
Lecture 3

Upper Bound on the Local

Skew

In Chapter 1, we proved tight upper and lower bounds of ⇥(D) for the global
skew of any clock synchronization algorithm. However, the algorithms achiev-
ing optimal global skew had the undesireable feature that the maximal global
skew could be attained between any pair of nodes in the network—even adja-
cent nodes. In Chapter 2, we introduced the local skew—the maximum skew
between any pair of adjacent nodes—and learned that it must be at least log-
arithmic in D. In this chapter, we address the question of whether the trivial
O(D) bound on the local skew given by the best worst-case bound on the global
skew can be improved. In particular, we present a GCS algorithm proving the
lower bound to be asymptotically tight.

3.1 GCS Algorithm

The high-level strategy of the algorithm is as follows. As with the naive algo-
rithms from the previous chapter, at each time a node can be either in slow

mode or fast mode. In slow mode, a node v will increase its logical clock at rate
hv(t). In fast mode, v will increase its logical clock at rate (1 + µ)hv(t). The
parameter µ will be chosen large enough for nodes whose logical clocks are be-
hind to be able to catch up to other nodes. The conditions for a node to switch
from slow to fast or vice versa are simple, though perhaps unintuititve. In what
follows, we first describe “ideal” conditions to switch between modes. In the
ideal behavior, each node knows exactly the logical clock values of its neighbors.
Since the actual algorithm only has access to estimates of neighboring clocks,
we then describe fast and slow triggers for switching between modes that can
be implemented in our model for GCS. We conclude the section by proving that
the triggers do indeed implement the conditions.

Fast and Slow Conditions

Here we define conditions under which a node should be in fast mode and slow
mode. The two conditions are mutually exclusive (i.e., a node cannot simulate-
nously satisfy both), but it could be that a node satisfies neither condition. The

25

26 LECTURE 3. UPPER BOUND ON THE LOCAL SKEW

conditions are defined in terms of a parameter , whose value will be determined
later.

Definition 3.1 (FC: Fast Mode Condition). We say that a node v 2 V satisfies

the fast mode condition (FC) at time t 2 R+
0 if there exists s 2 N such that:

FC-1 9x 2 Nv : Lx(t)� Lv(t) � 2s,

FC-2 8y 2 Nv : Lv(t)� Ly(t)  2s.

Informally, FC-1 says that v has a neighbor x whose logical clock is signifi-
cantly ahead of Lv(t), while FC-2 stipulates that none of v’s neighbors’ clocks
is too far behind Lv(t). In particular, if FC is satisfied with x 2 Nv satisfying
FC-1, then the local skew across {v, x} is at least 2s, where Lx is at least
2s time units ahead of Lv. On the other hand, FC-2 implies that none of v’s
neighbors are more than 2s behind v. Therefore, v can decrease the maximum
skew across its incident edges by increasing its logical clock.

The slow mode condition below is dual to FC. It gives su�cient conditions
under which v could decrease the maximum skew across its incedent edges by
decreasing its logical clock.

Definition 3.2 (SC: Slow Mode Condition). We say that a node v 2 V satisfies

the slow mode condition (or SC) at time t 2 R+
0 if there exists s 2 N such that:

SC-1 9x 2 Nv : Lv(t)� Lx(t) � (2s� 1),

SC-2 8y 2 Nv : Ly(t)� Lv(t)  (2s� 1).

There is a slight asymmetry in the definitions of FC and SC in the coe�-
cient of  appearing on the right hand side of the expressions above. The FC
conditions bound the di↵erences in logical clocks by 2s—an even multiple of
s—while the SC conditions give odd multiples of s. This discrepancy between
the definitions of FC and SC ensures that a node cannot simultaneously satisfy
both conditions.

We say that an algorithm implements the F/S conditions if for every execu-
tion, every node v, and every time t we have:

• if v satisfies FC at time t, then v is in fast mode at time t,

• if v satisfies SC at time t, then v is in slow mode at time t.

At this point we have not shown that any algorithm can implement the F/S
conditions. Indeed, in our model v does not know its neighbors’ logical clock
values precisely at any time, so it cannot directly check if FC or SC is satisfied.
However, we will show that for an appropriate choice of , there is a simple
algorithm that implements the F/S conditions. Interestingly, the analysis we
give applies to any algorithm implementing the F/S conditions, and not just for
the particular implementation we describe.

Fast and Slow Triggers

While the fast and slow mode conditions described in the previous section are
well-defined (and mutually exclusive), uncertainty on neighbors’ clock values
prevents an algorithm from checking the conditions directly. Here we define

3.1. GCS ALGORITHM 27

corresponding triggers that our computational model does allow us to check.
As before, we assume that for each node v and neighbor w 2 Nv, v maintains a
clock estimate L̃

v
w satisfying

Lw(t) � L̃
v
w(t) � Lw(t)� �. (3.1)

For convenience we occasionally omit the superscript when v is clear from con-
text.

Fix a node v, and suppose that v satisfies FC at time t. Let x be a node for
which v satisfies FC-1, i.e., Lx(t)� Lv(t) � 2s. Since v’s estimate of Lx(t) is
generally smaller than Lx(t), it could be the case that L̃v

x(t) � Lv(t) < 2s, so
that v does see that FC-1 is satisfied. Since L̃

v
w(t) � Lw(t)� �, v might satisfy

FC-1 if L̃v
w(t)�Lv(t) � 2s��. Thus, in order to ensure that v switches to fast

mode whenever FC is satisfied, we should relax the conditions FC to ensure
that v switches to fast mode whenever its estimates indicate that FC could be
satisfied. Thus we define the following triggers.

Definition 3.3 (FT: Fast Mode Trigger). We say that v 2 V satisfies the fast
mode trigger (FT) at time t 2 R+

0 if there exists an integer s 2 N such that:

FT-1 9x 2 Nv : L̃x(t)� Lv(t) > 2s� �,

FT-2 8y 2 Nv : Lv(t)� L̃y(t) < 2s+ �.

Definition 3.4 (ST: Slow Mode Trigger). We say that a node v 2 V satisfies

the slow mode trigger (or ST) at time t 2 R+
0 if there exists s 2 N such that:

ST-1 9x 2 Nv : Lv(t)� L̃x(t) � (2s� 1),

ST-2 8y 2 Nv : L̃y(t)� Lv(t)  (2s� 1).

Note that we do not add the extra � slack in the definition of ST as we
did in FT. This is because we assume that the uncertainty in neighboring clock
estimates is one-sided: for all v, w 2 Nv, and times t we have L̃

v
w(t)  Lw(t).

Thus, if a node satisfies SC, its neighboring clock estimates automatically satisfy
ST.

Before we formally describe the GCS algorithm, we give two preliminary
results about the fast and slow mode triggers. The first result asserts that for a
suitable choice of , FT and ST cannot simultaneously be satisfied by the same
node. The second shows that for the same choice of , FT and ST implement
FC and SC, respectively. That is, if the fast (resp. slow) mode condition is
satisfied, then the fast (resp. slow) mode trigger is also satisfied.

Lemma 3.5. Suppose  > �. Then no node v 2 V can simultaneously satisfy

FT and ST.

Proof. Suppose v satisfies FT. That is, there is some s 2 N and x 2 Nv such
that L̃x(t)�Lv(t) � 2s��, and for all y 2 Nv we have Lv(t)� L̃y(t) < 2s+�.
Consider s0 2 N. If s0 > s, then for all y 2 Nv we have

Lv(t)� L̃x(t)  2s� � < (2s0 � 1),

so ST-1is not satisfied for s0. If s0  s, then there is some x 2 Nv satisfying

L̃x(t)� Lv(t) � 2s� � > (2s0 � 1),

so ST-2 is not satisfied for s0. Hence, ST is not satisfied.

28 LECTURE 3. UPPER BOUND ON THE LOCAL SKEW

Lemma 3.6. Suppose v 2 V satisfies FC (resp. SC) at time t. Then v satisfies

FT (resp. SC) at time t.

Proof. Suppose FC holds (at time t). Then, by (3.1), there is some s 2 N such
that

9x 2 Nv : L̃x(t)� Lv(t) � Lx(t)� � � Lv(t) � 2s� �,

and
8y 2 Nv : Lv(t)� L̃y(t)  Lv(t)� Ly(t) + �  2s+ �.

Thus FT holds. Similarly, if SC holds, (3.1) yields

9x 2 Nv : Lv(t)� L̃x(t) � Lv(t)� Lx(t) � (2s� 1)

and
8y 2 Nv : L̃y(t)� Lx(t)  Ly(t)� Lv(t)  (2s� 1),

for some s 2 N, establishing ST.

We now describe the GCS algorithm. To focus on the key ideas of the
analysis, we make another simplifying assumption: Instead of analyzing the
global skew, we assume that it is bounded by some parameter G. You will
address the issue of giving an explicit expression for G in an exercise. If we
ignore the issue of bounded G, the GCS algorithm is extremely simple. Each
node v initializes its logical clock to its hardware clock value. It continuously
checks if the fast (resp. slow) mode trigger is satisfied. If so, it increases its
logical clock at a rate of (1 + µ)hv(t) (resp. hv(t)). Pseudocode is presented in
Algorithm 3.1. Despite the algorithms simplicity, its analysis (presented in the
following section) is rather delicate.

Algorithm 3.1: GCS algorithm

1 Lv(0) := Hv(0)
2 r := 1
3 at all times t do the following
4 if FT then
5 r := 1 + µ // v is in fast mode

6 if ST then
7 r := 1 // v is in slow mode

8 increase Lv at rate r · hv(t)

Remarks:

• When neither FT nor ST are satisfied, the logical clock may run at any
speed from the range [hv(t), (1 + µ)hv(t)]. Indeed,

• In order for the algorithm to be implementable, we required  > �. While
� is generally determined by the physical characteristics of the network
(e.g., d, u,#, etc.), the value of  has significance in our analysis of the
algorithm. In general, smaller values of  will incur smaller (worst-case)
local skews. The tradeo↵ is that as  becomes closer to �, nodes may
switch between fast and slow modes arbitrarily fast. Thus in practice, it
may be desireable to keep  bounded away from �.

3.2. ANALYSIS OF THE GCS ALGORITHM 29

• For technical reasons, we will assume that logical clocks are di↵erentiable.
Thus, lv := d

dtLv exists and is between 1 and #(1 + µ) at all times. It is
possible to prove the guarantees of the algorithm without this assumption,
but the assumption of di↵erentiability simplifies our analysis.

• Even with the di↵erentiability assumption, we still need Lemma 4.1. This
is not a mathematics lecture, but as we couldn’t find any suitable reference,
the lemma and a proof is given in the appendix.

3.2 Analysis of the GCS Algorithm

We now show that the GCS algorithm (Algorithm 3.1) indeed achieves a small
local skew, which is expressed by the following theorem.

Theorem 3.7. For every network G and every execution E in which Hv(0) �
Hw(0)   for all edges {v, w} 2 E, the GCS algorithm achieves a gradient

skew of L  2dlog� G/e, where � := µ/(#� 1).

In order to prove Theorem 3.7, we analyze the average skew over paths in
G of various lengths. For long paths of ⌦(D) hops, we will simply exploit that
G bounds the skew between any pair of nodes. For successively shorter paths,
we inductively show that the average skew between endpoints cannot increase
too quickly: reducing the length of a path by factor � can only increase the
skew between endpoints by an additive constant term. Thus, paths of constant
length (in particular edges) can only have a(n average) skew that is logarithmic
in the network diameter.

Leading Nodes

We start by showing that skew cannot build up too quickly. This is captured
by the following functions.

Definition 3.8 (and Leading Nodes). For each v 2 V , s 2 N, and t 2 R+
0 ,

we define

 s
v(t) = max

w2V
{Lw(t)� Lv(t)� (2s� 1)d(v, w)} ,

where d(v, w) denotes the distance between v and w in G. Moreover, set

 s(t) = max
w2V

{ s
w(t)} .

Finally, we say that w 2 V is a leading node if there is some v 2 V satisfying

 s
v(t) = Lw(t)� Lv(t)� (2s� 1)d(v, w) > 0 .

Observe that any bound on s implies a corresponding bound on L: if
 s(t)  ↵, then in particular, for any adjacent nodes v, w we have Lw(t) �
Lv(t) � (2s � 1)  s(t)  ↵. Therefore, s(t)  ↵ =) L  (2s � 1) + ↵.
Our analysis will show that in general, s(t)  G/�

s for every s 2 N and all
times t. In particular, Theorem 3.7 follows by considering s = dlog� G/�e.

Note that the definition of s
v is closely related to the definition of SC. In

fact, the following lemma shows that if w is a leading node, then w satisfies SC.

30 LECTURE 3. UPPER BOUND ON THE LOCAL SKEW

As a result s cannot increase quickly, because leading nodes are always in slow
mode for any algorithm implementing the F/S conditions. This behavior allows
nodes in fast mode to catch up to leading nodes.

Lemma 3.9 (Leading Lemma). Suppose w 2 V is a leading node at time t.

Then w satisfies SC and ST.

Proof. By Lemma 3.6, if w satisfies SC, then w also satisfies ST. Thus, it
su�ces to prove that w satisfies SC. As w is a leading node at time t, there are
s 2 N and v 2 V satisfying

 s
v(t) = Lw(t)� Lv(t)� (2s� 1)d(v, w) > 0 .

In particular, Lw(t) > Lv(t), so w 6= v. For any y 2 V , we have

Lw(t)� Lv(t)� (2s� 1)d(v, w) = s
v(t) � Ly(t)� Lv(t)� (2s� 1)d(y, w) .

Rearranging this yields

Lw(t)� Ly(t) � (2s� 1)�(d(v, w)� d(y, w)) .

In particular, for any y 2 Nv, d(v, w) � d(y, w)� 1 and hence

Ly(t)� Lw(t)  (2s� 1) ,

i.e., SC-2 holds at w.
Now consider x 2 Nv so that d(x,w) = d(v, w) � 1. Such a node exists

because v 6= w. We obtain

Lw(t)� Ly(t) � (2s� 1) ,

showing SC-1. By Lemma 3.6, w then also satisfies ST at time t.

This can readily be translated into a bound on the growth of s
w whenever

it is positive.

Lemma 3.10 (Wait-up Lemma). Suppose w 2 V satisfies s
w(t) > 0 for all

t 2 (t0, t1]. Then

 s
w(t1) 

s
w(t0)� (Lw(t1)� Lw(t0)) + # · (t1 � t0).

Proof. Fix w 2 V , s 2 N and (t0, t1] as in the hypothesis of the lemma. For
v 2 V and t 2 (t0, t1], define the function fv(t) = Lv(t) � (2s � 1)�d(v, w).
Observe that

max
v2V

{fv(t)}� Lw(t) =
s
w(t) .

Moreover, for any v satisfying fv(t) = Lw(t) + s
w(t), we have that Lv(t) �

Lw(t)� (2s�1)d(v, w) = s
w(t) > 0. Thus, Lemma 3.9 shows that v is in slow

mode at time t. As (we assume that) logical clocks are di↵erentiable, so is fv,
and it follows that d

dtfv(t)  # for any v 2 V and time t 2 (t0, t1] satisfying
fv(t) = maxx2V {fx(t)}. By Lemma 4.1, it follows that maxv2V {fv(t)} grows
at most at rate #:

max
v2V

{fv(t1)}  max
v2V

{fv(t0)}+ #(t1 � t0) .

We conclude that

 s
w(t1)�

s
w(t0) = max

v2V
{fv(t1)}� Lw(t1)� (max

v2V
{fv(t0)}� Lw(t0))

 �(Lw(t1)� Lw(t0)) + # · (t1 � t0) ,

which gives the desired result.

3.2. ANALYSIS OF THE GCS ALGORITHM 31

Trailing Nodes

As Lw(t1)� Lw(t0) � t1 � t0 at all times, Lemma 3.13 implies that s cannot
grow faster than at rate # � 1 when s(t) > 0. This means that nodes whose
clocks are far behind leading nodes can catch up, so long as the slow nodes are
in fast mode. Our next task is to show that “trailing nodes” always run in fast
mode so that they are never too far behind leading nodes. The approach to
showing this is similar to the one for Lemma 3.10, where now we need to exploit
the fast mode condition FC.

Definition 3.11 (Trailing Nodes). We say that w 2 V is a trailing node at

time t, if there exists s 2 N and a node v 2 V such that

Lv(t)� Lw(t)� 2sd(v, w) = max
x2V

{Lv(t)� Lx(t)� 2sd(v, x)} > 0 .

Lemma 3.12 (Trailing Lemma). Suppose w 2 V is a trailing node at time t.

Then w satisfies FC and FT.

Proof. By Lemma 3.6, if w satisfies FC, then w also satisfies FT. Thus, it
su�ces to prove that w satisfies FC. Let s and v satisfy

Lv(t)� Lw(t)� 2sd(v, w) = max
x2V

{Lv(t)� Lx(t)� 2sd(v, x)} > 0 .

In particular, Lv(t) > Lw(t), implying that v 6= w. For y 2 V , we have

Lv(t)� Lw(t)� 2sd(v, w) � Lv(t)� Ly(t)� 2sd(v, y).

Thus for all neighbors y 2 Nw,

Ly(t)� Lw(t) + 2s�(d(v, y)� d(v, w)) � 0 .

It follows that

8y 2 Nv : Lw(t)� Ly(t)  2s ,

i.e., FC-2 holds. As v 6= w, there is some node x 2 Nv with d(v, x) = d(v, w)�1.
We obtain that

9x 2 Nv : Ly(t)� Lw(t) � 2s ,

showing FC-1.

Using Lemma 3.12, we can show that if s
w(t0) > 0, w will eventually catch

up. How long this takes can be expressed in terms of s�1(t0), or, if s = 1, G.

Lemma 3.13 (Catch-up Lemma). Let s 2 N and t0, t1 be times. Suppose that

t1 �

(
t0 + G/µ if s = 1

t0 + s�1(t0)/µ otherwise.

Then, for any w 2 V ,

Lw(t1)� Lw(t0) � t1 � t0 +
s
w(t0) .

32 LECTURE 3. UPPER BOUND ON THE LOCAL SKEW

Proof. Choose v 2 V such that

 s
w(t0) = Lv(t0)� Lw(t0)� (2s� 1)d(v, w) > 0 .

Define fx(t) := Lv(t0)+(t� t0)�Lx(t)� (2s�2)d(v, x) for x 2 V and observe
that s

w(t0)  fw(t0). Hence, if maxx2V {fx(t)}  0 for some t 2 [t0, t1], then

Lw(t1)� Lw(t)� (t1 � t) � 0 � fw(t)

= Lv(t0) + (t� t0)� Lw(t)� (2s� 2)d(v, x)

= fw(t0) + (t� t0)� (Lw(t)� Lw(t0))

� s
w(t0) + (t� t0)� (Lw(t)� Lw(t0)) ,

which can be rearranged into the conclusion of the lemma.
To show this, consider any time t 2 [t0, t1] when maxx2V {fx(t)} > 0 and let

y 2 V be any node such that maxx2V {fx(t)} = fy(t). Then y is trailing, as

max
x2V

{Lv(t)� Lx(t)� (2s� 2)�d(v, x)}

= Lv(t)� Lv(t0)� (t� t0) + max
x2V

{fx(t)}

= Lv(t)� Lv(t0)� (t� t0) + fy(t)

= Lv(t)� Ly(t)� (2s� 2)�d(v, y)

and

Lv(t)� Lv(t0)� (t� t0) + max
x2V

{fx(t)} > Lv(t)� Lv(t0)� (t� t0) � 0 .

Thus, by Lemma 3.12 y is in fast mode. As logical clocks are (assumed to be)
di↵erentiable, we obtain d

dtfy(t) = 1� ly(t)  �µ.
Now assume for contradiction that maxx2V {fx(t)} > 0 for all t 2 [t0, t1].

Then, applying Lemma 4.1 again, we conclude that

max
x2V

{fx(t0)} > �(max
x2V

{fx(t1)}�max
x2V

{fx(t0)}) � µ(t1 � t0) .

If s = 1, µ(t1 � t0) � G, contradicting the definition of G:

fx(t0) = Lv(t0)� Lx(t0)  G

for all x 2 V . If s > 1, then µ(t1 � t0) � s�1(t0). However, we have that

fx(t0)  Lv(t0)� Lx(t0)� (2s� 3)�d(v, x)  s�1(t0)

for all x 2 V . As this is a contradiction as well, the claim of the lemma
follows.

Putting Things Together

Theorem 3.14. Assume that Hv(0) � Hw(0)   for all {v, w} 2 E. Then,

for all s 2 N, Algorithm 3.1 guarantees s(t)  G/�
s
, where � = µ/(#� 1).

3.2. ANALYSIS OF THE GCS ALGORITHM 33

Proof. Suppose for contradiction that the statement of the theorem is false. Let
s 2 N be minimal such that there is a time t1 for which s(t1) = G/�

s + " for
some su�ciently small " > 0. Thus, there is some w 2 V such that

 s
w(t1) =

s(t1) =
G

�s
+ " .

Set t0 := max{t� G/(µ�s�1), 0}. Consider the time t
0
2 [t0, t1] that is minimal

with the property that s
w(t) > 0 for all t 2 (t0, t1] (by continuity of s

w such a
time exists). Thus, we can apply Lemma 3.10 to this interval, yielding that

 s
w(t1) 

s
w(t

0) + #(t1 � t
0)� (Lw(t1)� Lw(t

0))  s
w(t

0) + (#� 1)(t1 � t
0) .

 s
w(t

0) cannot be 0, as otherwise

 s
w(t1)  (#� 1)(t1 � t

0) 
#� 1

µ
·

G

�s�1
=

G

�s
,

contradicting s
w(t1) = G/�

s + ".
On the other hand, if s

w(t
0) > 0, we must have t

0 = t0 from the definition
of t0 and continuity of s

w. Moreover, t0 6= 0 because

max
v,w2V

{Lv(0)� Lw(0)� (2s� 1)d(v, w)}

= max
v,w2V

{Hv(0)�Hw(0)� (2s� 1)d(v, w)}

 max
v,w2V

{Hv(0)�Hw(0)� d(v, w)}  0 ,

as Hv(0) �Hw(0)   for all neighbors v, w by assumption. Hence, t0 = t0 =
t1 � G/(µ�s�1). If s > 1, the minimality of s yields that s(t0)  G/�

s�1. We
apply Lemma 3.13 to level s, node w, and time t

0 = t0, yielding that

 s
w(t1) 

s
w(t0) + #(t1 � t0)� (Lw(t1)� Lw(t0))  (#� 1)(t1 � t0) 

G

�s
,

again contradicting s
w(t1) = G/�

s + ". Reaching a contradiction in all cases,
we conclude that the statement of the theorem must indeed hold.

Our main result, Theorem 3.7, is now immediate.

Proof of Theorem 3.7. We apply Theorem 3.14 and consider s := dlog�(G/)e.
For any {v, w} 2 E and any time t, we thus have that

Lv(t)�Lw(t)� (2s�1) = Lv(t)�Lw(t)� (2s�1)d(v, w)  s(t) 
G

�s
  .

Rearranging this and exchanging the roles of v and w, we obtain

L(t) = max
{v,w}2E

{|Lv(t)� Lw(t)|}  2s = 2dlog�(G/)e .

34 LECTURE 3. UPPER BOUND ON THE LOCAL SKEW

Remarks:

• Assuming a number of reasonable things and that T 2 O(d) (i.e., message
frequency is not the bottleneck in determining estimates), an asymptoti-
cally optimal choice of µ you will compute in the exercises yields a skew
of roughly 2u log� D for our GCS algorithm. Thus, the lower bounds from
the Lecture 3 shows that the algorithm is optimal up to a factor of roughly
2, provided � � 1 and (# � 1)d ⌧ u. Dropping that � � 1, we still get
optimality up to a constant factor.

• What if (#� 1)d is comparable to u or even larger? In the exercises, you
show how to generate a better “logical hardware clock” in this case by
bouncing messages back and forth between nodes. Using this idea (with
some modifications), one could, up to an additive O((# � 1)d), eliminate
the dependence of the upper bound on (#� 1)d.

What to Take Home

• A very simple algorithm achieves a surprisingly good local skew, even if
clocks must advance at all times.

• The base of the logarithm in the bound is typically large. A cheap quartz
oscillator guarantees #� 1  10�5. Thus, even if we want that µ ⌧ 1, the
base of the logarithmic term can be made quite large.

• The algorithmic idea is surprisingly versatile. It works if � is di↵erent
for each link, and with some modifications (to algorithm and analysis),
adversarial changes in the graph can be handled.

Bibliographic Notes

The first non-trivial upper bound for the GCS problem was provided by Locher
and Wattenhofer [LW06]. Their blocking algorithm bounds the local skew by
O(

p
�D). The first logarithmic bound on the local skew was given in [LLW08]

and soon after improved to the algorithm presented here [LLW10]. The ele-
gant way of describing the algorithm in terms of the fast and slow modes and
conditions is due to Kuhn and Oshman [KO09].

The underlying idea of the GCS algorithm presented here turns out to be
surprisingly robust and versatile. Essentially the same algorithm works for
di↵erent uncertainties on the edges [KO09]. With a suitable method of carefully
incorporating newly appearing edges, it can handle dynamic graphs [KLLO10]
(this problem is introduced in [KLO11]), in the sense that edges that were
continuously present for su�ciently long satisfy the respective guarantee on the
skew between their endpoints. Recently, the approach has been independently
discovered (twice!) for solving load balancing tasks that arise in certain packet
routing problems [DLNO17, PR17].

BIBLIOGRAPHY 35

Bibliography

[DLNO17] Stefan Dobrev, Manuel Lafond, Lata Narayanan, and Jaroslav Opa-
trny. Optimal local bu↵er management for information gathering
with adversarial tra�c. In Proceedings of the 29th ACM Sympo-

sium on Parallelism in Algorithms and Architectures, SPAA 2017,

Washington DC, USA, July 24-26, 2017, pages 265–274, 2017.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. CoRR, abs/1005.2894, 2010.

[KLO11] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient
Clock Synchronization in Dynamic Networks. Theory Comput. Syst.,
49(4):781–816, 2011.

[KO09] Fabian Kuhn and Rotem Oshman. Gradient Clock Synchronization
Using Reference Broadcasts. In Proc. 13th Conference on Principles

of Distributed Systems (OPODIS), pages 204–218, 2009.

[LLW08] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Clock
Synchronization with Bounded Global and Local Skew. In Proc. 49th

Symposium on Foundations of Computer Science (FOCS), pages
509–518, 2008.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. J. ACM, 57(2):8:1–8:42, 2010.

[LW06] Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In Proc. 20th Symposium on Distributed Comput-

ing (DISC), pages 520–533, 2006.

[PR17] Boaz Patt-Shamir and Will Rosenbaum. The space requirement of
local forwarding on acyclic networks. In Proceedings of the ACM

Symposium on Principles of Distributed Computing, PODC 2017,

Washington, DC, USA, July 25-27, 2017, pages 13–22, 2017.

	Synchronizing Clocks
	The Clock Synchronization Problem
	The Max Algorithm
	Lower Bound on the Global Skew
	Refining the Max Algorithm
	Afterthought: Stronger Lower Bound

	Lower Bound on the Local Skew
	Formalizing the Problem
	Averaging Protocols
	Lower Bound with Bounded Clock Rates
	Lower Bound with Arbitrary Clock Rates

	Upper Bound on the Local Skew
	GCS Algorithm
	Analysis of the GCS Algorithm

	Notation and Preliminaries
	Numbers and Sets
	Graphs
	Trees and Forests

	Asymptotic Notation
	Definitions
	Properties

	Bounding the Growth of a Maximum of Differentiable Functions

