for each clause Cj. We

connect a partial assignment vertex a(i)p to a clause vertex Cj if and

8 fine-grained complexity theory

only if Cj contains a literal ` ∈ {xk, xk} for some variable xk ∈ G(i) and

the assignment represented by a(i)p sets this literal to true.

Figure 2.3: Example for the construction
for a 6-variable formula (x1 ∨ x2 ∨ x4) ∧
(x4 ∨ x5 ∨ x6) and q = 3. We label each
partial assignment vertex by the set of
literals that are true under this assign-
ment.

The following claim is analogous to the corresponding claim in the
proof of Theorem 2.3:

Claim 2.12. φ is satisfiable if and only if G has a dominating set of size q.

This claim establishes correctness of the reduction. Finally, observe
that we can construct this graph in linear time in the number of its
edges. Since this number is bounded by n2 = O(22N/q), the claimed
reduction follows.

The above lower bound shows, e.g., that there cannot be an algo-
rithm that solves q-Dominating Set for arbitrary q in time O(n

√
q),

unless the ETH fails. However, if we fix some q, the above result gives
no specific lower bound, since any lower bound only applies for suffi-
ciently large q. In this sense, this statement might best be described as
a statement about the family of problems q-Dominating Set for q ∈ N.
In the next section, we will introduce a stronger variant of ETH that
allows us to derive conditional lower bounds for specific polynomial-
time problems.

2.3 Lower Bounds under SETH

So far, we have discussed specifically the fastest algorithms for 3-SAT.
What are the fastest algorithms for k-SAT with k > 3? Currently, we
have the following upper bounds13,14: 13 Ramamohan Paturi, Pavel Pudlák,

Michael E. Saks, and Francis Zane.
An improved exponential-time algo-
rithm for k-SAT. J. ACM, 52(3):337–364,
2005

14 Timon Hertli. 3-SAT faster and simpler
- Unique-SAT bounds for PPSZ hold in
general. SIAM J. Comput., 43(2):718–729,
2014

• 3-SAT: O(1.3071N),

(strong) exponential time hypothesis, version: 174 9

• 4-SAT: O(1.4690N),

• . . .

• k-SAT: O(2(1−c/k)N) for some constant c > 0.

Note that for the current state of the art, the larger k, the more time it
takes to solve the problem. In particular, if we let k tend to infinity, the
running time of the fastest known k-SAT algorithm approaches O(2N).
The Strong Exponential Time Hypothesis postulated by Impagliazzo
and Paturi15 states that this is true for the best possible k-SAT algo- 15 Russell Impagliazzo and Ramamohan

Paturi. On the complexity of k-SAT. Jour-
nal of Computer and System Sciences, 62(2):
367–375, 2001

rithms. Intuitively, one may think of it as follows.

Intuition: Strong Exponetial Time Hypothesis
For sufficently large k, k-SAT has no O(1.999N)-time algorithms.

Here, we could replace 1.999 by an arbitrary value c < 2. Formally, the
hypothesis is stated as follows.

Hypothesis 2.13 (Strong Exponential Time Hypothesis (SETH)). The
Strong Exponential Time Hypothesis postulates that

lim
k→∞

sk = 1.

An equivalent formulation is the following:

For all ε > 0, there is some k ≥ 3 such that
k-SAT cannot be solved in time O(2(1−ε)N).

We often state SETH slightly weaker as follows: For no ε > 0, there
is an algorithm that solves any k-SAT problem in time O(2(1−ε)N).

What evidence is there for SETH? Impagliazzo and Paturi proved
that if ETH is true, then sk increases infinitely often. The hypothesized
value limk→∞ sk = 1 would be consistent with the current state of
the art of k-SAT algorithms. Cygan et al.16 proved SETH is in fact 16 Marek Cygan, Holger Dell, Daniel

Lokshtanov, Dániel Marx, Jesper Ned-
erlof, Yoshio Okamoto, Ramamohan
Paturi, Saket Saurabh, and Magnus
Wahlström. On problems as hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):
41:1–41:24, 2016

equivalent to analogous conjectures for other problems such as Hitting
Set, Set Splitting and k-NotAllEqual SAT.

Note: This list of evidence for SETH is
not exhaustive!

What consequences does SETH imply for polynomial-time algo-
rithms? Using the reduction of Theorem 2.11, we obtain the following
result.

Theorem 2.14. Let q ≥ 3 and ε > 0. There is no q-Dominating Set algo-
rithm running in time O(nq−ε) unless SETH fails.

Proof. Let 0 < ε ≤ 1 and assume that there exists an O(nq−ε)-time
q-Dominating Set algorithm.

Given a k-SAT instance φ, we use the reduction of the proof of The-
orem 2.11 to produce a q-Dominating set instance on n = O(2N/q)

10 fine-grained complexity theory

nodes in time O(22N/q). Running the O(nq−ε)-time q-Dominating Set
algorithm on this instance takes time O((2N/q)q−ε) = O(2(1−ε/q)N).
Thus, in total, we can decide satisfiability of φ in time

O(22N/q) +O(2(1−ε/q)N) = O(2(1−ε′)N),

where we set ε′ := ε/q ≤ 1/3.
Since k can be chosen arbitrarily, this would show that k-SAT has a

O(2(1−ε′)N)-time algorithm for all k, proving limk→∞ sk ≤ 1− ε′, which
would contradict SETH.

The above lower bound yields a very strong conditional lower bound
for polynomial-time problems. In particular, already a O(n2.9999)-time
algorithm for 3-Dominating Set would refute SETH!

Finally, we turn to the connection between SETH and OVH. The
following conjecture establishes that OVH is even more plausible than
SETH. This greatly helped to popularize OVH as a fundamental hard-
ness assumption for polynomial-time problem. The following reduc-
tion is due to Williams17. 17 Ryan Williams. A new algorithm for

optimal 2-constraint satisfaction and its
implications. Theor. Comput. Sci., 348(2-
3):357–365, 2005

Theorem 2.15 (SETH implies OVH). If SETH holds, then for no ε > 0
there is an O(n2−εpoly(d))-time OV algorithm.

Proof. We show the following reduction.

k-SAT

• N variables

• M clauses
time O(2N/2 M)−−−−−−−−→

OV

• n = 2N/2 vectors

• d = M dimensions

Assume that there is a O(n2−εpoly(d))-time OV algorithm for some
ε < 1/2. Using this algorithm on the output of the above reduction,
we obtain a k-SAT algorithm running in time

O(2N/2M+ 2N/2(2−ε)poly(M)) = O(2N(1−ε/2)poly(M)) = O(2(1−ε′)N),

for an arbitrary 0 < ε′ < ε/2. Here, we used that M ≤ Nk is polyno-
mially small.

Thus, as k was chosen arbitrarily, we obtain a contradiction to SETH,
as this would give some ε′ > 0 such that k-SAT is solvable in time
O(2(1−ε′)N) for all k ≥ 3.

It remains to design the above reduction, which is very similar to
the reduction from Theorem 2.11: We partition the variables into two
halves, i.e., x1, . . . , xN/2 and xN/2+1,...,N (here we assume for conve-
nience that N is even). Let U denote the set of assignments of Boolean
values to x1, . . . , xN/2, and similarly, let V contain all assignments to
the variables xN/2+1, . . . , xN . These assignments are called partial as-
signments. Note that |U| = |V| = 2N/2.

(strong) exponential time hypothesis, version: 174 11

For a partial assignment u ∈ U and a clause C, we define sat(u, C) :=
1 if and only if u satisfies the clause C, i.e., C contains a literal xi such
that xi is set to true in u or C contains a literal xi such that xi is set
to false in u. Otherwise, we set sat(u, C) := 0. We define sat(v, C)
analogously for v ∈ V.

Given partial assignments u ∈ U, v ∈ V, we define the M-dimensional
vector

vec(u) := (1− sat(u, C1), . . . , 1− sat(u, CM))

vec(v) := (1− sat(v, C1), . . . , 1− sat(v, CM))

It is straightforward to verify following claim.

Claim 2.16. For any u ∈ U, v ∈ V, we have that vec(u) and vec(v) are
orthogonal if and only if (u, v) gives a satisfying assignment for φ.

Proof. Note that vec(u), vec(b) have an inner product of 0 if and only
if for all k = 1, . . . , M, we have sat(u, Ck) = 1, sat(v, Ck) = 1, or both.
By definition, this occurs if and only if each clause Ck is satisfied by at
least one literal given by the assignment (u, v).

Thus, we can conclude the reduction by defining the vector sets
A := {vec(u) | u ∈ U} and B := {vec(v) | v ∈ V}, which are sets of
n = 2N/2 vectors in {0, 1}d with d = M, as desired.

The above reduction easily generalizes to an analogous reduction
for the so called k-OV problem:

Problem 2.17.
k-Orthogonal Vectors (k-OV)
Given: vectors sets A1, . . . , Ak ⊆ {0, 1}d,

|A1| = |A2| = · · · = |Ak| = n
Determine: Is there a tuple (a1, . . . , ak) such that for all j ∈ [d] we

have a1[j] · a2[j] · · · ak[j] = 0?

Analogously to OV, we can solve k-OV in time O(nkd), but for no k,
we know of a O(nk−εpoly(d))-time algorithm. Indeed, using a similar
reduction as above, we can show that such algorithms do not exist
under SETH. (→ exc.)

P 6= NP
⇑

ETH
⇑

SETH =⇒ OVH

In conclusion, we have discussed the conjectures P 6= NP, ETH and
SETH. We have seen that while ETH rules out no(q)-algorithms for
q-Dominating Set, we need the stronger assumption SETH to prove
tight lower bounds for specific polynomial-time problems such as 3-
Dominating Set or OV (for these, we have proven matching n3−o(1)

and n2−o(1)-time lower bounds, respectively).

12 fine-grained complexity theory

Exercises

2.1) Show that Subset Sum has no 2o(n) time algorithm under ETH.

2.2) Show that SETH implies ETH.

2.3) Show that SETH implies that for no k ≥ 2 and ε > 0, there is a
O(nk−εpoly(d))-time algorithm for k-OV.

Bibliography

Version: 174

Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper
Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and
Magnus Wahlström. On problems as hard as CNF-SAT. ACM Trans.
Algorithms, 12(3):41:1–41:24, 2016.

Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of
fixed parameter clique and dominating set. Theor. Comput. Sci., 326

(1-3):57–67, 2004.

Timon Hertli. 3-SAT faster and simpler - Unique-SAT bounds for
PPSZ hold in general. SIAM J. Comput., 43(2):718–729, 2014.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of
k-SAT. Journal of Computer and System Sciences, 62(2):367–375, 2001.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which
problems have strongly exponential complexity? J. Comput. Syst. Sci.,
63(4):512–530, 2001.

Sixue Liu. Chain, generalization of covering code, and deterministic
algorithm for k-SAT. In ICALP’18, pages 88:1–88:13, 2018.

Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in
less than 2n steps. Discrete Applied Mathematics, 10(3):287–295, 1985.

Robin A. Moser and Dominik Scheder. A full derandomization of
Schöning’s k-SAT algorithm. In STOC’11, pages 245–252, 2011.

Mihai Patrascu and Ryan Williams. On the possibility of faster SAT
algorithms. In Proc. of the 21st Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’10), pages 1065–1075, 2010.

Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane.
An improved exponential-time algorithm for k-SAT. J. ACM, 52(3):
337–364, 2005.

Uwe Schöning. A probabilistic algorithm for k-SAT and constraint
satisfaction problems. In FOCS’99, pages 410–414, 1999.

14 fine-grained complexity theory

Johan M. M. van Rooij and Hans L. Bodlaender. Exact algorithms for
dominating set. Discrete Applied Mathematics, 159(17):2147–2164, 2011.

Ryan Williams. A new algorithm for optimal 2-constraint satisfaction
and its implications. Theor. Comput. Sci., 348(2-3):357–365, 2005.

	(Strong) Exponential Time Hypothesis, Version: 174
	Lower Bounds under ¶=NP
	Lower Bounds under ETH
	Lower Bounds under SETH

	Bibliography, Version: 174

