Exercise 6: Containment

Task 1: Containing Choice

The goal in this exercise is to prove Lemma 6.5.

a) Show the equivalence stated in the lemma.

b) Construct a k-bit MUX_M implementation out of two $(k-1)$-bit MUX_M implementations and a CMUX. (Hint: To show correctness, make a case distinction on the kth control bit, which is fed to the CMUX.)

c) What is the size of the resulting MUX_M implementation when applying the construction from b) recursively?

Solution

a) Suppose $\text{MUX}_M(x, s) = b \in \{0, 1\}$, or, equivalently, that for all $x \preceq y \in \{0, 1\}^k$ and $s \preceq s' \in \{0, 1\}^k$, we have that $y_{s'} = \text{MUX}(y, s') = b$. It follows that $x_{s'} = b$ for each $s \preceq s' \in \{0, 1\}^k$, as otherwise $z \in \{0, 1\}^k$ given by

$$z_k := \begin{cases} 1 - b & \text{if } s = s' \\ y_s & \text{else} \end{cases}$$

satisfied that $x \preceq z$ and $\text{MUX}(z, s') = 1 - b$. As this holds for any $s \preceq s' \in \{0, 1\}^k$, this shows that

$$\forall s \preceq s' \in \{0, 1\}^k: x_{s'} = b.$$

For the reverse implication, assume that the latter is true. Thus, for all $x \preceq y \in \{0, 1\}^k$ and $s \preceq s' \in \{0, 1\}^k$, $\text{MUX}(y, s') = b$. This is equivalent to $\text{MUX}_M(x, s) = b \in \{0, 1\}$.

b) For $s \in \{0, 1, M\}^k$, denote by s_1 the most significant bit of s and by $s_{2..k}$ the remaining bits of s. Take two copies of a circuit implementing a $(k-1)$-bit MUX_M and fix inputs $x \in \{0, 1, M\}^{2k}$, $s \in \{0, 1, M\}^k$. To the first one, feed the $2^k - 1$ inputs $x_{s'}$ with $s'_1 = 0$ and the control bits $s_{2..k}$. Similarly, the second copy receives inputs $x_{s'}$ with $s'_1 = 1$ and control bits $s_{2..k}$. The outputs of these circuits are fed as inputs into a CMUX, whose control bit is given by s_1. We claim that this results in an implementation of a k-bit MUX_M, whose output is given by the output of the CMUX.

To show this, we use the equivalence from a) and make a case distinction. If $s_1 = 0$, then $s'_1 = 0$ for any $s \preceq s'$. Hence, $\text{MUX}_M(x, s) = b \in \{0, 1\}$ if and only if for all $s_{2..k} \preceq s'_{2..k} \in \{0, 1\}^{k-1}$ we have that $x_{0s'_{2..k}} = b$. This is equivalent to the first $(k-1)$-bit MUX_M having output b, which due to $s_1 = 0$ is equivalent to the output of the CMUX being 0. Arguing analogously, we see that the implementation is also correct for $s_1 = 1$.

It remains to consider the case that $s_1 = M$. Thus, the equivalence from a) shows that $\text{MUX}_M(x, s) = b \in \{0, 1\}$ if and only if we have that for all $s_{2..k} \preceq s'_{2..k} \in \{0, 1\}^{k-1}$ both that $x_{0s'_{2..k}} = b$ and that $x_{1s'_{2..k}} = b$. This is equivalent to both $(k-1)$-bit MUX_M implementations having output b. Accordingly, the selectable inputs of the CMUX are both b, and its output is b despite the select bit being M.

c) The size of a k-bit MUX_M implementation following this construction is twice the size of a $(k-1)$-bit MUX_M plus that of a CMUX. Summing over all levels of the construction, we thus get $\sum_{k=0}^{k-1} 2^k = 2^k - 1$ times the size of a CMUX. The size of a CMUX is constant, so we end up with size $O(2^k)$.
Task 2: Copy and Conquer

Masking registers are registers that have somewhat predictable behavior when storing a metastable bit. A mask-0 register \(R \) has the following behavior. Like an ordinary register, if \(R \) stores a bit \(b \in \{0,1\} \), then every time the value of \(R \) is read, it will return \(b \). If the bit stored in \(R \) is \(M \), then every sequence of accesses to \(R \) will return a sequence of values of the form 00\(
\cdots\)01\(
\cdots\). In particular, every sequence of accesses to \(R \) will return a sequence of values containing at most a single \(M \).

a) Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function, and suppose \(x \in \{0,1,M\}^n \) satisfies \(f_M(x) \neq M \). Let \(C \) be an arbitrary (not necessarily metastability containing!) circuit implementing \(f \). Suppose the individual bits of \(x \) are stored in mask-0 registers, and let \(x^{(1)}, x^{(2)}, \ldots, x^{(2n+1)} \) denote the values of \(x \) read by a sequence of accesses to the registers storing \(x \). Finally, for each \(i \in \{1,2,\ldots,2n+1\} \), define \(y_i = C(x^{(i)}) \). Show that the value \(f_M(x) \) can be inferred from \(y_1, y_2, \ldots, y_{2n+1} \).

b) Come up with a small circuit that sorts its \(n \) inputs according to the total order \(0 \leq M \leq 1 \). That is, devise a circuit \(C \) with \(n \) inputs and \(n \) outputs such that if \(y = C(x) \) then we have \(y_1 \leq y_2 \leq \cdots \leq y_n \), where \(y \) has the same number of 0s, 1s, and \(Ms \) as \(x \). (Hint: Figure out a solution sorting two values and then plug it into a binary sorting network to get the general circuit. You don’t have to (re)invent sorting networks, you may just point to a reference.)

c) Combine a) and b) to derive a circuit implementing \(f_M \) from any (non-containing) circuit implementing \(f \)! Your solution should only be by a factor of \(n^{O(1)} \) larger than to the non-containing solution.

Solution

a) As at most a single \(M \) is read from each masking register, we have that at least \(n+1 \) of the copies are stable. For each of these \(n+1 \) copies, by definition of \(f_M \) the circuit implementing \(f \) will compute output \(f_M(x) \).

b) Given two inputs \(x_1 \) and \(x_2 \), in terms of the order \(0 \leq M \leq 1 \), we simply have that \(\text{OR}_M(x_1, x_2) = \max\{x_1, x_2\} \) and \(\text{AND}_M(x_1, x_2) = \min\{x_1, x_2\} \). Using an OR and an AND gate as comparator in a sorting network, we get a circuit of size \(O(n \log n) \) sorting \(n \) inputs.

c) We make \(2n+1 \) copies of the input and feed each copy into a copy of the circuit \(C \) implementing \(f \), as in a). If \(f_M(x) = b \in \{0,1\} \), from a) we know that at least \(n+1 \) of the outputs are \(b \). In particular, after sorting the \((n+1)_{th} \) value is \(b \). Using b), we can output the \((n+1)_{th} \) value of the sorted sequence. In total, we have spent \(O(n|C| + n \log n) \subset O(n^{O(1)}|C|) \) gates.

Task 3*: Clocked Circuits

a) How would a model for clocked circuits based on the same worst-case assumptions look like? (Hint: Reading up on it is fine.)

b) Standard registers, when being read, will output \(M \) if they’re internally metastable and 0 or 1, respectively, when they’re stable. Show that they add no power in terms of the functions that can be computed! (Hint: Unroll the circuit, i.e., perform the multi-round computation in a single round with a larger circuit.)
c) In Task 2, you saw that masking registers allow for more efficient metastability-containing circuits. Show that they are also computationally more powerful, i.e., they can compute functions that cannot be computed with masking registers! (Hint: You already used this in Task 2!)