
Lecture 2

Lower Bound on the Local

Skew

In the previous lesson, we proved essentially matching upper and lower bounds
on the worst-case global skew for the clock synchronization problem. We saw
that during an execution of the Max algorithm (Algorithm 1.2), all logical clocks
in all executions eventually agree up to an additive term of O(uD) (ignoring
other parameters). The lower bound we proved in Section 1.3 shows that a
global skew of ⌦(uD) is unavoidable for any algorithm in which clocks run at
an amortized constant rate, at least in the worst case. In our lower bound
construction, the two nodes v and w that achieved the maximal skew were
distance D apart. However, the lower bound did not preclude neighboring
nodes from remaining closely synchronized throughout an execution. In fact,
this is straightforward if one is willing to slow down clocks arbitrarily (or simply
stop them), even if the amortized rate is constant.

Today, we look into what happens if one requires that clocks progress at a
constant rate at all times. In many applications, it is su�cient that neighboring
clocks are closely synchronized, while nodes that are further apart are only
weakly synchronized. To model this situation, we introduce the gradient clock
synchronization (GCS) problem. Intuitively, we want to ensure a small skew
between neighbors despite maintaining “proper” clocks. That is, we seek to
minimize the local skew under the requirement that logical clocks always run at
least at rate 1.

2.1 Formalizing the Problem

Let G = (V,E) be a network. As in the previous lecture, each node v 2 V has
a hardware clock Hv : R+

0 ! R+
0 that satisfies for all t, t0 2 R+

0 with t
0
< t

t� t
0
 Hv(t)�Hv(t

0)  # · (t� t
0) .

Again, we denote by hv(t) the rate of Hv(t) at time t, i.e., 1  h(t)  # for all
t 2 R+

0 . Recall that each node v computes a logical clock Lv : R+
0 ! R+

0 from
its hardware clock and messages received from neighbors. During an execution
E , for each edge e = {v, w} 2 E, we define the local skew of e at time t to be

13

14 LECTURE 2. LOWER BOUND ON THE LOCAL SKEW

Le(t) = |Lv(t)� Lw(t)|. The gradient skew at time t in the network, denoted
L(t), is the largest local skew across any edge: L(t) = maxe2E{Le(t)}. Finally,
the gradient skew over an execution E is defined to be

L = sup
t2R+

0

{L(t)} .

The goal of the gradient clock synchronization problem is to minimize L for any
possible execution E .

2.2 Averaging Protocols

In this section, we consider a natural strategy for achieving gradient clock syn-
chronization: trying to bring the own logical clock to the average value between
the neighbors whose clocks are furthest ahead and behind, respectively. Specif-
ically, each node can be in either fast mode or slow mode. If a node v detects
that its clock is behind the average of its neighbors, it will run in fast mode, and
increase its logical clock at a rate faster than its hardware clock by a factor of
1+µ, where µ is some appropriately chosen constant. On the other hand, if v’s
clock is at least the average of its neighbors, it will run in slow mode, increasing
its logical clock only as quickly as its hardware clock. Note that this strategy
results in logical clocks that behave like “real” clocks of drift #0 = #(1+ µ)� 1.
If µ 2 O(#�1), these clocks are roughly as good as the original hardware clocks.

The idea of switching between fast and slow modes gives a well-defined
protocol if neighboring clock values are known precisely.1 However, ambiguity
arises in the presence of uncertainty.

To simplify our presentation of the gradient clock synchronization algorithms
we abstract away from the individual messages and message delays from the
previous chapter. Instead, we assume that throughout an execution, each node
v maintains an estimate of its neighbors’ logical clocks. Specifically, for each
neighbor w 2 Nv, v maintains a variable L̃v

w(t). The parameter � represents the
error in the estimates: for all {v, w} 2 E and t 2 R+

0 , we have

Lw(t)� � < L̃
v
w(t)  Lw(t) (2.1)

When the node v is clear from context, we will omit the superscript v, and
simply write L̃w.

In order to obtain the estimates L̃v
w(t), each node w periodically broadcasts

its logical clock value to its neighbors. Each neighbor v then computes L̃
v
w(t)

using the known bounds on message delays, and increases L̃
v
w at rate hv/#

between messages from w. Thus, an upper bound on the error parameter �

can be computed as a function of u (the uncertainty in message delay), # (the
maximum clock drift), T (the frequency of broadcasts), and µ (a parameter
determining how fast logical clocks may run, see below); you do this in the
exercises.

We consider two natural ways of dealing with the uncertainty. Set Lmax
Nv

(t) :=
maxw2Nv{Lw} and L

min
Nv

(t) := minw2Nv{Lw}.

1
There is one issue of pathological behavior in which nodes could switch infinitely quickly

between fast and slow modes. This can be avoided by introducing a small threshold " so that

a node only changes, say, from slow to fast mode if it detects that its clock is " time units

behind the average.

2.2. AVERAGING PROTOCOLS 15

Aggresive strategy: each v computes an upper bound on the average between
L
max
Nv

and L
min
Nv

, and determines whether to run in fast or slow mode based
on this upper bound;

Conservative strategy: each v computes a lower bound on the average be-
tween L

max
Nv

and L
min
Nv

and determines the mode accordingly.

We will see that both strategies give bad results, but for opposite reasons.

Aggressive Averaging

Here we analyze the aggressive averaging protocol described above. Specifically,
each node v 2 V computes an upper bound on the average of its neighbors’
logical clock values:

L̃
up
v (t) =

maxw2Nv{L̃w}+minw2Nv{L̃w}

2
+ � �

L
max
Nv

+ L
min
Nv

2
.

The algorithm then increases the logical clock of v at a rate of hv(t) if Lv(t) >
L̃
up
v (t), and a rate of (1 + µ)hv(t) otherwise. We show that the algorithm

performs poorly for any choice of µ � 0.

Claim 2.1. Consider the aggressive averaging protocol on a path network of
diameter D, i.e., V = {1, 2, . . . , D + 1} and E = {{i, i+ 1} | i 2 [D]}. Then
there exists an execution E such that the gradient skew satisfies L 2 ⌦(�D).

Proof Sketch. Throughout the execution, we will assume that all clock estimates
are correct: for all v 2 V and w 2 Nv, we have L̃

w
v (t) = Lw(t). This means

that for all i 2 [2, D],2 L̃
up
vi (t) = (Lvi�1(t) + Lvi+1(t))/2 + �, whereas L̃

up
v0 (t) =

Lv1(t)+� and L̃
up
vD+1

= LvD (t)+�. Initially, the hardware clock rate of node vi is

1+ i(#�1)
D . Thus, even though all nodes immediately “see” that skew is building

up, they all are in fast mode in order to catch up in case they underestimate
their neighbors’ clock values.

Now let’s see what happens to the logical clocks in this execution. While
nodes are running fast, skew keeps building up, but the property that Lvi(t) =
(Lvi+1(t) � Lvi�1(t)) is maintained at nodes i 2 [2, D]. In this state, v0 —
despite running fast—has no way of catching up to v1. However, at time
⌧0 := �D

(1+µ)(#�1) we would have that LvD (⌧0) = LvD�1(⌧0) + � = L̃
up
vD (⌧0) and

vD would stop running fast. We set t0 := ⌧0� " for some arbitrarily small " > 0
and set hvD (t) := hvD�1(t) for all t � t0. Thus, all nodes would remain in fast

mode until the time ⌧1 := t0 +
�D

(1+µ)(#�1) when we had LvD�1(⌧1) = L̃
up
vD�1

(⌧1).
We set t1 := ⌧1 � " and proceed with this construction inductively. Note that,
with every hop, the local skew increases by (almost) 2�, as this is the additional
skew that Lvi must build up to Lvi�1 when Lvi+1 = Lvi in order to increase

L̃
up
vi

� Lvi by �, i.e., for vi to stop running fast. As " is arbitrarily small, we
build up a local skew that is arbitrarily close to (2D � 1)�.

2
Here, we denote [a, b] = {a, a+ 1, . . . , b}.

16 LECTURE 2. LOWER BOUND ON THE LOCAL SKEW

Remarks:

• The algorithm is also bad in that the above execution results in a global
skew of ⌦(�D2). Slight modifications of the algorithm can guarantee better
global skew, but similar algorithms will still have large local skew.

• The argument above can be generalized to arbitrary graphs, by taking
two nodes v, w 2 V in distance D and using the function d(x) = d(x, v)�
d(x,w), just as in Lemma 1.5.

Conservative Averaging

Let’s be more careful. Now each node v 2 V computes a lower bound on the
average of its neighbors’ logical clock values:

L̃
up
v (t) =

maxw2Nv{L̃w}+minw2Nv{L̃w}

2


L
max
Nv

+ L
min
Nv

2
.

The algorithm then increases the logical clock of v at a rate of hv(t) if Lv(t) >
L̃
up
v (t), and a rate of (1+µ)hv(t) otherwise. Again, the algorithm fails to achieve

a small local skew.

Claim 2.2. Consider the conservative averaging protocol on a path network
of diameter D. Then there exists an execution E such that the gradient skew
satisfies L 2 ⌦(�D).

Proof Sketch. We use the same hardware clock rates as for the aggressive strat-
egy, except that now for each v 2 V , w 2 Nw, and time t, we rule that
L̃w(t) = Lw(t) � � + " for some arbitrarily small " > 0. Thus, all nodes are
initially in slow mode. We inductively change hardware clock speeds just before
nodes would switch to fast mode, building up the exact same skews between
logical clocks as in the previous execution. The only di↵erence is that now it
does not depend on µ how long this takes!

Remarks:

• It seems as if we just can’t do things right. Both the aggressive and
the conservative strategy do not result in a proper response to the gobal
distribution of clock values.

• Maybe no algorithm can guarantee a small local skew?

2.3 Lower Bound with Bounded Clock Rates

In this section, we first prove a lower bound on the worst case local skew of
any GCS algorithm, assuming that each logical clock increases at a rate of
at most (1 + µ)hv > 1. That is, for all v 2 V and t, t

0
2 R+

0 with t < t
0,

we assume Lv(t0) � Lv(t)  (1 + µ)(Hv(t0) � Hv(t)).3 We use the model of
Chapter 1. Moreover, all logical clocks have a minimum rate of 1: for all v 2 V

and t, t
0
2 R+

0 with t < t
0, we have Lv(t0) � Lv(t) � t

0
� t. Under these

assumptions, we will prove the following theorem.

3
Note that this assumption does not allow for algorithms that increase their clocks dis-

continuously. For example, the argument does not apply to the max algorithm presented in

Chapter 1.

2.3. LOWER BOUND WITH BOUNDED CLOCK RATES 17

Theorem 2.3. Any algorithm for the gradient clock synchronization problem
with logical clock rates between 1 and (1 + µ)hv incurs a worst-case gradient
skew of L � (u/4� (#� 1)d) logd�e D, where � := µ/(#� 1).

To gain some intuition, assume that (# � 1)d ⌧ u, so we can ignore the
former term. The basic strategy of the proof is to construct a sequence of
executions E0, E1, . . . , E` and times t0 < t1 < · · · < t` such that at each time
ti, there exist nodes vi, wi satisfying Lvi(ti) � Lwi(ti) � i↵u · dist(vi, wi), for
some suitable constant ↵. Our construction works up to ` = ⌦(log� D) with
dist(v`, w`) = 1, which gives the desired result.

In more detail, the idea of the proof is to use the “shifting” technique of
Lemma 1.5 applied ` times over closer and closer pairs of nodes. By Lemma 1.5,
there is an execution E0 and a pair of nodes v0, w0 satisfying dist(v0, w0) = D

such that time t0 = d +
⇣

u
2(#�1) � d

⌘
D, we have Lv0(t0) � Lw0(t0) � cuD for

some constant c > 0. Fix a shortest path P from v0 to w0. For any pair of
nodes v, w along P , we define the average skew between v and w at time t to
be |Lv(t)� Lw(t)| / dist(v, w). In particular, the average skew between v0 and
w0 is at least cu.

We extend the execution E0 for t > t0 by setting all hardware clock rates to 1
for t > t0 and all message delays to d�u/2 (as in the execution E in Lemma 1.5).
By the assumptions that logical clock rates are always between 1 and 1+µ, for
every t > t0 in the extended execution, we have Lv0(t)�Lw0(t) � cuD�µ·(t�t0).
That is, the average skew between v0 and w0 decreases at a rate of at most µ.
By taking t1 = t0 + d + (u/2(# � 1) � d) · k for some suitably chosen k, there
exists a pair of nodes v1, w1 in P with dist(v1, w1) = k such that the average
skew between v1 and w1 at time t1 is at least cD� µ · (t1 � t0) in the execution
E0. We then apply the shifting technique again to the nodes v1 and w1 on the
interval [t0, t1]. In this way we define an execution E1 in which the skew between
v1 and w1 is ⌦(uk) larger than the skew in E0. Therefore, in E1, the average
skew bewtween v1 and w1 is cu � µ + ⌦(u). In the proof, we show that by
choosing an appropriate k 2 ⇥(D/�), we can ensure that the the average skew
increases by a constant c0 (i.e., that the ⌦(u) term is larger than µ).

In the proof, we iterate the procedure above ` 2 ⇥(logD) times. In the i
th

iteration, we obtain a pair of nodes vi, wi at distance D/(2�)i such that the
average skew between vi and wi is at least (c+ ic

0) · u. Thus, after ` = log2� D
iterations, the skew between adjacent nodes v` and w` is ⌦(u log� D), which
gives the desired result.

Proof of Theorem 2.3. Note that the claim is vacuous if (#� 1)d � u/4, so we
can assume the opposite in the following. Set b := d2�e and imax := blogb Dc.
By induction over i 2 [imax + 1], we show that we can build up a skew of
(i+2)(u/4�(#�1)d)d(v, w) between nodes v, w 2 V in distance d(v, w) = b

imax�i

at a time ti in execution E
(i), such that after time ti all hardware clock rates

are 1 and all sent messages have delays of d� u/2.
We anchor the induction at i = 0 by applying Lemma 1.5, choosing t0 as in

the lemma. We pick two nodes v, w 2 V in distance b
imax  D of each other

such that L
(E1)
v (t0) � L

(E1)
w (t0). Now consider Ev for this choice of v, w 2 V ,

which satisfies H(Ev)
v (t0) = H

(E1)
v (t0) + (u/2� (#� 1)d)d(v, w) and H

(Ev)
w (t0) =

H
(E1)
w (t0). By indistinguishability of the two executions and the minimum logical

18 LECTURE 2. LOWER BOUND ON THE LOCAL SKEW

clock rate of 1, we get that

L
(Ev)
v (t0)� L

(Ev)
w (t0) = L

(E1)
v

⇣
t0 +

⇣
u

2
� (#� 1)d

⌘
d(v, w)

⌘
� L

(E1)
w (t0)

� L
(E1)
v (t0) +

⇣
u

2
� (#� 1)d

⌘
d(v, w)� L

(E1)
w (t0)

�

⇣
u

2
� (#� 1)d

⌘
d(v, w) .

We obtain E
(0) by changing all hardware clock rates in Ev to 1 at time t0 and

all message delays of messages sent at or after time t0 to d� u/2. As this does
not a↵ect the logical clock values at time t0 — E

(0) is indistinguishable from Ev

at x 2 V until local time H
(E(0))
x (t0)— this shows the claim for i = 0.

For the induction step from i to i+ 1, let v, w 2 V , E(i), and ti be given by
the induction hypothesis, i.e.,

L
(E(i))
v (ti)� L

(E(i))
w (ti) � (i+ 2)

⇣
u

4
� (#� 1)d

⌘
d(v, w) ,

and from time ti on all hardware clock rates are 1 and sent messages have delay
d� u/2. Note that the latter conditions mean that E(i) behaves exactly like E1

from Lemma 1.5 from time ti on, except that some messages sent at times t < ti

may arrive during [ti, ti + d). Hence, if we apply the same modifications to E
(i)

as to E1, but starting from time ti + d instead of time 0, we will show that for
any v

0
, w

0
2 V , construct an execution Ev0 indistinguishable from E

(i), where

• for all x 2 V and t � ti, H
(E(i))
x (t) = H

(E(i))
x (ti) + t� ti,

• H
(Ev0)
v0 (t) = H

(E(i))
v0 (t) + d(v0, w0)(u/2� (#� 1)d) for all times t � ti + d+

(u/(2(#� 1))� d)d(v0, w0), and

• H
(Ev0)
w0 (t) = H

(E(i))
w0 (ti) + t� ti for all t � ti.

Consider the logical clock values of v and w in E
(i) at time

ti+1 := ti + d+

✓
u

2(#� 1)
� d

◆
d(v, w)

b
.

Recall that d
dtLv(t) � hv(t) � 1 and lw(t)  (1 + µ)hw(t) at all times t. As

h
(E(i))
w (t) = 1 at times t � ti, we obtain

L
(E(i))
v (ti+1)� L

(E(i))
w (ti+1) � L

(E(i))
v (ti)� L

(E(i))
w (ti)� µ(ti+1 � ti) . (2.2)

Recall that d(v, w) = b
imax�i and that b = d2�e. We split up a shortest path

from v to w in b subpaths of length b
imax�(i+1). By the pidgeon hole principle, at

least one of these paths must exhibit at least a 1/b fraction of the skew between
v and w, i.e., there are v

0
, w

0
2 V with d(v0, w0) = b

imax�(i+1) = d(v, w)/b so

2.3. LOWER BOUND WITH BOUNDED CLOCK RATES 19

that

L
(E(i))
v0 (ti+1)� L

(E(i))
w0 (ti+1)

�
L
(E(i))
v (ti+1)� L

(E(i))
w (ti+1)

b

�
L
(E(i))
v (ti)� L

(E(i))
w (ti)� µ(ti+1 � ti)

b

=
L
(E(i))
v (ti)� L

(E(i))
w (ti)� µ(d+ (u/(2(#� 1))� d)d(v0, w0))

b

�
L
(E(i))
v (ti)� L

(E(i))
w (ti)� µud(v0, w0)/(2(#� 1))

b

�
L
(E(i))
v (ti)� L

(E(i))
w (ti)

b
�

µ

2�(#� 1)
·
u

2
· d(v0, w0)

=
L
(E(i))
v (ti)� L

(E(i))
w (ti)

b
�

u

4
· d(v0, w0)

�
(i+ 2)(u/4� (#� 1)d)d(v, w)

b
�

u

4
· d(v0, w0)

=
⇣
(i+ 2)

⇣
u

4
� (#� 1)d

⌘
�

u

4

⌘
d(v0, w0) .

In other words, as the average skew on a shortest path from v to w did not de-
crease by more than u/4, there most be some subpath of length d(v, w)/b with
at least the same average skew. Now we sneak in additional skew by advanc-
ing the (hardware and thus also logical) clock of v0 using the indistinguishable
execution Ev0 :

L
(Ev)
v0 (ti+1)� L

(Ev)
w0 (ti+1)

= L
(E(i))
v0

⇣
ti+1 +

⇣
u

2
� (#� 1)d

⌘
d(v0, w0)

⌘
� L

(E(i))
w0 (ti+1)

� L
(E(i))
v0 (ti+1) +

⇣
u

2
� (#� 1)d

⌘
d(v0, w0)� L

(E(i))
w0 (ti+1)

� (i+ 3)
⇣
u

4
� (#� 1)d

⌘
d(v0, w0) .

This completes the induction. Plugging in i = imax and noting that log b =
logd2�e  1+logd�e, we get an execution in which two nodes at distance b0 = 1
exhibit a skew of at least

(imax + 2)
⇣
u

4
� (#� 1)d

⌘
�

⇣
u

4
� (#� 1)d

⌘
(1 + logb D)

�

⇣
u

4
� (#� 1)d

⌘
logd�e D .

Remarks:

• It is somewhat “bad form” to adapt Lemma 1.5 on the fly, as we did in the
proof. However, the alternative of carefully defining partial executions,
how to stitch them together, and proving indistinguishability results in
this setting would mean to crack a nut with a sledgehammer.

20 LECTURE 2. LOWER BOUND ON THE LOCAL SKEW

• By making the base of the logarithm larger (i.e., making paths shorter
more quickly), we can reduce the “loss” of skew in each step. Thus, we
get a skew of u/2� (#� 1)d� " per iteration, at the cost of reducing the
number of iterations by a factor of log �/(log � � log "�1). As typically
� � 1, this means that we gain roughly a factor of 2.

• We can gain another factor of 2 by introducing skew more carefully. If we
constract E1 so that messages “in direction of w” have delay (roughly) d�u

and messages “in direction of v” have delay d, we can hide u skew per hop.
We favored the simpler construction to avoid additional bookkeeping.

• Overall, if (# � 1)d ⌧ u, � � 1, and log� D � 1, we can show a lower
bound of (u� ") log� D for some small " > 0.

• What if (#� 1)d is comparable to u or even larger? As for a lower bound
construction we can always pretend that clock drifts are actually smaller,
e.g., #0 := min{#, 1 + u/(4d)}, the lower bound does not get weaker if the
hardware clocks get worse. On the other hand, we will see that larger # is
not really an issue (up to a “one-time” additive term of O((#� 1)d)), as
we can then bounce messages back and forth between nodes to keep track
of time with greater accuracy than the “base clocks” permit.

• What about unbounded clock rates?

2.4 Lower Bound with Arbitrary Clock Rates

It can be shown that clock rates lv(t) 2 !(1) do not help. That is, if (#� 1)d <

u/4, we have that L 2 ⌦(u log1/(#�1) D). However, the only (currently known)
proof for this is tedious, to the point where it conveys little insight regarding
what’s going on. Hence, we will settle for a (much) simpler argument by Fan
and Lynch showing a slightly weaker lower bound, followed by some intution as
to why the stronger result is true as well.

We need a technical lemma stating that, provided that we leave some slack
in terms of clock drifts and message delays, we can introduce ⌦(u) hardware
clock skew between any pair of neighbors in an indistinguishable manner. As
this follows from repetition of previous arguments, we skip the proof.

Lemma 2.4. Let E be any execution in which hardware clock rates are at most
1 + (# � 1)/2 and message delays are in the range (d � 3u/4, d � u/4). Then,
for any {v, w} 2 E and su�ciently large times t, there is an indistinguishable

execution Ev such that L(Ev)
v (t) = L

(E)
v (t+ u/4) and L

(Ev)
w (t) = L

(E)
w (t).

Proof Sketch. The general idea is to use the remaining slack of u/2 to hide the
additional skew, and the slack in the clock rates to introduce it. We can do this
as slowly as needed, just as in the proof of Lemma 1.5. Again, we can choose
the clock rates according to the function d(x) defined in Lemma 1.5; as v and
w are neighbors here, it can only take on values of �1, 0, or 1.

This is all we need to generalize our lower bound to arbitrarily large logical
clock rates.

2.4. LOWER BOUND WITH ARBITRARY CLOCK RATES 21

Theorem 2.5. Assume that #  2. Any algorithm for the gradient clock syn-
chronization problem with logical clock rates of at least 1 incurs a worst-case
gradient skew of

L 2 ⌦
⇣⇣

u

4
� (#� 1)d

⌘
log(logD)/(#�1) D

⌘
.

Proof. Set u
0 := u/2, d0 := d � u/4, and #

0 := 1 + (# � 1)/2. We perform the
exact same construction as in Theorem 2.3, with three modifications. First, u,
d, and # are replaced by u

0, d0, and #
0. Second, before starting the construction,

we wait for su�ciently long so that Lemma 2.4 is applicable to all times when
we actually “work,” i.e., we let the algorithm run for the required time with
hardware clock rates of 1 and message delays of d0�u

0
/2. Third, we assume that

µ = log1/(#�1) D in the construction; if ever we attempt to use this (assumed)
bound on the clock rates in an inequality and it does not hold, the construction
fails.

Now two things can happen. The first is that the construction succeeds.
Note that we may assume that u0

/4 > (#0
� 1)d0, as otherwise u/4 < (#� 1)d,

i.e., nothing is to show. Thus, the construction shows a lower bound of

✓
u
0

4
� (#0

� 1)d0
◆
logd�e D >

✓
u

8
�

(#� 1)d

2

◆
logdµ/(#0�1)e D

2 ⌦
⇣⇣

u

4
� (#� 1)d

⌘
logµ/(#�1) D

⌘
.

As

logµ/(#�1) D =
logD

logµ� log(#� 1)

=
logD

log(logD � log(#� 1))� log(#� 1)

2 ⌦

✓
logD

log logD � log(#� 1)

◆

= ⌦
⇣
log(logD)/(#�1) D

⌘
,

the claim follows in this case.
On the other hand, if the construction fails, there is an index i < imax for

which (2.2) does not hold—this is the only place where we make use of the fact
that logical clocks do not run faster than rate µ. Thus,

L
(E(i))
w (ti+1)� L

(E(i))
w (ti) > µ(ti+1 � ti)

for some i < imax. Recall that in the construction, d(v, w) = b
imax�i

� b and

ti+1 � ti = d+

✓
u

2(#� 1)
� d

◆
d(v, w)

b
>

u

2(#� 1)
� d >

u

4(#� 1)
�

u

4
.

Hence, there must be a time t � ti so that

L
(E(i))
w

⇣
t+

u

4

⌘
� L

(E(i))
w (t) >

µu

4
.

22 LECTURE 2. LOWER BOUND ON THE LOCAL SKEW

Let x 2 Nw be arbitrary. By Lemma 2.4, we can construct an execution Ew so
that

L
(Ew)
w (t) = L

(E(i))
w

⇣
t+

u

4

⌘
> L

(E(i))
w (t) +

µu

4

and L
(Ew)
x (t) = L

(E(i))
x (t). Thus, in at least one of the executions, the local skew

exceeds
µu

8
=

u

8
log1/(#�1) D .

We conclude this chapter with the promised intuition regarding the influence
of D on the base of the logarithm. Consider a path of length k with a skew of
exactly ↵ per hop, for a total of ↵k between its endpoints. Now suppose that an
algorithm cleverly uses a large logical clock rate, perfectly reducing the skew at
the same rate between any pair of neighbors. Consider the point in time when
the skew has been reduced to, say, ↵ � u/8 per hop. The node in the middle
of the path has increased its logical clock at half the rate of the endpoint that’s
catching up—and the nodes in between have been even faster! Denoting this
rate by r, slipping in hardware clock skew at rate # � 1 means adding logical
clock skew at rate at least r(# � 1)/2. So, even if it takes factor r less time to
reduce the skew to, say ↵ � u/8 per hop than it would for µ = 1, it also takes
factor r/2 less time to build up additional skew. We would end up with the
same result!

Remarks:

• Unfortunately, molding this idea into a proof is challenging, and the result
is not pretty.

• The D in the base of the logarithm is of little importance unless clocks are
of poor quality. A standard quartz oscillator guarantees that #�1  10�5.
Even a gigantic diameter of 105 would not a↵ect the bound by more than
a factor 2 for such clocks!

• The assumption that #  2 in Theorem 2.5 is an artifact of the proof.
However, hardware clocks that are this inaccurate hardly deserve the name
“clock,” so this corner case is not of interest.

• Don’t fall into the trap of forgetting that relaxing the model enables better
solutions! For instance, if it is not important that clocks make progress
at all times (or most of the time), constant local skew can be achieved
(buzzword: ↵-synchronizer)!

• The elephant in the room is the large gap between the best algorithms we
have seen so far (whose local skew is not very di↵erent from their global
skew) and the lower bounds we established today, which are exponentially
smaller as a function of D.

• This was the state of the art after Lynch andWelch introduced the problem
and presented the lower bound, confounding the research community. If
this gap doesn’t picque your curiosity, this lecture series is most likely not
meant for you.

BIBLIOGRAPHY 23

Bibliographic Notes

Gradient clock synchronization was introduced by Fan and Lynch [FL06], who
show a lower bound of ⌦(log(uD)/ log log(uD)) on the local skew. Some re-
searchers found this result rather counter-intuitive, and it triggered a line of
research seeking to resolve the question what precisely can be achieved. Meier
and Thiele show that essentially the same lower bound arises from bounded
communication rates, without uncertainty (i.e., u = 0) [?]. Theorem 2.3 fol-
lows [LLW10], which also tightens the lower bound for unbounded clock rates by
removing the D from the base of the logarithm. In the dynamic setting, one can
show bounds on how quickly an edge can be incorporated into the subgraph of
edges that satisfy the skew bounds, and asymptotic optimality can be achieved
simultaneously with other guarantees [KLO11, KLLO10].

Bibliography

[FL06] Rui Fan and Nancy Lynch. Gradient Clock Synchronization. Dis-
tributed Computing, 18(4):255–266, 2006.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. CoRR, abs/1005.2894, 2010.

[KLO11] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient
Clock Synchronization in Dynamic Networks. Theory Comput. Syst.,
49(4):781–816, 2011.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. J. ACM, 57(2):8:1–8:42, 2010.

	Synchronizing Clocks
	The Clock Synchronization Problem
	The Max Algorithm
	Lower Bound on the Global Skew
	Refining the Max Algorithm
	Afterthought: Stronger Lower Bound

	Lower Bound on the Local Skew
	Formalizing the Problem
	Averaging Protocols
	Lower Bound with Bounded Clock Rates
	Lower Bound with Arbitrary Clock Rates

	Notation and Preliminaries
	Numbers and Sets
	Graphs
	Trees and Forests

	Asymptotic Notation
	Definitions
	Properties

	Bounding the Growth of a Maximum of Differentiable Functions

