
Exercise 1: Global vs. Local

Task 1: Even more Globally Optimal (60 points)

In the lecture, we proved a lower bound of Ω(uD) for the global skew of any algorithm,
while the uppper bound achieved by the max algorithm is O(((ϑ − 1)d + u)D). Thus,
the upper bound may be significantly larger than our lower bound in the regime where
(ϑ− 1)d� u. In this exercise, you will show that an upper bound of O(uD + (ϑ− 1)d)
is always achievable.

(a) Let v ∈ V be a node and w ∈ Nv an arbitrary neighbor. Consider the following
process: at time t = 0, v sends a message to w. When w receives v’s message, w
immediately replies with a message. When v receives w’s message, v again responds
immediately and so on. Thus, for any exection, this process defines a sequence of
times 0 = t0 < t1 < t2 < · · · when v receives a message from w. Define a “hardware
clock” Ĥv that (discontinuously) adjusts its value at times t1, t2, . . . and increases

at the same rate as Hv at all other times such that for all times t < t′, Ĥv satisfies

Ĥv(t′)− Ĥv(t) ≤
(

1 +
u

d− u

)
(t′ − t) + c(u + (ϑ− 1)d) and Hv(0) + t ≤ Ĥv(t).

for some suitable constant c > 0. (25 points) Hint: What do you know about
ti+1 − ti?

(b) Consider the “Min Algorithm,” in which nodes reduce their logical clock value to

L + d when receiving a message 〈L〉, but use Ĥv as “hardware” clock at v. (The
messages sent are specified in c)). Define a “virtual clock” Lmin that lower bounds
all actual clock values, but also takes into account messages that are in transit,
which might cause nodes to set their clocks back. This clock should satisfy that
it increases at least at rate 1. Conclude that the algorithm guarantees amortized
1-progress. (10 points)

(c) Bound the global skew of the algorithm. We are not concerned with the number of
sent messages, so nodes will send a message immediately after receiving one, as well
as send one every d local time (w.r.t. Hv). (Remark: If it helps with notation, feel
free to show the statement only on a graph that is a simple path.) (25 points)

Solution

(a) Fix a node v, set t0 = 0, and let t1 < t2 < · · · be the consecutive (objective) times
at which v receives messages from its “chosen” neighbor, w. Observe that for all i,
we have

2(d− u) ≤ ti − ti−1 ≤ 2d. (1)

Define Ĥv(0) = Hv(0). We inductively define the values of Ĥv(t) in the interval
(ti−1, ti] as follows:

Ĥv(t) =

{
Ĥv(ti−1) + (Hv(t)−Hv(ti−1)) for t < ti

Ĥv(ti−1) + min {2d,Hv(t)−Hv(ti−1)} for t = ti.

Now fix arbitrary times t′, t with t′ > t. First consider the case where there are no
times ti satisfying t ≤ ti ≤ t′. Observe that this case implies that t′ − t ≤ 2d. Since



Ĥv never increases at a rate faster than ϑ (the maximum rate of Hv), we have

Ĥv(t′)− Ĥv(t) ≤ ϑ · (t′ − t)

= 1 · (t′ − t) + (ϑ− 1)(t′ − t)

≤ 1 · (t′ − t) + (ϑ− 1) · (2d).

This gives the first desired bound on the speed of Ĥv(t) setting the constant c = 2.
Now consider the case where there are time tk, tk+1, . . . , t` satisfying t < tk ≤ t` < t′

with tk−1 ≤ t and t′ ≤ t`+1. By the definition of Ĥv, for i = k + 1, k + 2, . . . , `, we

have Ĥv(ti) ≤ Ĥv(ti−1) + 2d. Therefore, applying Equation (1) gives

Ĥv(ti)− Ĥv(ti−1)

ti − ti−1
≤ 2d

2(d− u)
=

d− u + u

d− u
= 1 +

u

d− u
,

hence

Ĥv(ti)− Ĥv(ti−1) ≤
(

1 +
u

d− u

)
(ti − ti−1). (2)

Finally, we compute

Ĥv(t′)− Ĥv(t) = (Ĥv(t′)− Ĥv(t`)) + (Ĥv(t`)− Ĥv(t`−1)) + · · ·+ (Ĥv(tk)− Ĥv(t))

≤ 1 · (t′ − t`) + (ϑ− 1) · (2d)

+
∑̀

i=k+1

(
1 +

u

d− u

)
(ti − ti−1)

+ 1 · (tk − t) + (ϑ− 1) · 2d

≤
(

1 +
u

d− u

)
(t′ − t) + 4(ϑ− 1) · d,

which gives the desired upper bound. For the lower bound Ĥv(t) ≥ Hv(0) + t first

observe that for all t ∈ [ti, ti−1], we have Ĥv(t) ≥ Hv(ti−1) + (t − ti) because Hv

increases at a rate of at least 1. Next, we have

Ĥv(ti)− Ĥv(ti−1) ≥ min {2d,Hv(ti)−Hv(ti−1)}

If we have 2d < Hv(ti)−Hv(ti−1) then, Ĥv(ti)−Ĥv(ti−1) = 2d, while ti−ti−1 ≤ 2d.
On the other hand, Hv(ti) − Hv(ti−1) ≥ ti − ti−1 because Hv’s rate is at least 1.
The desired result follows by writing

Ĥv(t)−Hv(0) = (Ĥv(t)− Ĥv(t`)) + (Ĥv(t`)− Ĥv(t`−1)) + · · ·+ (Ĥv(t1)−Hv(0)),

and applying the above observations to each term in this sum separately.

(b) Define Lmin(t) to be the minimum clock value in the system at time t, where we take
message 〈L〉 in transit into account as value L + (t− ts) if it has been sent at time
ts. It’s easy to see that Lmin increases at rate at least 1 at all times; no node will
ever set its clock to a smaller value than Lmin. It follows that the algorithm satisfies
amortized 1-progress, as Lmin does (and the skew is bounded; this is technically
only shown in the next part).

(c) Consider node v ∈ V and time t. We claim that Lv(tr) ≤ Lmin(tr)+u(D+1)+(ϑ−
1)d for some tr ≤ t+d(D+1). First, if Lmin(t) = L+(t−ts) for some message 〈L〉, it
will be received no later than time t′ = ts +d, cause the respective clock be set back



to L+d if necessary, and trigger a message 〈L′〉 with L′ ≤ L+d ≤ Lmin(t′)+u (as the
message is under way for at least d−u time). On the other hand, if Lmin(t) = Lw(t)
for some w, this node will send a message 〈L〉 at a time t′ ∈ [t, t + d), for which
L ≤ Lmin(t′)+(ϑ−1)d. Either way, this causes a chain of messages reaching w after
at most D hops. On each hop, the communicated value increases by (at most) d, and
the message travels for at least d− u time. As Lmin increases at least at rate 1, the
claim follows. As Lv(t)−Lv(tr) ≤ Ĥv(t)− Ĥv(tr) ∈ (1 + 2u/d)(t− t′) +O((ϑ− 1)d)
and Lmin increases at least at rate 1, we conclude that for times t ≥ d(D + 1), we
have that

Lv(t) ∈ Lmin(t) +

(
1 +

2u

d
− 1

)
d(D + 1) +O((ϑ− 1)d) + u(D + 1) + (ϑ− 1)d

⊆ O(uD + (ϑ− 1)d) .

As this holds for any v ∈ V and Lmin(t) ≥ minw∈V {Lw(t)}, this is a bound on G(t)

for t ≥ d(D + 1). Assuming that H ∈ O(uD + (ϑ− 1)d), using the properties of Ĥ
we readily get that G(t) ∈ O(uD + (ϑ− 1)d) for times t < d(D + 1) as well.

Task 2: The Least Possible Locally Optimal (40 points)

The local skew is defined in a similar way as the global skew except that we consider
the logical clock difference between the neighboring nodes only:

L := sup
t∈R+

0

{L(t)} ,

where

L(t) := max
{v,w}∈E

{|Lv(t)− Lw(t)|}

In this exercise, we analyze the local skew of the Refined Max Algorithm.

a) Let P = (v0, . . . , vD) be a path of length D. Construct an execution in which (i)
Hv(0) = 0 for all v ∈ V , (ii) Hvi+1

(t0)−Hvi(t0) = u for all i ∈ [D], (iii) Lv(t) = Hv(t)
for all v ∈ V and times t, and (iv) each hardware clock runs at rate 1 after time t0.
(Hint: Simply set all message delays to d and ramp hardware clock speeds. Then
show that Lv(t) = Hv(t) for all v ∈ V and t, because no node v receives a message
with L > Hv(t)− d + u at any time t.) (20 points)

b) Take the above execution and modify it such that a skew of u(D − 1) occurs at
some time between nodes v0 and v1. (Hint: Only change message delays after time
t0, nothing else. “Pull” the nodes to the current maximum clock value one by one,
starting with vD−1.) (20 points)

Solution

a) Set t0 := uD/(ϑ − 1). From time t0 on, all hardware clock rates are 1. For times

t ∈ [0, t0], node vi has hardware clock rate 1 + i(ϑ−1)
D . All message delays are d.

Observe that, for neighbors vi, vi+1, we have that Lvi+1
(t) − Lvi(t) ≤ ϑ−1

D · t0 = u
at all times t. As message delays are d, a message sent at local time H is received
at local time H − u + d (or later). As initially Hv(0) = Lv(0) at all nodes and both
increase at the same rate, there can be no first received message causing any node
to set its logical clock to a larger value than its hardware clock. We conclude that
Lv(t) = Hv(t) for all times t.



b) At time t0, we switch the delay of any message sent by vD to d− u. Inductively, we
define times ti, i ∈ [D] where we apply the same change to node vD−i. Given ti−1, ti
is defined as the reception time of the first fast message from node D − (i− 1). We
observe that (i) at time ti, i > 0, node D− i sets LvD−i

(ti) = LvD−(i−1)
(ti−(d−u))+

d− u = LvD−(i−1)
(ti), (ii) no other changes to clock values occur, as nodes j ≥ D− i

have identical clock values from time ti on and nodes j < D− i have not observed a
difference to the original execution yet. Thus, at time tD−1, we have that

Lv1(tD−1)− Lv0(tD−1) = LvD (tD−1)− Lv0(tD−1) = LvD (t0)− Lv0(t0) = uD .

Task 3*: Global and Local Happiness

a) Find out what the term synchronizers refers to in distributed computing!

b) Use basic techniques for synchronizers to devise an algorithm that satisfies con-
stant amortized progress, has asymptotically optimal global skew, and has local
skew O(uD). You may assume that (ϑ− 1)d ≤ u, so you don’t have to worry about
removing (ϑ− 1)d terms.

c) Synchronize (i.e., communicate your findings) with the other students in the TA
session!


