
5
Polynomial Method for APSP

Version: 190

In this and the next chapter we will study the All-Pairs-Shortest-Paths
problem. We will see the fastest known algorithm for APSP and prove
several problems to be equivalent to it.

Problem 5.1.
All-Pairs-Shortest-Paths (APSP)
Given: A directed weighted graph G on n nodes.
Determine: The distance between any pair of nodes u, v in G.
Conjecture: No O(n3−ε)-time algorithm exists.

We start by formally defining all notions used in this problem defi-
nition. Recall that a directed graph G consists of a set of vertices V(G)

and a set of edges E(G) ⊆ V(G) × V(G). An edge (u, v) ∈ E(G)

points from u to v. We typically assume that V(G) = {1, . . . , n}. In
a weighted directed graph, each edge e ∈ E(G) is associated with an
edge weight w(e). A path from u to v in G is a sequence of distinct ver-
tices v1, . . . , vk ∈ V(G) such that u = v1, v = vk, and (vi, vi+1) ∈ E(G)

for all 1 ≤ i < k. The number of hops of this path is k− 1. The length
of this path is ∑k−1

i=1 w(vi, vi+1). The distance from u to v, denoted
by d(u, v) = dG(u, v), is the minimal length of any path from u to v.
A path attaining this minimal length is called a shortest path from u
to v. In APSP, our task is to compute the distance d(u, v) for each pair
of nodes u, v ∈ V(G).

We will assume that all edge weights are integral and, in partic-
ular, come from the set {1, . . . , W}. Moreover, we assume that
W ≤ nc for some (possibly very large) constant c > 0. Thus, each
weight fits into a constant number of machine cells and can be
accessed in constant time.

As is well known, APSP can be solved in time1 O(n3). A sequence 1 Robert W. Floyd. Algorithm 97: Short-
est path. Commun. ACM, 5(6):345, 1962;
and Stephen Warshall. A theorem on
boolean matrices. J. ACM, 9(1):11–12,
1962

of results improved this running time by logarithmic factors (and even

2 fine-grained complexity theory

by superpolylogarithmic factors, as we will see below). However, no
O(n3−ε)-time algorithm is known. Since APSP is an extremely funda-
mental problem and the O(n3)-time algorithm is widely taught in un-
dergraduate courses, an improvement to time O(n3−ε) would indeed
be very surprising. This gives rise to the APSP Hypothesis, stating that
APSP has no O(n3−ε)-time algorithm for any ε > 0.

In this chapter we will see the fastest known algorithm for APSP,
which uses the polynomial method. (In the next chapter we will then
explore conditional lower bounds based on the APSP Hypothesis.)

Theorem 5.2. (Polynomial Method for APSP2) APSP has a randomized 2 Ryan Williams. Faster all-pairs short-
est paths via circuit complexity. In Proc.
46th Annual ACM Symposium on Theory
of Computing (STOC’14), pages 664–673,
2014

algorithm that runs in time

n3/2Ω(
√

log n).

We remark that 2
√

log n grows faster than (log n)c and slower than
nε, for any c, ε > 0. In particular, the theorem yields strong lower order
improvements, but does not falsify the APSP Hypothesis.

5.1 Equivalence with Min-Plus Product

Our algorithm for APSP is based on a classic equivalence of APSP and
the so-called Min-Plus Product.

Problem 5.3.
Min-Plus Product
Given: Two n× n-matrices A, B
Determine: The n× n-matrix C = A⊗ B with

C[i, j] = min1≤k≤n A[i, k] + B[k, j].

Note that in standard matrix multiplication we would instead want
to compute the matrix with entries C[i, j] = ∑1≤k≤n A[i, k] · B[k, j].
Since “∑” and “·” are replaced by “min” and “+”, the above prob-
lem is called Min-Plus Product (or (min,+)-Product).

The naive algorithm that simply evaluates the definition of C solves
Min-Plus Product in time O(n3). In contrast to standard matrix mul-
tiplication, no fast matrix multiplication à la Strassen is known for
Min-Plus Product, in particular, no O(n3−ε)-time algorithm is known.

Similarly as for APSP, we will assume that all entries of the ma-
trices A, B lie in the set {1, . . . , W, ∞}, where again W ≤ nc. Here,
∞-entries correspond to non-edges in the APSP problem.

We show that APSP and Min-Plus Product are tightly connected.
This is somewhat surprising, since Min-Plus Product has a naiveO(n3)-
time algorithm, while for APSP this is non-trivial.

polynomial method for apsp, version: 190 3

In fact, this statement even holds with-
out the factor log n, but then requires a
more complicated proof.

Lemma 5.4. If APSP is in time T(n), then Min-Plus Product is in time
O(T(n)). If Min-Plus Product is in time T(n), then APSP is in time
O(T(n) log n).

We will prove this lemma in the next chapter, where we explore ad-
ditional equivalences with APSP. We will first use it in order to design
an algorithm for APSP.

5.2 Polynomial Method for Min-Plus Product

Since APSP is equivalent to Min-Plus Product, in order to prove The-
orem 5.2 it suffices3 to design an algorithm for Min-Plus Product that 3 Indeed, the additional log(n)-factor

from Lemma 5.4 is dominated by the fac-

tor 1/2Ω(
√

log n).
runs in time n3/2Ω(

√
log n).

The algorithm has similarities to the algorithm for OV presented
in the last chapter: they both use the polynomial method in order
to translate some subproblem into a polynomial evaluation problem.
However, apart from this general approach the algorithms differ sig-
nificantly.

We denote by A, B the given n × n-matrices. We again have a pa- For simplicity, assume that n and s are
powers of 2, so s divides n.rameter s and a number of groups g = n

s . This time we will choose

s = 2ε
√

log n for some small constant ε > 0.

1. Reduction to rectangular case: We split matrix A into g many n× s-
submatrices A1, . . . , Ag. Similarly, we split matrix B into g many s× n-
submatrices B1, . . . , Bg.

! "

!# !$

"#

"$

%

Figure 5.1: Illustration of matrix split-
ting.

We want to compute Cx := Ax ⊗ Bx for each 1 ≤ x ≤ g. Note
that from these matrices we can compute the output C = A ⊗ B by
C[i, j] = min1≤x≤g Cx[i, j].

Each subproblem Ax⊗ Bx is the Min-Plus Product of an n× s-matrix
with an s× n-matrix4. We will show how to solve each such subprob- 4 This is reminiscent of rectangular ma-

trix multiplication from the last chapter.lem in time Õ(n2). Over all g = n
s subproblems this will yield total

time Õ(n3

s) = n3/2Ω(
√

log n).

2. Witness problem: From now on we denote by A, B one of the sub-
problems from above, i.e., A is an n × s-matrix and B is an s × n-
matrix and our goal is to compute A⊗ B. Consider the witness problem:
Given A, B, compute an n× n-matrix W where:

W[i, j] is some k ∈ [s] minimizing A[i, k] + B[k, j].

From these witnesses, we can reconstruct C = A ⊗ B by C[i, j] =

A[i, W[i, j]] + B[W[i, j], j]. We can thus focus on the witness problem.

4 fine-grained complexity theory

3. Make witnesses unique: Suppose that we replace A, B by A′, B′ with

A′[i, k] := n · A[i, k] + k,

B′[k, j] := n · B[k, j].

Their product C′ = A′ ⊗ B′ satisfies

C′[i, j] = min
k

A′[i, k] + B′[k, j] = min
k

(
n · (A[i, k] + B[k, j]) + k

)
.

Note that due to the large factor n, the primary objective of this min-
imization problem is to minimize the sum A[i, k] + B[k, j], and among
all k minimizing the primary objective, the secondary objective is to
minimize k. In particular, there is a unique k minimizing A′[i, k] +
B′[k, j], because among all k minimizing A[i, k]+B[k, j] there is a unique
minimal k.

Therefore, without loss of generality we can phrase the witness
problems as computing the n× n-matrix W where:

W[i, j] is the unique k ∈ [s] minimizing A[i, k] + B[k, j].

4. Fredman’s trick: We rewrite the definition of the witness matrix as:

W[i, j] = unique k ∈ [s] s.t. ∀` ∈ [s] : A[i, k] + B[k, j] ≤ A[i, `] + B[`, j]

⇔A[i, k]− A[i, `] ≤ B[`, j]− B[k, j]

⇔A[i, k, `] ≤ B[j, k, `],

for A[i, k, `] := A[i, k]− A[i, `] and B[j, k, `] := B[`, j]− B[k, j]. This re- More precisely, we should add W to
A[i, k, `] and B[j, k, `] to ensure positivity.arrangement is known as Fredman’s trick5. It makes the left hand side
5 Michael L. Fredman. New bounds on
the complexity of the shortest path prob-
lem. SIAM J. Comput., 5(1):83–89, 1976

(A[i, k, `]) independent of j and the right hand side (B[j, k, `]) indepen-
dent of i. Moreover, there are only ns2 different values A[i, k, `], which
is much less compared to the n2s different sums A[i, k] + B[k, j]. This
allows us to precompute all numbers A[i, k, `], B[j, k, `] in time much
less than O(n2).

We arrived at the following formulation of the witness problem: Here [x ≤ y] evaluates to 1 (or true) if
x ≤ y holds, and to 0 (or false) other-
wise.W[i, j] = unique k ∈ [s] :

∧
`∈[s]

[
A[i, k, `] ≤ B[j, k, `]

]
.

5. Bits of witnesses: Analogously to the polynomial method for OV,
our goal is to convert the witness problem first into a Boolean circuit
and then into a probabilistic polynomial. However, a Boolean circuit
computes one bit, but a witness W[i, j] consists of log s bits, as W[i, j]
can take any value in [s]. For this reason, we consider the binary
representation of witnesses:

W[i, j] =
log s

∑
b=0

2b ·Wb[i, j],

polynomial method for apsp, version: 190 5

where Wb[i, j] ∈ {0, 1} is the b-th bit of W[i, j]. We will construct a
circuit/probabilistic polynomial for each Wb[i, j].

Claim 5.5. We have

Wb[i, j] =
∨

k∈[s]
b-th bit
of k is 1

∧
`∈[s]

[
A[i, k, `] ≤ B[j, k, `]

]
.

Proof. Note that the expression
∧
`∈[s]

[
A[i, k, `] ≤ B[j, k, `]

]
is true if Here we make use of the uniqueness of

the witnesses.and only if k = W[i, j]. If the b-th bit of W[i, j] is 1, then in the outer
∨

we enumerate k = W[i, j], and for this k the inner
∧

evaluates to true,
so we have Wb[i, j] = 1. Similarly, if the b-th bit of W[i, j] is 0, then
in the outer

∨
we always have k 6= W[i, j], and the inner

∧
always

evaluates to false.

Before we show how to express the inner part
[
A[i, k, `] ≤ B[j, k, `]

]
as a Boolean circuit, let us discuss how we convert the outer

∨
and

∧
from a Boolean circuit into a probabilistic polynomial. For the outer

∨
,

the next claim shows that we can simply replace it by a
⊕

. For the
inner

∧
, we will then later apply Razborov-Smolensky.

Claim 5.6. We have

Wb[i, j] =
⊕
k∈[s]

b-th bit
of k is 1

∧
`∈[s]

[
A[i, k, `] ≤ B[j, k, `]

]
.

Proof. Note that if at most one xi is true then we have x1 ∨ . . . ∨ xn =

x1 ⊕ . . .⊕ xn. Moreover,
∧
`∈[s]

[
A[i, k, `] ≤ B[j, k, `]

]
is true if and only

if k = W[i, j], so it is true for at most one enumerated k. Combining
these facts yields the claim.

6. LEQ circuit: It remains to to convert the expression [a ≤ b] into a
Boolean circuit (and then further to a probabilistic polynomial). For
numbers x, y ∈ {1, . . . , W} denote the binary representation by x =

∑B
b=0 2b · xb, and similarly for y. Note that we have x ≤ y if and only if Here B = dlog We.

x = y or there exists an index i such that the i-th bit of x is 0, the i-th
bit of y is 1, and all higher bits are equal. This yields a Boolean circuit
that checks whether x ≤ y:

LEQ(x, y) =

 B∧
j=0

(
xj =yj

) ∨ B∨
i=0

(xi =0) ∧ (yi =1) ∧
B∧

j=i+1

(
xj =yj

)
We slightly rewrite this expression to get it closer to a polynomial
over F2, as follows.

6 fine-grained complexity theory

Claim 5.7. There are values αh,j, βh,j, γh,j ∈ {0, 1} and ij ∈ {0, . . . , B} for
h, j ∈ [B + 2] such that

LEQ(x, y) =
B+2⊕
h=1

B+2∧
j=1

(
γh,j ⊕ x

αh,j
ij
⊕ y

βh,j
ij

)
.

Proof. First note that LEQ(x, y) considers B + 2 cases (either x = y or
for some 0 ≤ i ≤ B the i-th bit of x is smaller than in y but all higher
bits are equal). Since at most one of these cases occurs for any x, y, we
can replace the

∨
over these B+ 2 cases by a

⊕
. Further, note that each

case considers a
∧

over at most B + 2 constraints of the form xi = yi

or xi = 0 or yi = 1. We rewrite xi = yi as 1⊕ xi ⊕ yi. We rewrite
xi = 0 as 0⊕ xi ⊕ y0

i . We rewrite yi = 1 as 1⊕ x0
i ⊕ yi. By possibly Note that y0

i = x0
i = 1.

repeating constraints to fill up to exactly B + 2 constraints, we have
written LEQ(x, y) in the claimed form.

6. Probabilistic polynomial for LEQ: We apply Razborov-Smolensky to

the expression Eh :=
∧B+2

j=1

(
γh,j ⊕ x

αh,j
ij
⊕ y

βh,j
ij

)
to obtain

Eh ≈2−t Eh,r :=RSt

({
γh,j ⊕ x

αh,j
ij
⊕ y

βh,j
ij
| 1 ≤ j ≤ B + 2

})
=

t

∏
q=1

1⊕
B+2⊕
j=1

rh,q,j ·
(

1⊕ γh,j ⊕ x
αh,j
ij
⊕ y

βh,j
ij

) ,

where each rh,q,j is a random bit and r denotes the sequence of all
these random bits. Note that the right hand side is a product of t
linear functions in the variables xi, yi (since the exponents αh,j, βh,j are in
{0, 1}). We split these linear functions into a sum of two expressions,
one depending only on x and one depending only on y.6 In other 6 The constant term of the linear function

can be arbitrarily assigned to the left or
right expression

words, we write

Eh,r =
t

∏
q=1

(
Lh,q,r(x)⊕ Rh,q,r(y)

)
.

Here each Lh,q,r(x) depends only on the input x, the random bits r, and
the indices h, q. It turns out that for all our applications of the LEQ
circuit we can precompute the values Lh,q,r(x) and Rh,q,r(y). Therefore,
we may treat the symbols Lh,q,r(x), Rh,q,r(y) as new variables that are
the actual inputs to the LEQ circuit. This helps, because in terms of
these new variables it is straightforward to expand Eh,r into a sum of
monomials:

Eh,r =
⊕

z∈{0,1}t

t

∏
q=1

Lh,q,r(x)zq · Rh,q,r(y)1−zq .

We have thus written Eh,r as a sum of 2t monomials.

polynomial method for apsp, version: 190 7

Recalling Claim 5.7, we now have

LEQ(x, y) =
B+2⊕
h=1

Eh ≈(B+2)2−t

B+2⊕
h=1

Eh,r,

where we used the union bound to bound the error of B + 2 replace-
ments of the form Eh ≈2−t Eh,r by at most (B + 2) · 2−t. We write
LEQr(x, y) for the final term on the right hand side. Since each Eh,r is
a sum of 2t monomials, LEQr(x, y) is a sum of (B + 2) · 2t monomials
(in terms of the new variables Lh,q,r(x), Rh,q,r(y)).

8. Final probabilistic polynomial: We now use the expression from
Claim 5.6 for the witness bit Wb[i, j], replace its inner

∧
by an appli-

cation of Razborov-Smolensky, and replace the ≤ by the probabilistic
polynomial LEQr. This yields the probabilistic polynomial

Wb,r[i, j] :=
⊕
k∈[s]

b-th bit
of k is 1

RSlog(8s)
({

LEQr(A[i, k, `], B[j, k, `]) | 1 ≤ ` ≤ s
})

.

In the following we analyze the error probability and the number of
monomials of this probabilistic polynomial.

Claim 5.8. We have
Wb[i, j] ≈ 1

4
Wb,r[i, j].

Proof. There are two sources of errors: (1) RSlog(8s)(.) errs with prob-
ability at most 2− log(8s) = 1

8s . Since we use this transformation for at
most s values of k, we obtain total error probability at most 1

8 from this
term. (2) LEQr errs with probability at most (B + 2) · 2−t. Since we
apply LEQr exactly s2 times (over s values of k and s values of `), we
obtain total error probability s2(B + 2)2−t from this term. We set

t := log(8s2(B + 2)),

to make this error probability at most 1
8 . In total, this yields error

probability at most 1
4 .

Claim 5.9. Set s = 2ε
√

log n, where ε > 0 is a sufficiently small constant and
n is at least a sufficiently large constant. Then the probabilistic polynomial
Wb,r[i, j] consists of at most n0.1 monomials.

This bound enables the fast polynomial evaluation from the poly-
nomial method.

Proof. Observe that if p1, . . . , ps are polynomials consisting of m′ mono-
mials, then RSt(p1, . . . , ps) consists of at most (s ·m′ + 1)t monomials

8 fine-grained complexity theory

(by simply counting all possible terms in the expansion). Using this
bound on Wb,r[i, j] shows that its number of monomials is at most

m ≤ s ·
(
s · (B + 2) · 2t + 1

)log(8s)
= s ·

(
8s3(B + 2)2

)log(8s)
,

where we used our choice of t = log(8s2(B + 2)).
Recall that we assume all our weights to lie in {1, . . . , W}, where

W ≤ nc. In particular, each weight consists of B = O(log n) bits. By

our choice of s = 2ε
√

log n we have s� B, so B is a lower order term in
our bound on m. This allows us to bound

m ≤ sO(log s).

More precisely, there are constants C, s0 > 0 such that for any s ≥ s0

we have m ≤ sC·log s. This yields the upper bound

m ≤ sC·log s =
(

2ε
√

log n
)Cε
√

log n
= 2Cε2 log n = nCε2

.

For sufficiently small constant ε > 0, we thus ensure m ≤ n0.1.

Final Algorithm

Recall that we split our original instance A, B into rectangular subprob-
lems. On each subproblem Ax ⊗ Bx, in order to compute witnesses we
consider the probabilistic polynomial Wb,r for the b-th witness bit. We
boost its constant success probability by drawing 200 ln n samples; this
yields polynomials p1,b, . . . , p200 ln n,b. For each polynomial pt,b we pre-
compute the values of the new variables: Lh,q,r(Ax[i, k]− Ax[i, `]) and
Rh,q,r(Bx[`, j]− Bx[k, j]). This allows us to evaluate pt,b on all pairs i, j.
Each evaluation gives a guess for the bit Wb[i, j] that is correct with
probability at least 3

4 . The majority of these guesses is correct with
high probability. Combining the computed witnesses for all subprob-
lems yields the correct result C = A⊗ B with high probability. This
algorithm is described by the following peudocode.

Final Algorithm On input A, B we do the following.

1. Split A into n× s-submatrices A1, . . . , Ag and B into s×n-submatrices
B1, . . . , Bg.

2. For each 1 ≤ x ≤ g do:

3. For each t = 1, . . . , 200 ln n and b = 0, . . . , log s do:

4. Sample a polynomial pt,b from the distribution Wb,r by sam-
pling the random bits r.

polynomial method for apsp, version: 190 9

5. Compute the values of the new variables:

(Ãi)h,q,k,` := Lh,q,r(Ax[i, k]− Ax[i, `])

(B̃j)h,q,k,` := Rh,q,r(Bx[`, j]− Bx[k, j])

6. Evaluate pt,b(Ãi, B̃j) for all pairs 1 ≤ i, j ≤ n

7. Let Wx
b,i,j be the majority among p1,b(Ãi, B̃j), . . . , p200 ln n,b(Ãi, B̃j).

8. Let Wx
i,j := ∑

log s
b=0 2b ·Wx

b,i,j.

9. Let C[i, j] := min1≤x≤g A[i, Wx
i,j] + B[Wx

i,j, j].

The use of boosting immediately implies a success probability of at
least 1− 1

n . We checked above that the number of monomials satisfies
m ≤ n0.1 and thus fast polynomial evaluation in time O(n2 log2 n) can
be applied. In total over O(g log2 n) = O(n

s log2 n) iterations, this step
takes time

O
(

n3

s
log4 n

)
=

n3

2Ω(
√

log n)
.

It can be checked that all other steps of this algorithm are dominated
by this running time.

Bibliography

Version: 190

Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):
345, 1962.

Michael L. Fredman. New bounds on the complexity of the shortest
path problem. SIAM J. Comput., 5(1):83–89, 1976.

Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12,
1962.

Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In
Proc. 46th Annual ACM Symposium on Theory of Computing (STOC’14),
pages 664–673, 2014.

	Polynomial Method for APSP, Version: 190
	Equivalence with Min-Plus Product
	Polynomial Method for Min-Plus Product

	Bibliography, Version: 190

