
Lecture 1

Synchronizing Clocks

In this lecture series, we consider fault-tolerant clock generation and distribution
from a theoretical perspective. We formalize parametrized problems and prove
impossibilities, lower bounds, and upper bounds for them. However, make no
mistake: these tasks are derived from real-world challenges, and many of the
ideas and concepts can be used in the design of highly reliable and scalable
hardware solutions. The first lecture introduces the basic clock synchronization
task and provides rudimentary algorithms and analysis. More refined questions
will prompt more refined answers later in the course. Nonetheless, the initial
lecture offers a taste of the general approach and flair of the course.

1.1 The Clock Synchronization Problem

We describe a distributed system by a simple, connected graph G = (V,E) (see
Appendix ??), where V is the set of n := |V | nodes (our computational entities,
e.g., computers in a network) and nodes v and w can directly communicate
if and only if there is an edge {v, w} ∈ E. Each node v is equipped with a
hardware clock, denoted Hv. The goal of clock synchronization is for each node
to compute a logical clock, denoted Lv, such that all logical clocks remain as
closely synchronized as possible. The challenge of clock synchronization arises
as a result of uncertainty in the system. Specifically, the basic model has two
forms of uncertainty: uncertainty in the hardware clock rate, called clock drift,
and uncertainty in the transit times of messages between nodes.

For every execution, we assume that there is an objective “true” Newtonian
time taking values in R+

0 . We will typically denote objective times by the
variables t and t′. Objective time allows us to define (and reason about) the
global state of the system at any given instant, but the objective time is never
known to any processor.

For each node v ∈ V , we model v’s hardware clock as a strictly increasing
function Hv : R+

0 → R+
0 . We assume that Hv increases at a rate between 1 and

ϑ > 1:

∀v ∈ V, t, t′ ∈ R+
0 , t ≥ t′ : t− t′ ≤ Hv(t)−Hv(t

′) ≤ ϑ(t− t′) , (1.1)

where t, t′ ∈ R+
0 denote objective times. For simplicity, we assume that hardware

1

2 LECTURE 1. SYNCHRONIZING CLOCKS

clocks are differentiable and denote the derivative by hv.
1 We call hv(t) the

(instantaneous) rate of v at objective time t. Observe that Equation (1.1)
implies that hv(t) ∈ [1, ϑ] at all times t. The parameter ϑ—an upper bound on
the rates of all hardware clocks—is known to the algorithm designer, however
processes have no way of learning the values of hv(t) directly. Thus any possible
(differentiable) hardware clock values Hv satisfying (1.1) are admissible, and a
good clock synchronization algorithm should maintain synchronization for all
possible Hv without knowledge of the rates hv beyond what is implied by (1.1).
We note that even if the hardware clocks of nodes v and w would be initially
perfectly synchronized (i.e., Hv(0) = Hw(0)), over time they could drift apart
at a rate of up to ϑ − 1. Accordingly, we refer to ϑ − 1 as the maximum drift,
or, in short, drift.

In order to establish or maintain synchronization, nodes need to communi-
cate with each other. To this end, on any edge {v, w}, v can send messages to w
(and vice versa). However, it is not known how long it will take for v’s message
to be delivered to w. A message sent at objective time t is received at a time
t′ ∈ (t + d − u, t + d), where d is the (maximum) delay and u is the (delay)
uncertainty. The delay d subsumes delays due to local computations, etc. That
is, in our model, at the time t′ when the message is received, all updates to the
state of the receiving node take effect immediately, and messages it sends in
response may also be sent immediately.

An event consists of (1) a node sending or receiving a message, or (2) a
node’s hardware clock reaching some prescribed value (possibly determined in
response to a previous event). Every event e seen by a node v has both an
associated objective time te when the event occurs, and an associated hardware
time Hv(te) when v witnesses the event. The state of a node at objective time
t consists of the entire history of events witnessed by v up to time t along with
the associated hardware times at which v witnessed the evenets, as well as the
current hardware time Hv(t). Informally, an algorithm specifies when and how
a node responds to each event it sees, given its current state when the event
occurs. We assume that an algorithm produces (and hence witnesses) a finite
number of events in every bounded interval of time, but we do not make any
other assumptions about nodes’ local computations.

An execution of an algorithm on a system specifies hardware clock functions
Hv as above for each v ∈ V , and assigns to each event e an objective time
te at which the event occurs. In particular, a message sent by v at objective
time t must be received at time t′ ∈ [t + d − u, t + d]. Since an algorithm
only produces finitely many events in any bounded interval of time, there is
an increasing sequence of times t1 < t2 < t3 < · · · at which some event(s)
occur (at any node). Further, the state of the system at these times is defined
inductively: given the execution and states of processors at time ti for i ≥ 1,
one can determine the time ti+1 at which the next event(s) occur, as well as the
state of the system at this time.

The clock synchronization problem requires each node v ∈ V to compute a
logical clock Lv : R+

0 → R+
0 , where Lv(t) is determined from the current state

1All of the claims we make can be derived from (1.1) without the assumption of differen-
tiability, but this assumption simplifies our analysis.

1.2. THE MAX ALGORITHM 3

of the node (including Hv(t)). The goal is to minimize the global skew

G := sup
t∈R+

0

{G(t)} ,

over all exicutions E , where

G(t) := max
v,w∈V

{|Lv(t)− Lw(t)|} = max
v∈V
{Lv(t)} −min

v∈V
{Lv(t)}

is the global skew at time t. The suprema and maxima above are also taken over
all possible executions. The goal is to bound G for all possible executions, yet
frequently we will argue about specific executions. We will make the dependence
explicit only when reasoning about different executions concurrently.

Remarks:

• For practical purposes, clocks are discrete and bounded (i.e., wrap around
to 0 after reaching a maximum value), and nodes may not be able to read
them (perform computations, send messages, etc.) at arbitrary times. We
hide these issues in our abstraction, as they can be handled easily, by
adjusting d and u to account for them and making minor adjustments to
algorithms.

• A cheap quartz oscillator has a drift of ϑ − 1 ≈ 10−5, which will be
more than accurate enough for running all the algorithms that we will
encounter. In some cases, however, one might only want to use basic
digital ring oscillators (an odd number of inverters arranged in a cycle),
for which ϑ− 1 ≈ 10% is not unusual.

• There are forms of communication other than point-to-point message pass-
ing described above. However, many algorithms can be adapted to other
modes of communication relatively small conceptual changes.

• Clocks may not be perfectly synchronized at objective time 0. After all, we
want to run a synchronization algorithm to make clocks agree, so assuming
that this is already true from the start would create a chicken-and-egg
problem. But if we assume that initial clock values are arbitrary, we
cannot bound G. Instead, we assume that, for some F ∈ R+, it holds that
Hv(0) ∈ [0, F] for all v ∈ V . We then can bound G in terms of F (and, of
course, other parameters).

1.2 The Max Algorithm

Let’s start with our first algorithm. It is straightforward: Nodes initialize their
logical clocks to their initial hardware clock value, increase it at the rate of the
hardware clock, and set it to the largest value they can be sure that some other
node has reached. To make the latter useful, each node broadcasts its clock
value (i.e., sends it to all neighbors) whenever it reaches an integer multiple of
some parameter T . See Algorithm 1.1 for the pseudocode.

Lemma 1.1. In a system executing Algorithm 1.1, it holds that

G(t) ≤ ϑdD + (ϑ− 1)T

for all t ≥ dD + T , where D is the diameter of G.

4 LECTURE 1. SYNCHRONIZING CLOCKS

Algorithm 1.1: Basic Max Algorithm. Parameter T ∈ R+ controls
the message frequency. The code lists the actions of node v at time t.

1 Lv(0) := Hv(0)
2 at all times, increase Lv at the rate of Hv

3 if received 〈L〉 at time t and L > Lv(t) then
4 Lv(t) := L
5 if Lv(t) = kT for some k ∈ N then
6 send 〈Lv(t)〉 to all neighbors

Proof. For any time t, let Lmax(t) = maxw∈V {Lw(t)} be the maximum logical
clock value in the system at time t. Observe that any node v satisfying Lv(t) =
Lmax(t) cannot satisfy the condition in Line 3. Therefore, Lmax(t) increases at
a rate at most ϑ (the maximum rate of any hardware clock), so that

Lmax(t′) ≤ Lmax(t) + ϑ · (t′ − t) for all t′ > t. (1.2)

Fix a time t′ ≥ dD + T , and let v be the node with the maximum logical clock
value at time s := t′ − dD − T . That is, Lv(s) = Lmax(s). Applying (1.2), we
find that

Lmax(t′) ≤ Lmax(s) + ϑ · (t′ − s) = Lmax(s) + ϑ · (dD − T). (1.3)

To finish the proof, it suffices to show that at time t′, all nodes w ∈ V satisfy
Lw(t′) ≥ Lmax(s). To this end observe that v’s logical clock increases at a rate of
at least 1, so there exists a time s′ ∈ [s, s+T] such that Lv(s

′) = kT ≥ Lv(s) for
some integer k ∈ N.2 At time s′, v sends the message 〈kT 〉 to all of its neighbors
in accordance with line 6. This message is received by all of v’s neighbors by
time s′ + d, hence by time s′ + d, all of v’s neighbors’ logical clocks are at
least Lmax(s′) ≥ Lmax(s). Continuing in this way, a straightforward induction
argument shows that for all ` ∈ N and all nodes w within distance ` from v
will satisfy Lw(s′ + ` · d) ≥ Lmax(s). In particular, taking ` = D (the network
diameter), we find that for all w ∈ V

Lmax(s) ≤ Lmax(s′) ≤ Lw(s′ +D · d) ≤ Lw(t′)

which gives the desired result.

Theorem 1.2. Set H := maxv∈V {Hv(0)} − minv∈V {Hv(0)}. Then Algo-
rithm 1.1 achieves

G ≤ max{H, dD}+ (ϑ− 1)(dD + T) .

Proof. Consider t ∈ R+
0 . If t ≥ dD + T , then G(t) ≤ ϑdD + (ϑ − 1)T by

Lemma 1.1. If t < dD + T , then for any v, w ∈ V we have that

Lv(t)− Lw(t) ≤ Lv(0)− Lw(0) + (ϑ− 1)t ≤ H + (ϑ− 1)(dD + T) .

2It could be the case that Lv reaches kT because v received a message from some other
node v′ that overtook v as the fastest node in the network. However, our argument only
relies on the fact that Lv reaches an integer multiple kT ≥ Lv(s) at some time in the interval
[s, s + T].

1.3. LOWER BOUND ON THE GLOBAL SKEW 5

Remarks:

• H reflects the skew on initialization. Getting H small may or may not be
relevant to applications, but it yields little understanding of the overall
problem; hence we neglect this issue here.

• Making H part of the bound means that we do not bound G for all execu-
tions, as the model allows for executions with arbitrarily large initial clock
offsets Hv(0)−Hw(0). An unconditional bound will require to ensure that
H is small — but of course this “unconditional” bound then still relies on
the assumptions of the model.

• Is this algorithm good? May it even be optimal in some sense?

1.3 Lower Bound on the Global Skew

To argue that we performed well, we need to show that we could not have done
(much) better (in the worst case). We will use the shifting technique, which
enables to “hide” skew from the nodes. That is, we construct two executions
which look completely identical from the perspective of all nodes, but different
hardware clock values are reached at different times. No matter how the algo-
rithm assigns logical clock values, in one of the executions the skew must be
large — provided that nodes do increase their clocks. First, we need to state
what it means that two executions are indistinguishable at a node.

Definition 1.3 (Indistinguishable Executions). Executions E0 and E1 are in-

distinguishable at node v ∈ V until local time H, if H
(E0)
v (0) = H

(E1)
v (0) (where

the superscripts indicate the execution) and, for i ∈ {0, 1}, for each message v
receives at local time H ′ ≤ H in Ei from some neighbor w ∈ V , it receives an
identical message from w at local time H ′ in E1−i. If we drop the “until local
time H,” this means that the statement holds for all H, and if we drop the “at
node v,” the statement holds for all nodes.

Remarks:

• If two executions are indistinguishable until local time H at v ∈ V , it sends
the same messages in both executions and computes the same logical clock
values — in terms of its local time — until local time H. This holds because
our algorithms are deterministic and all actions nodes take are determined
by their local perception of time and which messages they received (and
when).

• As long as we can ensure that the receiver of each message receives it at
the same local time in two executions without violating the constraint that
messages are under way between d−u and d real time in both executions,
we can inductively maintain indistinguishability: as long as this condition
is never violated, each node will send the same messages in both executions
at the same hardware times.

Before showing that we cannot avoid a certain global skew, we need to add a
requirement, namely that clocks actually behave like clocks and make progress.
Note that, without such a constraint, setting Lv(t) = 0 at all v ∈ V and times
t is a “perfect” solution for the clock synchronization problem.

6 LECTURE 1. SYNCHRONIZING CLOCKS

Definition 1.4 (Amortized Minimum Progress). For α ∈ R+, an algorithm
satisfies the amortized α-progress condition, if there is some C ∈ R+

0 such that
minv∈V {Lv(t)} ≥ αt− C for all t ∈ R+

0 and all executions.

We now prove that we cannot only “hide hardware clock skew,” but also
keep nodes from figuring out that they might be able to advance their logical
clocks slower than their hardware clocks in such executions.

Lemma 1.5. Fix some nodes v, w ∈ V and ρ ∈ (1, ϑ) such that (ρ − 1)d <
u/2, and set t0 := d(v, w)(u/(2(ρ − 1)) − d). For any algorithm, there are
indistinguishable executions E1 and Ev satisfying that

• H(E1)
x (t) = t for all x ∈ V and t,

• H(Ev)
v (t) = H

(E1)
v (t) + d(v, w)(u/2− (ρ− 1)d) for all t ≥ t0,

• H(Ev)
w (t) = t for all t, and

• E1 does not depend on the choice of v and w.

Proof. In both executions and for all x ∈ V , we set Hx(0) := 0. Execution E1
is given by running the algorithm with all hardware clock rates being 1 at all
times and the message delay from x to y being d− u/2.

Set

d(x) :=


−d(v, w) if d(x,w)− d(x, v) < −d(v, w)

d(v, w) if d(x,w)− d(x, v) > d(v, w)

d(x,w)− d(x, v) else.

Note that |d(x) − d(y)| ≤ 2 for any {x, y} ∈ E. Moreover, d(v) = d(v, w) and
d(w) = −d(v, w). In Ev, we set the hardware clock rate of node x ∈ V to
1 + (ρ − 1)(d(x) + d(v, w))/(2d(v, w)) at all times t ≤ t0 and to 1 at all times
t > t0. This implies that

H(Ev)
v (t0) = ρt0 = H(E1)

v (t0) + d(v, w)
(u

2
− (ρ− 1)d

)
and

H(Ev)
w (t0) = t0 = H(E1)

w (t0) .

As clock rates are 1 from time t0 on, this means that the hardware clocks satisfy
all stated constraints.

It remains to specify message delays and show that the two executions are
indistinguishable. We achieve this by simply ruling that a message sent from
some x ∈ V to a neighbor y ∈ Nx in Ev arrives at the same local time at y
as it does in E1. By induction over the arrival and sending times of messages,
then indeed all nodes also send identical messages at identical local times in
both executions, i.e., the executions are indistinguishable. However, it remains
to prove that this results in all message delays being in the range (d− u, d).

To see this, fix a time t and set λ := max{t/t0, 1}. We compute

H(Ev)
x (t)−H(Ev)

y (t) =
d(y)− d(x)

2d(v, w)
· (ρ−1)λt0 = λ · d(y)− d(x)

2

(u
2
− (ρ− 1)d

)
.

In execution E1, a message sent from x to y at local time H
(E1)
x (t) = t is received

at local time H
(E1)
y (t + d − u/2) = H

(E1)
x (t) + d − u/2. Thus, showing that

1.3. LOWER BOUND ON THE GLOBAL SKEW 7

H
(Ev)
y (t + d − u) < H

(Ev)
x (t) + d − u/2 < H

(Ev)
x (t) + d will complete the proof.

Recall that ρ is such that u/2− (ρ− 1)d > 0. We have that

H(Ev)
y (t+ d) ≥ H(Ev)

y (t) + d

= H(Ev)
x (t) + d+ λ · d(x)− d(y)

2

(u
2
− (ρ− 1)d

)
≥ H(Ev)

x (t) + d−
(u

2
− (ρ− 1)d

)
> H(Ev)

x (t) + d− u

2
,

where the second to last inequality uses that d(x)− d(y) ≥ −2 and 0 ≤ λ ≤ 1.
On the other hand,

H(Ev)
y (t+ d− u) < H(Ev)

y (t) + ρd− u

= H(Ev)
x (t) + ρd− u+ λ · d(x)− d(y)

2

(u
2
− (ρ− 1)d

)
≤ H(Ev)

x (t) + ρd− u+
u

2
− (ρ− 1)d

= H(Ev)
x (t) + d− u

2
,

where the second inequality uses that d(x)− d(y) ≤ 2 and 0 ≤ λ ≤ 1.

Theorem 1.6. If an algorithm satisfies the amortized α-progress condition for
some α ∈ R+, then G ≥ αuD

2 , even if we are guaranteed that Hv(0) = 0 for all
v ∈ V .

Proof. Fix v, w ∈ V such that d(v, w) = D and set ρ ∈ (1, ϑ) such that (ρ−1)d <
u/2. In the following, we abbreviate ε := (ρ−1)d; note that we can choose ε > 0
arbitrarily small by picking ρ accordingly. We apply Lemma 1.5 twice, where
the second time we reverse the roles of v and w. As E1 does not depend on the
choice of v and w and indistinguishability of executions is transitive, we get two
indistinguishable executions Ev and Ew such that there is a time t0 satisfying
for all t ≥ t0 that

• H(Ew)
v (t) = H

(Ev)
w (t) = t and

• H(Ev)
v (t) = H

(Ew)
w (t) = t+ (u/2− ε)D.

Because the algorithm satisfies the amortized α-progress condition, we have that

L
(Ev)
x (t) ≥ αt − C for all t, x ∈ V , and some C ∈ R+

0 . We claim that there is
some t ≥ t0 satisfying that

L(Ew)
v (t+(u/2−ε)D)−L(Ew)

v (t)+L(Ev)
w (t+(u/2−ε)D)−L(Ev)

w (t) ≥ α(u−3ε)D .
(1.4)

Assuming for contradiction that this is false, set 0 < 2α′ := α(u−3ε)D
(u/2−ε)D < 2α and

consider times tk := t0 + k(u/2 − ε)D for k ∈ N. By induction over k, we get
that

L(Ew)
v (tk) + L(Ev)

w (tk) ≤ L(Ew)
v (t0) + L(Ev)

w (t0) + 2α′(tk − t0)

≤ 2αtk − 2(α− α′)tk + L(Ew)
v (t0) + L(Ev)

w (t0) .

8 LECTURE 1. SYNCHRONIZING CLOCKS

Choosing k large enough so that tk > (L
(Ew)
v (t0) + L

(Ev)
w (t0) + 2C)/(2(α− α′)),

we get that
L(Ew)
v (tk) + L(Ev)

w (tk) < 2(αtk − C) .

Therefore, L
(Ew)
v (tk) < αtk−C or L

(Ev)
w (tk) < αtk−C, violating the α-progress

condition in at least one of the executions. This is a contradiction, i.e., the
claim must hold true.

Now let t ≥ t0 be such that (1.4) holds. As H
(Ew)
v (t + (u/2 − ε)D) =

t + (u/2 − ε)D = H
(Ev)
v (t), by indistinguishability of Ev and Ew we have that

L
(Ev)
v (t) = L

(Ew)
v (t+(u/2−ε)D). Symetrically, L

(Ew)
w (t) = L

(Ev)
w (t+(u/2−ε)D).

Hence,

|L(Ev)
v (t)− L(Ev)

w (t)|+ |L(Ew)
v (t)− L(Ew)

w (t)|
≥ L(Ev)

v (t)− L(Ev)
w (t) + L(Ew)

w (t)− L(Ew)
v (t)

= L(Ew)
v (t+ (u/2− ε)D)− L(Ev)

w (t) + L(Ev)
w (t+ (u/2− ε)D)− L(Ew)

v (t)

= L(Ew)
v (t+ (u/2− ε)D)− L(Ew)

v (t) + L(Ev)
w (t+ (u/2− ε)D)− L(Ev)

w (t)

≥ α(u− 3ε)D .

We conclude that in at least one of the two executions, the logical clock difference
between v and w reaches at least (α(u − 3ε)D)/2. As ε > 0 can be chosen
arbitrarily small, it follows that G ≥ αuD

2 , as claimed.

Remarks:

• The good news: We have a lower bound on the skew that is linear in D.
The bad news: typically u� d, so we might be able to do much better.

• When propagating information, we haven’t factored in yet that we know
that messages are under way for at least d− u time. Let’s exploit this!

1.4 Refining the Max Algorithm

Algorithm 1.2: Refined Max Algorithm.

1 Lv(0) := Hv(0)
2 at all times, increase Lv at the rate of Hv

3 if received 〈L〉 at time t and L+ d− u > Lv(t) then
4 Lv(t) := L+ d− u
5 if Hv(t) = kT for some k ∈ N then
6 send 〈Lv(t)〉 to all neighbors

Lemma 1.7. In a system executing Algorithm 1.2, no v ∈ V ever sets Lv to a
value larger than maxw∈V \{v}{Lw(t)}.

Proof. If any node v ∈ V sends message 〈Lv(t)〉 at time t, it is not received
before time t+ d− u, for which it holds that

max
w∈V
{Lw(t+ d− u)} ≥ Lv(t+ d− u) ≥ Lv(t) + d− u ,

1.4. REFINING THE MAX ALGORITHM 9

as all nodes, in particular v, increase their logical clocks at least at rate 1, the
minimum rate of increase of their hardware clocks.

Lemma 1.8. In a system executing Algorithm 1.2, it holds that

G(t) ≤ ((ϑ− 1)(d+ T) + u)D

for all t ≥ (d+ T)D, where D is the diameter of G.

Proof. Set L := maxv∈V {Lv(t − (d + T)D)}. By Lemma 1.7 and the fact that
hardware clocks increase at rate at most ϑ, we have that

max
v∈V
{Lv(t)} ≤ max

v∈V
{Lv(t− (d+ T)D)}+ ϑ(d+ T)D = L+ ϑ(d+ T)D .

Consider any node w ∈ V . We claim that Lw(t) ≥ L + (d + T − u)D, which
implies

max
v∈V
{Lv(t)}−Lw(t) ≤ L+ϑ(d+T)D−(L+(d+T−u)D) = ((ϑ−1)(d+T)+u)D ;

as w is arbitary, this yields the statement of the lemma.
It remains to show the claim. Let v ∈ V be such that Lv(t− (d+T)D) = L.

Denote by (vD−h = v, vD−h+1, . . . , vD = w), where h ≤ D, a shortest v-w-path.
Define ti := t− (D− i)(d+T). We prove by induction over i ∈ {D−h,D−h+
1, . . . , D} that

Lvi(ti) ≥ L+ i(d+ T − u) ,

where the base case i = D − h is readily verified by noting that

Lv(tD−h) ≥ Lv(t− (d+ T)D) + tD−h − (t− (d+ T)D) = L+ (D − h)(d+ T) .

For the induction step from i− 1 ∈ {D − h, . . . ,D − 1} to i, observe that vi−1
sends a message to vi at some time ts ∈ (ti−1, ti−1 + T], as its hardware clock
increases by at least T in this time interval. This message is received by vi at
some time tr ∈ (ts, ts + d) ⊆ (ti−1, ti−1 + d+ T). Note that ti−1 < ts < tr < ti.
If necessary, vi will increase its clock at time tr, ensuring that

Lvi(ti) ≥ Lvi(tr) + ti − tr
≥ Lvi−1

(ts) + d− u+ ti − tr
≥ Lvi−1

(ts) + ti − ts − u
≥ Lvi−1

(ti−1) + ti − ti−1 − u
= Lvi−1

(ti−1) + d+ T − u
≥ L+ i(d+ T − u) ,

where the last step uses the induction hypothesis. This completes the induction.
Inserting i = D yields that Lw(t) ≥ LvD (tD) = L + (d + T − u)D, as claimed,
completing the proof.

Theorem 1.9. Set H := maxv∈V {Hv(0)} − minv∈V {Hv(0)}. Then Algo-
rithm 1.2 achieves

G ≤ max{H,uD}+ (ϑ− 1)(d+ T)D .

10 LECTURE 1. SYNCHRONIZING CLOCKS

Proof. Consider t ∈ R+
0 . If t ≥ (d+T)D, then G(t) ≤ uD+ (ϑ− 1)(d+T)D by

Lemma 1.8. If t < (d+ T)D, then for any v, w ∈ V we have that

Lv(t)− Lw(t) ≤ Lv(0)− Lw(0) + (ϑ− 1)t ≤ H + (ϑ− 1)(d+ T)D .

Remarks:

• Note the change from using logical clock values to hardware clock values
to decide when to send a message. The reason is that increasing received
clock values to account for minimum delay pays off only if the increase is
also forwarded in messages. However, sending a message every time the
clock is set to a larger value might cause a lot of messages, as now different
values than kT for some k ∈ N might be sent. The compromise presented
here keeps the number of messages in check, but pays for it by exchanging
the (ϑ− 1)T term in skew for (ϑ− 1)TD.

• Choosing T ∈ Θ(d) means that nodes need to send messages roughly
every d time, but in return G ∈ max{H,uD} +O((ϑ − 1)dD). Reducing
T further yields diminishing returns.

• Typically, u � d, but also ϑ − 1 � 1. However, if u � (ϑ − 1)d, one
might consider to build a better clock by bouncing messages back and
forth between pairs of nodes. Hence, this setting makes only sense if com-
munication is expensive or unreliable, and in many cases one can expect
uD to be the dominant term.

• In the exercises, you will show how to achieve a skew of O(uD+(ϑ−1)d).

• So we can say that the algorithm achieves asymptotically optimal global
skew (in our model). The lower bound holds in the worst case, but we
have shown that it applies to any graph. So, for deterministic guaran-
tees, changing the network topology has no effect beyond influencing the
diameter.

• We neglected important aspects like local skew and fault-tolerance, which
will keep us busy during the remainder of the course.

1.5 Afterthought: Stronger Lower Bound

Both of our algorithms are actually much more restrained in terms of clock
progress than just satisfying an amortized lower bound of 1 on the rates.

Definition 1.10 (Strong Envelope Condition). An algorithm fulfills the strong
envelope condition, if at all times and for all nodes v ∈ V , it holds that
minw∈V {Hw(t)} ≤ Lv(t) ≤ maxw∈V {Hw(t)}.

Theorem 1.11. For any algorithm satisfying the strong envelope condition, it
holds that G ≥ uD, even if we are guaranteed that Hv(0) = 0 for all v ∈ V .

Proof sketch. It is possible to adapt Lemma 1.5 such that the execution E1 is not
using delays of roughly u/2 between any pair of nodes, but delays are roughly
d − u when messages are sent “in direction of w” and d when they are sent

1.5. AFTERTHOUGHT: STRONGER LOWER BOUND 11

“in direction of v.” This is very similar to the use of d(x) in Ev, but we use
the uncertainty “the other way round.” This implies that the hardware clock
difference at v between E1 and Ev can be increased to about uD (as opposed
to only uD/2) before we run out of slack in the delays. However, in E1 still
Hx(t) = t for all x ∈ V and times t, so nodes must maintain that Hx(t) = Lx(t)
in E1 to satisfy the strong envelope condition. Because Ev is indistinguishable
from E1, the is true in Ev. In particular,

LEvv (t0)− LEvw (t0) ≈ LE1v (t0 + uD)− LE1w (t0) = uD .

Remarks:

• Thus, in some sense the term uD in the skew bound is optimal.

• If one merely requires the weaker bound t ≤ Lv(t) ≤ maxv∈V {Hv(0)}+ϑt,
then a lower bound of uD

ϑ can be shown.

• Playing with such progress conditions is usually of limited relevance, as
one cannot gain more than a factor of 2 — unless one is willing to simply
slow down everything.

What to Take Home

• The shifting technique is an important source of lower bounds. We will
see it again.

• If all that we’re concerned with is the global skew and we have no faults,
things are easy.

• There are other communication models, giving slightly different results.
However, in a sense, our model satisfies the minimal requirements to be
different from an asynchronous system (in which nodes have no meaningful
sense of time): They can measure time with some accuracy, and messages
cannot be delayed arbitrarily.

• The linear lower bound on the skew is highly resilient to model variations.
If delays are distributed randomly and independently, a probabilistic anal-
ysis yields skews proportional to roughly

√
D, though (for most of the

time). This is outside the scope of this lecture series.

Bibliographic Notes

The shifting technique was introduced by Lundelius and Lynch, who show that
even if the system is fully connected, there are no faults, and there is no drift (i.e.,
ϑ = 1), better synchronization than

(
1− 1

n

)
u cannot be achieved [LL84]. Biaz

and Lundelius Welch generalized the lower bound to arbitrary networks [BW01].
Note that Jennifer Lundelius and Jennifer Lundelius Welch are the same per-
son — and the double name “Lundelius Welch” will be frequently cited as Welch
(as “Lundelius” will be treated as a middle name, both by typesetting systems
and people who don’t know otherwise). I will stick to “Welch” as well, but for
a different reason: “the Lynch-Lundelius-Welch algorithm” is a mouthful, and

12 LECTURE 1. SYNCHRONIZING CLOCKS

“the Lynch-Welch algorithm” rolls off the tongue much better (I hope that I’ll
be forgiven if she ever finds out!).

As far as I know, the max algorithm has been mentioned first in writing by
Locher and Wattenhofer [LW06] — but not because it is such a good synchro-
nization algorithm, but rather due its terrible performance when it comes to the
skew between neighboring nodes (see excersise). Being an extremely straight-
forward solution, it is likely to appear earlier and in other places and should be
considered folklore. In contrast to the earlier works mentioned above (and many
more), [LW06] uses a model in which clocks drift, just like in this lecture. At
least for this line of work, this goes back to a work by Fan and Lynch on gradient
clock synchronization, [FL06] which shows that it is not possible to distribute
the global skew of Ω(uD) “nicely” so that the skew between adjacent nodes is
O(u) at all times; the possibility to “introduce skew on the fly” is essential for
this observation. More on this in the next two lectures!

Bibliography

[BW01] Saâd Biaz and Jennifer Lundelius Welch. Closed Form Bounds for Clock
Synchronization under Simple Uncertainty Assumptions. Information
Processing Letters, 80:151–157, 2001.

[FL06] Rui Fan and Nancy Lynch. Gradient Clock Synchronization. Dis-
tributed Computing, 18(4):255–266, 2006.

[LL84] Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound for
Clock Synchronization. Information and Control, 1984.

[LW06] Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In Proc. 20th Symposium on Distributed Computing
(DISC), pages 520–533, 2006.

	Synchronizing Clocks
	The Clock Synchronization Problem
	The Max Algorithm
	Lower Bound on the Global Skew
	Refining the Max Algorithm
	Afterthought: Stronger Lower Bound

