4

The Polynomial Method

In this chapter we will introduce an algorithm design technique called “polynomial method”, and we will use it to design the fastest known algorithm for OV. We assume some familiarity with randomized algorithms. Recall that OV is the following problem.

Problem 4.1.

Orthogonal Vectors (OV)

Given: Sets $A, B \subseteq \{0, 1\}^d$ of size n

Determine: Is there an orthogonal pair $a \in A, b \in B$?

Conjecture: No $O(n^2 - \varepsilon \cdot \text{poly}(d))$-time algorithm exists.

The naive algorithm for this problem runs in time $O(n^2 d)$. In small dimension, we can make use of the fact that there are at most 2^d different vectors, leading to an algorithm that runs in time $O(nd \cdot 2^d)$. This is subquadratic time for $d \leq (1 - \varepsilon) \log n$.

So what about dimension $d = 100 \log n$? As it turns out, in this regime OV still is in strongly subquadratic time, as shown by our main result of this chapter.

Theorem 4.2. (Polynomial Method for OV²) Let $c = c(n)$ with $c \geq 2$ and $c = n^\omega(1/\log \log n)$. There is a randomized algorithm solving OV in dimension $d = c \cdot \log n$ in time

$$n^{2-\frac{1}{c(\log)^2}}.$$

Let us discuss the implications of this theorem.

- For any constant c, OV is in time $O(n^{2-\varepsilon_c})$ for some constant $\varepsilon_c > 0$.
- The above theorem does not falsify OVH, since for any $c = \omega(1)$ the running time is $n^{2-o(1)}$, which is not strongly subquadratic. However, it yields non-trivial lower order improvements over quadratic time, e.g., for $c = \log n$ (thus, $d = \log^2 n$) the time bound is

 $$n^{2-1/O(\log \log n)} = n^2 / 2^{O(\log n / \log \log n)}.$$

- Combining the above theorem with the reduction from k-SAT to OV from Lecture 2 recovers one of the best algorithms for k-SAT. What running time do we get for k-SAT? (→ exc.)

1 By “log” we always denote the logarithm base 2. One can use additional simple tricks to push this bound to $d \leq (2 - \varepsilon) \log n$ and even slightly beyond.

Notation We will use a parameter \(s \) to be chosen later. For simplicity we assume that \(s \) divides \(n \) and we set \(g := \frac{n}{s} \).

We denote by \(\mathcal{OV} = \mathcal{OV}_{s,d} \) a function \(\mathcal{OV}: \{0,1\}^{2sd} \to \{0,1\} \) that encodes the orthogonal vectors problem as follows. We will interchangeably interpret the input of \(\mathcal{OV} \) as \(2sd \) bits or as two sets of \(s \) vectors of length \(d \). Thus, the function \(\mathcal{OV} \) is given sets \(A, B \) of vectors in \(\{0,1\}^d \), with \(|A| = |B| = s\), and returns \(\mathcal{OV}(A,B) = 1 \) if there is an orthogonal pair \(a \in A, b \in B \), and \(\mathcal{OV}(A,B) = 0 \) otherwise.

Algorithm Outline Our plan is to solve \(\mathcal{OV} \) as follows on input \(A, B \).

1. Split \(A, B \) into groups \(A_1, \ldots, A_g, B_1, \ldots, B_g \) of size \(s \) each.
2. Compute a suitable representation of the function \(\mathcal{OV} = \mathcal{OV}_{s,d} \).
3. Evaluate \(\mathcal{OV}(A_i, B_j) \) for all pairs \(1 \leq i, j \leq g \).
4. Output ‘yes’ if \(\mathcal{OV}(A_i, B_j) = 1 \) for some \(i, j \), and ‘no’ otherwise.

The two non-trivial steps of this outline are steps 2 and 3 (note that naively step 3 takes time \(O(n^2d) \)). These steps correspond to the two ingredients of the polynomial method. For step 2, we will convert the function \(\mathcal{OV} \) into a multivariate polynomial with few monomials (or, more precisely, a distribution from which we will sample a random multivariate polynomial with few monomials). For step 3, we will show an efficient evaluation algorithm for multivariate polynomials with few monomials.

We start with the latter, i.e., by describing the basics of multivariate polynomials and showing how to evaluate them efficiently.

4.1 Multivariate Polynomial Evaluation

Basics of Multivariate Polynomials

Let \(\mathbb{F} \) be a field (e.g., the real numbers \(\mathbb{R} \)). A **multivariate polynomial** over \(\mathbb{F} \) is a function \(p: \mathbb{F}^k \to \mathbb{F} \) of the form

\[
p(X_1, \ldots, X_k) = \sum_{(i_1, \ldots, i_k) \in M} a_{i_1, \ldots, i_k} \cdot X_1^{i_1} \cdots X_k^{i_k},
\]

where \(M \) is a finite subset of \(\mathbb{N}^k \). Each summand \(X_1^{i_1} \cdots X_k^{i_k} \) is called a **monomial** and the corresponding factor \(a_{i_1, \ldots, i_k} \in \mathbb{F} \) is its **coefficient**.

In this lecture, we will always consider the field \(\mathbb{F} = \mathbb{F}_2 \).

Observation 4.3. Over \(\mathbb{F}_2 \) we can assume without loss of generality that \(M \subseteq \{0,1\}^k \). In particular, any polynomial with \(k \) variables has at most \(2^k \) monomials.

Multivariate means that the function \(p \) has multiple variables \(X_1, \ldots, X_k \), in contrast to a **univariate** polynomial \(p(X) \) which has only one variable.

We denote \(\mathbb{N} = \{0,1,2,\ldots\} \).

Recall that \(\mathbb{F}_2 \) is the set \(\{0,1\} \) with the operations "⊕" (addition modulo 2) and "·" (multiplication), defined by:

\[
\begin{align*}
0 \oplus 0 &= 0 & 0 \cdot 0 &= 0 \\
0 \oplus 1 &= 1 & 0 \cdot 1 &= 0 \\
1 \oplus 0 &= 1 & 1 \cdot 0 &= 0 \\
1 \oplus 1 &= 0 & 1 \cdot 1 &= 1
\end{align*}
\]
Proof. Follows from $x^2 = x$ for any $x \in \mathbb{F}_2$. \hfill \Box

Example 4.4. An example for a multivariate polynomial is $p(X_1, X_2, X_3) = 2X_1X_2X_3 + 3X_1^2X_3 + X_2 - 1$. Reducing its coefficients modulo 2, we obtain a polynomial over \mathbb{F}_2, namely $X_1^2X_3 \oplus X_2 \oplus 1$. This is the same function as $X_1X_3 \oplus X_2 \oplus 1$ over \mathbb{F}_2, as $X_1^2 = X_1$.

Polynomial Evaluation (on Cartesian Products)

Let us write m for the number of monomials of polynomial p. For given values $x_1, \ldots, x_k \in \mathbb{F}$ we can evaluate the polynomial p at the point (x_1, \ldots, x_k) in time $O(km)$. In particular, we can evaluate p at n given points in time $O(kmn)$.

This running time can be improved in case the given points form a Cartesian product. More precisely, suppose we are given “left half-points” A_1, \ldots, A_g and “right half-points” B_1, \ldots, B_g and our task is to evaluate p on all combinations (A_i, B_j). In particular, the output size is g^2. The following tool asserts that this polynomial evaluation problem can be solved in time near-linear in the output size, assuming that m is not too large.

Lemma 4.5. Let $A_1, \ldots, A_g, B_1, \ldots, B_g \in \mathbb{F}^k$, let $p : \mathbb{F}^{2k} \to \mathbb{F}$ be a polynomial with m monomials, and suppose that $m,k = O(g^{0.1})$. Then we can compute $p(A_i, B_j)$ for all pairs $1 \leq i,j \leq g$ in total time $O(g^2 \log^2 g)$.

To prove this lemma we will make use of rectangular matrix multiplication, which we introduce next.

(Rectangular) Matrix Multiplication

In matrix multiplication we are given an $n_1 \times n_2$-matrix A and an $n_2 \times n_3$-matrix B, both with entries in \mathbb{F}. The task is to compute the $n_1 \times n_3$-matrix $C = A \cdot B$ (again with entries in \mathbb{F}) given by

$$C[i, j] := \sum_{k=1}^{n_2} A[i, k] \cdot B[k, j] \quad \text{for any} \ 1 \leq i \leq n_1, 1 \leq j \leq n_3.$$

A well-studied case is $n_1 = n_2 = n_3 = n$, where it is known that the problem can be solved in time $O(n^\omega)$ with:

- $\omega \leq 3$: naive evaluation,
- $\omega \leq 2.81$: Strassen3,
- ...
- $\omega \leq 2.376$: Coppersmith and Winograd4,
- $\omega \leq 2.3736898$: Vassilevska Williams5, Stothers6,
- $\omega \leq 2.3728639$: Le Gall7,

Rectangular matrix multiplication refers to the case $n_1 = n_3 = n$ and $n_2 = n^\alpha$ for some small constant $\alpha > 0$. In this case, the input size is proportional to $n^{1+\alpha}$ (since A, B have $n^{1+\alpha}$ entries) and the output size is n^2. Surprisingly, rectangular matrix multiplication can be solved in near-linear time in the output size!

Theorem 4.6. (Rectangular Matrix Multiplication) Multiplication of an $n \times n^\alpha$-matrix with an $n^\alpha \times n$-matrix is in time $O(n^2 \log^2 n)$ for any $\alpha \leq 0.172$.

We will use this theorem as a black box, since its proof is beyond the scope of this course. We refer to Bläser\(^9\) for an introduction to fast matrix multiplication.

Polynomial Evaluation on Cartesian Products, Continued

Equipped with rectangular matrix multiplication, let us design a fast algorithm for polynomial evaluation over a Cartesian product.

Proof of Lemma 4.5. We can write any polynomial p on $2k$ variables consisting of m monomials in the form

$$p(X_1, \ldots, X_k, Y_1, \ldots, Y_k) = \sum_{r=1}^{m} a_r \cdot X_1^{s_{1,r}} \cdots X_k^{s_{k,r}} \cdot Y_1^{t_{1,r}} \cdots Y_k^{t_{k,r}}.$$

Denote by $A_{i,1}, \ldots, A_{i,k}$ the entries of the input vector $A_i \in \mathbb{F}^k$, similarly let $B_{j,1}, \ldots, B_{j,k}$ be the entries of B_j.

We start by computing the values

$$\hat{A}[i, r] := a_r \cdot A_{i,1}^{s_{1,r}} \cdots A_{i,k}^{s_{k,r}},$$

$$\hat{B}[r, j] := B_{j,1}^{t_{1,r}} \cdots B_{j,k}^{t_{k,r}},$$

for $1 \leq i, j \leq g$ and $1 \leq r \leq m$. Note that \hat{A} is a $g \times m$-matrix and \hat{B} is an $m \times g$-matrix, so the product $C := \hat{A} \cdot \hat{B}$ is well-defined. We obtain

$$C[i, j] = \sum_{r=1}^{m} \hat{A}[i, r] \cdot \hat{B}[r, j] = p(A_i, B_j).$$

The matrices \hat{A} and \hat{B} can be constructed in time $O(gmk)$. By the assumption $m, k = O(g^{0.1})$, this takes time $O(g^2)$. Using rectangular matrix multiplication (Theorem 4.6), matrix C can be computed in time $O(g^2 \log^2 g)$. \(\square\)

4.2 Conversion to Multivariate Polynomial

In order to use the tools developed in the last section, the obvious plan now is to convert the function $O' : \{0, 1\}^{sd} \to \{0, 1\}$ to a multivariate polynomial with few monomials.
We start by expressing $\mathcal{O}V$ as a **Boolean circuit** (or more precisely Boolean formula). That is, we formally define the behaviour of $\mathcal{O}V$ using the operations \land (and), \lor (or), and \neg (negation). Writing the input to $\mathcal{O}V$ as $A = \{a_1, \ldots, a_s\}, B = \{b_1, \ldots, b_s\} \subset \{0, 1\}^d$, observe that we can express $\mathcal{O}V$ as follows:

$$\mathcal{O}V(A, B) := \bigvee_{1 \leq i, j \leq s} \text{Orth}(a_i, b_j)$$

$$\text{Orth}(a, b) := \bigwedge_{\ell=1}^d (-a[\ell]) \lor (-b[\ell]).$$

Our plan is to transform this Boolean circuit into a polynomial over \mathbb{F}_2. That is, instead of using the logical operations \land, \lor, \neg we now want to use the operations \oplus, \cdot over \mathbb{F}_2.

Lemma 4.7. For converting between logical and \mathbb{F}_2-operations, we may use the following rewriting rules:

$$\neg x = 1 \oplus x$$

$$x_1 \land x_2 \land \ldots \land x_n = x_1 \cdot x_2 \cdots x_n$$

$$x_1 \lor x_2 \lor \ldots \lor x_n = 1 \oplus ((1 \oplus x_1) \cdot (1 \oplus x_2) \cdots (1 \oplus x_n)).$$

Proof. The first two of these rewriting rules can be easily checked from the definitions of the involved operations. For the last rule, we use the DeMorgan rule to express

$$x_1 \lor \ldots \lor x_n = \neg(\neg(x_1) \land \ldots \land \neg(x_n)),$$

and then apply the first two rewriting rules. \qed

Applying these rules to our logical formulation of $\mathcal{O}V$ would yield the following expression:

$$\mathcal{O}V(A, B) = 1 \oplus \prod_{1 \leq i, j \leq s} (1 \oplus \text{Orth}(a_i, b_j))$$

$$\text{Orth}(a, b) = \prod_{\ell=1}^d (1 \oplus a[\ell] \cdot b[\ell]).$$

In order to express $\mathcal{O}V$ as a sum of monomials, we need to expand the products in the above expression. However, already the expanded form of Orth(a, b) consists of 2^d monomials, which is too large to even construct. This issue also propagates to $\mathcal{O}V$. In fact, it can be shown that any function $f: \{0, 1\}^k \to \{0, 1\}$ has a **unique** representation as a polynomial over \mathbb{F}_2 (in the form of Observation 4.3), and therefore this is an inherent issue: $\mathcal{O}V$ has no representation as a polynomial over \mathbb{F}_2 with less than 2^d monomials!

Probabilistic Polynomials

A typical workaround when exact representations fail is to relax the goal and ask for representations that may err on some inputs, but are correct almost everywhere. This notion is particularly useful when it is combined with randomness, in such a way that the errors occur at random places. More precisely, we want that on each fixed input the representation is correct with good probability.

This leads to the notion of a probabilistic polynomial.

Definition 4.8. We denote by \(r \) a sequence of random bits \(r_1, r_2, \ldots, r_L \). A **probabilistic polynomial** is a polynomial \(p_r = p_r(X_1, \ldots, X_k) \) whose coefficients depend on \(r \). A probabilistic polynomial yields a distribution over polynomials. To sample from this distribution, we sample the random bits \(r_1, r_2, \ldots, r_L \) and then evaluate the coefficients of \(p_r \).

Example 4.9. Consider the probabilistic polynomial

\[
p_r(X_1, X_2) = r_1X_1X_2 \oplus (1 - r_1)X_1 \oplus X_2 \oplus r_1.
\]

Here \(r_1 \) denotes a random bit, i.e., \(\Pr[r_1 = 1] = \Pr[r_1 = 0] = \frac{1}{2} \). This expression describes the following distribution over polynomials:

\[
p_r(X_1, X_2) = \begin{cases}
X_1X_2 \oplus X_2 + 1, & \text{with probability } \frac{1}{2} \\
X_1 \oplus X_2, & \text{with probability } \frac{1}{2}
\end{cases}
\]

Definition 4.10. Let \(\delta \geq 0 \). For a function \(f : \{0, 1\}^k \to \{0, 1\} \) and a probabilistic polynomial \(p_r \) over \(\mathbb{F}_2 \) we write

\[
f \approx_{\delta} p_r
\]

if for any \((x_1, \ldots, x_k) \in \{0, 1\} \) we have

\[
\Pr_r [f(x_1, \ldots, x_k) \neq p_r(x_1, \ldots, x_k)] \leq \delta.
\]

Fortunately, we can indeed represent \(\mathcal{OV} \) as a probabilistic polynomial with few monomials, as shown by our main result of this section:

Lemma 4.11. Let \(12 \leq s \leq 2^{d/6} \). There is a probabilistic polynomial \(p_{\mathcal{OV}} \) with \(p_{\mathcal{OV}} \approx_{1/3} \mathcal{OV} \), such that \(p_{\mathcal{OV}} \) has \(O(m) \) monomials and we can sample a polynomial from the distribution \(p_{\mathcal{OV}} \) in time \(O(m^3) \), where

\[
m := s^6 \left(\frac{d}{3 \log s} \right)^2.
\]

In the remainder of this section, we will prove this lemma. Instead of representing an expression \(\bigwedge_{\ell=1}^u x_\ell \) by the product \(\prod_{\ell=1}^u x_\ell \) as in Lemma 4.7, we want to represent it by a polynomial of smaller degree. The following construction achieves this goal.
Lemma 4.12. (Razborov10-Smolensky11) Define for any \(t \in \mathbb{N}\),
\[
RS_t(x_1, \ldots, x_n) := \prod_{k=1}^{t} \left(1 \oplus \bigoplus_{\ell=1}^{n} r_{k,\ell} \cdot (1 \oplus x_\ell) \right),
\]
where the \(r_{k,\ell}\) are (independent, uniform) random bits. Then we have
\[
\bigwedge_{\ell=1}^{n} x_\ell \approx 2^{-t} \quad RS_t(x_1, \ldots, x_n).
\]

Proof. Since \(r_{k,\ell} \cdot (1 \oplus x_\ell)\) is equal to \(r_{k,\ell}\) if \(x_\ell = 0\), and equal to 0 otherwise, we can write
\[
RS_t(x_1, \ldots, x_n) = \prod_{k=1}^{t} \left(1 \oplus \bigoplus_{\ell \in Z} r_{k,\ell} \right),
\]
where \(Z := \{1 \leq \ell \leq n \mid x_\ell = 0\}\).

Case \(x_1 = \ldots = x_n = 1\): In this case we have \(Z = \emptyset\) and thus
\[
RS_t(x_1, \ldots, x_n) = \prod_{\ell=1}^{n} (1 \oplus 0) = 1 = \bigwedge_{\ell=1}^{n} x_\ell.
\]
Since this is independent of the random bits \(r_{k,\ell}\), it holds with probability 1.

Case \(x_\ell = 0\) for some \(1 \leq \ell \leq n\): Then \(\bigwedge_{\ell=1}^{n} x_\ell = 0\) and thus
\[
\Pr \left[RS_t(x_1, \ldots, x_n) \neq \bigwedge_{\ell=1}^{n} x_\ell \right] = \Pr \left[\forall k \in \{1, \ldots, t\} : \bigoplus_{\ell \in Z} r_{k,\ell} = 0 \right]
\]
\[
= \Pr \left[r_1, \ldots, r_{|Z|} \text{ has even number of 1's} \right]^t
\]
\[
= \frac{1}{2^t}.
\]
In both cases, we have \(\Pr[RS_t(x_1, \ldots, x_n) \neq \bigwedge_{\ell=1}^{n} x_\ell] \leq 2^{-t}\). \(\square\)

Using Razborov-Smolensky, we construct a probabilistic polynomial for \(O \mathcal{V}\) by following the same steps as before.

Lemma 4.13. On input \(A = \{a_1, \ldots, a_s\}, B = \{b_1, \ldots, b_s\} \subset \{0, 1\}^d\), define the polynomials
\[
p_{i,j,\ell} := 1 \oplus a_i[\ell] \cdot b_j[\ell]
\]
\[
p_{i,j} := RS_{3\log s}(p_{i,j,1}, \ldots, p_{i,j,d})
\]
\[
p_{O \mathcal{V}} := 1 \oplus RS_2(1 \oplus p_{1,1}, 1 \oplus p_{1,2}, \ldots, 1 \oplus p_{s,s})
\]
Then if \(s \geq 12\) we have
\[
p_{i,j,\ell} = (-a_i[\ell]) \lor (-b_j[\ell])
\]
\[
p_{i,j} \approx_{s^{-3}} \text{Orth}(a_i, b_j)
\]
\[
p_{O \mathcal{V}} \approx_{1/3} O \mathcal{V}(A, B)
\]
In this notation we suppress the variables that these polynomials depend upon. To be more precise, we should write \(p_{i,j,\ell}(a_i[\ell], b_j[\ell]),\) \(p_{i,j}(a_i, b_j),\) and \(p_{O \mathcal{V}}(A, B).\)
Proof. For $p_{i,j,\ell}$ we simply used the rewriting rules of Lemma 4.7.

Correctness of $p_{i,j}$ follows directly from using Razborov-Smolensky on the \land-operation of Orth$(a,b) = \bigwedge_{\ell=1}^{d} (\neg a[\ell] \lor (\neg b[\ell])$.

By correctness of $p_{i,j}$ and the Union Bound, we have

$$\Pr[\exists i,j: p_{i,j} \neq \text{Orth}(a_i,b_j)] \leq \sum_{1 \leq i,j \leq s} \Pr[p_{i,j} \neq \text{Orth}(a_i,b_j)] \leq \frac{s^2}{s^3} = \frac{1}{s}.$$

Moreover, using DeMorgan and Razborov-Smolensky on the \lor operation of $\text{OV}(A,B) = \bigvee_{1 \leq i,j \leq s} \text{Orth}(a_i,b_j)$ yields

$$\Pr[1 \oplus \text{RS}_2(1 \oplus \text{Orth}(a_1,b_1), \ldots, 1 \oplus \text{Orth}(a_s,b_s)) \neq \text{OV}(A,B)] \leq \frac{1}{4}.$$

Combining these two bounds with the Union Bound yields

$$\Pr[p_{\text{OV}} \neq \text{OV}(A,B)] \leq \frac{1}{s} + \frac{1}{4} \leq \frac{1}{3},$$

for $s \geq 12$. \qed

To finally obtain a probabilistic polynomial for OV we simply expand our expression for p_{OV}. It remains to show that this probabilistic polynomial p_{OV} satisfies the properties promised in Lemma 4.11, i.e., we need to show that p_{OV} has few monomials, and that we can efficiently sample from the distribution described by p_{OV}.

Number of monomials

Let us bound the number of monomials of p_{OV}. Observe that

$$p_{i,j} = \prod_{k=1}^{3\log s} \left(1 \oplus \bigoplus_{\ell=1}^{d} r_{k,\ell} \cdot a_i[\ell] \cdot b_j[\ell]\right).$$

Thus, any monomial of $p_{i,j}$ corresponds to a subset of $\{1, \ldots, d\}$ of size at most $3\log s$. We can therefore bound the number of monomials of $p_{i,j}$ by

$$\sum_{q=0}^{3\log s} \binom{d}{q} \leq 3\log s \cdot \binom{d}{3\log s} = O\left(s \binom{d}{3\log s}\right),$$

where we used the assumption $s \leq 2^{d/6}$ to argue that $\binom{d}{3\log s}$ is the largest among the binomial coefficients $\binom{d}{k}$.

Moreover, observe that

$$p_{\text{OV}} = 1 \oplus \prod_{k=1}^{2} \left(1 \oplus \bigoplus_{1 \leq i,j \leq d} r_{k,i,j} \cdot p_{i,j}\right).$$

Since each $p_{i,j}$ has $O\left(s \binom{d}{3\log s}\right)$ monomials, the sum $\bigoplus_{1 \leq i,j \leq d} r_{k,i,j} \cdot p_{i,j}$ has $O\left(s^3 \binom{d}{3\log s}\right)$ monomials, and the product over $k \in \{1,2\}$ has $O\left(s^6 \binom{d}{3\log s}^2\right)$ monomials.
Sampling a polynomial

In order to sample from the distribution \(p_{OV} \), we first sample all involved random bits. We then compute each polynomial \(p_{ij} \) by expanding its definition (as given in Lemma 4.13). Finally, we compute \(p_{OV} \) by expanding its definition.

In this procedure, we have to perform \(O(s^2 \log s) = O(m) \) polynomial multiplications, each on at most \(m \) monomials. Since multiplying two polynomials with \(m \) monomials can be done in time \(O(m^2) \), we obtain total time \(O(m^3) \). This finishes the proof of Lemma 4.11.

4.3 Final Algorithm

We combine our probabilistic polynomial for \(OV \) (Lemma 4.11) with the efficient evaluation of multivariate polynomials (Lemma 4.5) and standard boosting of the success probability to obtain our final algorithm.

Final Algorithm On input \(A, B \) we do the following.

0. Split \(A, B \) into groups \(A_1, \ldots, A_g, B_1, \ldots, B_g \) of size \(s \) each.

1. For \(t = 1, \ldots, 100 \ln n \) do:
 1. Sample polynomial \(p_t \) from the probabilistic polynomial for \(OV \)
 2. Evaluate \(p_t(A_i, B_j) \) for all pairs \(1 \leq i, j \leq g \)

4. Let \(o_{ij} \) be the majority vote among \(p_1(A_i, B_j), \ldots, p_{100 \ln n}(A_i, B_j) \)

5. Output ‘yes’ if \(o_{ij} = 1 \) for some \(i, j \), and ‘no’ otherwise

Claim 4.14 (Correctness). The algorithm outputs the correct answer with probability at least \(1 - \frac{1}{n} \).

Proof. Note that for any \(t \) the value \(p_t(A_i, B_j) \) differs from \(OV(A_i, B_j) \) with probability at most \(\frac{1}{3} \) (by Lemma 4.11). Also, the algorithm only errs if for some \(i, j \) the majority among \(p_1(A_i, B_j), \ldots, p_{100 \ln n}(A_i, B_j) \) differs from \(OV(A_i, B_j) \).

We show that the number of samples \(h := 100 \ln n \) is chosen sufficiently large for a high overall success probability. Note that by boosting (Lemma A.11), for fixed \(i, j \) the output \(o_{ij} \) is correct with probability at least \(1 - \exp(-h/20) \). By a union bound over all \(1 \leq i, j \leq g \), we obtain success probability at least \(1 - g^2/n^5 \). By “\(\ln \)” we denote the natural logarithm, i.e., base \(e \).

Claim 4.15 (Applicability of Multivariate Polynomial Evaluation). There is a constant \(\varepsilon > 0 \) (independent of \(n \) and \(d \)) such that \(s := n^{d/\log \varepsilon} \) satisfies \(m = s^2(3\log s)^2 \leq g^{0.1} \).
Before proving this claim, we use it to analyze the running time of our algorithm. In order to use our fast polynomial evaluation (Lemma 4.5) in step 3, we need to check that the number \(m \) of monomials and the number \(k \) of variables of each polynomial \(p_i \) satisfy \(m, k = O(g^{0.1}) \). For \(m \), this follows from the upper bound \(O(\overline{m}) \) (by Lemma 4.11) together with the above claim. For \(k \), we observe that \(k = 2s^2d \) is smaller than \(\overline{m} \). Therefore, fast polynomial evaluation is applicable and the running time for step 3 is \(O(g^2 \log^2 g) = O(g^2 \log^2 n) \), since \(g = \frac{n}{s} \leq n \). Over \(O(\log n) \) repetitions, this yields total time \(O(g^2 \log^3 n) \).

The running time of step 2 is (by Lemma 4.11) \(O(\overline{m}^3) = O(g^{0.3}) \). The remaining steps can be performed in time \(O(g^2 \log n) \). This is dominated by the time for step 3.

Hence, the total running time of our algorithm is \(O(g^2 \log^3 n) = O(n^2 s^{-2} \log^3 n) \). Plugging in \(s := n^{\varepsilon/\log c} \) yields time

\[
O \left(n^{2-\varepsilon/\log c} \log^3 n \right).
\]

Note that \(n^{2-\varepsilon/\log c} = n^{2-\Omega(1/\log c)} = n^{2-1/\Omega(\log c)} \).

Finally, we argue that for \(c = n^{\omega(1/\log \log n)} \) the \(\log^3 n \)-factor can be ignored. Note that \(s = n^{\varepsilon/\log c} = 2^{\varepsilon \log n/\log c} = 2^{\omega(\log \log n)} = (\log n)^{\omega(1)} \) using the presumed bound on \(c \). Thus, \(s \gg \log^3 n \), and we can bound \(s^{-2} \log^3 n = O(s^{-1}) \). Using this bound yields the same asymptotic savings as before, but without the \(\log^3 n \)-factor.

It remains to prove Claim 4.15 to finish the analysis of the final algorithm.

Proof of Claim 4.15. We use the fact \(\binom{n}{k} \leq \left(\frac{en}{k} \right)^k \) to bound

\[
\overline{m} = s^6 \left(\frac{d}{3 \log s} \right)^2 \leq s^6 \left(\frac{ed}{3 \log s} \right)^{6 \log s} \leq s^6 \left(\frac{d}{\log s} \right)^{6 \log s}.
\] (4.1)

Since \(s = n^{\varepsilon/\log c} \) we have \(\log s = \varepsilon \log n/\log c \). Using \(d = c \log n \), we bound

\[
\frac{d}{\log s} = \frac{c \log c \log n}{\varepsilon \log n} \leq \frac{c^2}{\varepsilon}.
\]

Together with (4.1) this yields

\[
\log \overline{m} \leq 6 \log s + 6 \log s \cdot (2 \log c + \log(1/\varepsilon))
= 6 \frac{\log n}{\log c} \cdot (1 + 2 \log c + \log(1/\varepsilon))
= \left(\frac{6 \varepsilon}{\log c} + 12 \varepsilon + \frac{6 \varepsilon \log(1/\varepsilon)}{\log c} \right) \log n.
\]

Using \(c \geq 2 \), and thus \(\log c \geq 1 \), we further bound

\[
\log \overline{m} \leq (18 \varepsilon + 6 \varepsilon \log(1/\varepsilon)) \log n.
\]
Observe that for $\varepsilon \to 0$ this factor tends to 0. Therefore, for sufficiently small $\varepsilon > 0$ we obtain

$$\log m \leq 0.05 \log n,$$

which is equivalent to $m \leq n^{0.05}$. Since $s = n^\varepsilon / \log c \leq n^{0.5}$ for sufficiently small ε, we can further bound $m \leq (\frac{n}{s})^{0.1} = g^{0.1}$. \qed
Bibliography

