
Exercise 11: Counting

1

In the self-stabilising Byzantine firing squad problem, in each synchronous round r ∈ N,
each node v ∈ V receives an external input GO(v, r) ∈ {0, 1}. If GO(v, r) = 1, then
we say that v receives a GO input in round r. Moreover, the algorithm determines an
output FIRE(v, r) ∈ {0, 1} at each node v ∈ Vg in each round r ∈ N. We say that an
execution of an algorithm stabilizes in round r ∈ N, if the following three properties
hold:

Agreement: FIRE(v, r′) = FIRE(w, r′) for all v, w ∈ Vg and r ≤ r′ ∈ N.

Safety: If FIRE(v, rF ) = 1 for v ∈ Vg and r ≤ rF ∈ N, then there is rG < rF s.t.

a) GO(w, rG) = 1 for some w ∈ Vg and

b) FIRE(v, r′) = 0 for all r′ ∈ {rG + 1, . . . , rF − 1}.

Liveness: If GO(v, rG) = 1 for at least f + 1 correct nodes v ∈ Vg and r ≤ rG ∈ N,
then FIRE(v, rF ) = 1 for all nodes v ∈ Vg and some rG < rF ∈ N.

Note that the liveness condition requires f + 1 correct nodes to receive an external GO
input, as otherwise it would be impossible to guarantee that a correct node has received
a GO input when firing. We say that an execution stabilized by round r has response
time R from round r on if

1. if f + 1 correct nodes v ∈ Vg satisfy GO(v, rG) = 1 on some round rG ≥ r, then all
correct nodes w ∈ Vg satisfy FIRE(w, rF ) = 1 on some round rG ≤ rF ≤ rG + R,
and

2. if there is a round rF ≥ r such that FIRE(v, rF ) = 1 for some correct v ∈ Vg, then
there is a round rG with rF > rG ≥ rF − R and some correct node w ∈ Vg with
GO(w, tG) = 1.

Finally, we say that an algorithm F is an f -resilient firing squad algorithm with stabi-
lization time S(F ) and response time R(F ) if in any execution of the system with at
most f faulty nodes there is a round r ≤ S(F ) by which the algorithm stabilized and
from which on it has response time at most R(F ).

a) Given a T -counting algorithm of stabilization time S and message size M1 alongside
a consensus algorithm of running time T and message size M2, provide a firing squad
algorithm with the following properties:

1. It stabilizes within max{S + T, 2T} rounds.

2. It has response time R ≤ 2T .

3. It has message size M ≤M1 + M2 + 1.

b) Conclude that a firing squad algorithm with stabilization and response time O(f)
and message size O(log f) exists.

c) Prove that any firing squad algorithm must have response time f + 1. (Hint: Reduce
consensus to firing squad!)



Solution

a) We use the T -counting algorithm to (after it stabilized) run an instance of the con-
sensus algorithm exactly every T rounds, deciding whether to fire or not according
to its output exactly T rounds after starting the instance (on all other rounds r,
FIRE(v, r) = 0). To determine the input v ∈ Vg uses for the algorithm, v observes
whether it has proof whether any correct node w ∈ Vg satisfied GO(w, r) = 1 in the
T rounds before the current instance started. To this end, all nodes broadcast their
GO values each round, and set the input variable to 1 when receiving f + 1 times 1
in some round; when initializing a consensus instance (at the end of the round the
previous one terminated), this variable is used as input and reset to 0.

Some care is necessary here to ensure that the definition is met precisely: When
firing in round r, we first reset the input variable to 0, then check whether it is set
to 1 again due to receiving f + 1 times 1, only then use the variable to determine the
input of the instance starting to execute in round r + 1, and finally set it back to 0.

We need to show that this algorithm satisfies the required properties. First, observe
that any consensus instance terminating at or after round S + T was executed cor-
rectly, as the counting algorithm stabilized by round S. By the agreement property
of the consensus routine (and, for other rounds, that nodes simply output 0), the
agreement property of the firing squad holds. Concerning safety, any such consensus
instance that outputs 1 must have some correct node v use input 1. This input must
be the result of receiving v at least f + 1 times 1 at most T rounds before the in-
stance was started. This, in turn, means that some w ∈ Vg had GO(w, r) = 1 in the
respective round. Moreover, if a firing event happened in the meantime, this implies
that the input variable was reset at this time, and must have been set to 1 again in
this round, i.e., safety is satisfied either way. This also shows that the second part
of having response time 2R is satisfied.

Concerning liveness (and the first part of response time 2R), suppose in round r ≥
S +T at least f + 1 correct nodes v ∈ Vg satisfy GO(v, r) = 1. If a consenus instance
terminates in round r, all nodes will use input 1 in the next instance starting in round
r + 1, it will (T rounds later) output 1 by validity, and hence liveness is satisfied.
Otherwise, denote by r′ ∈ {r + 1, . . . , r + T − 1} the next round when an instance
terminates. If its output is 1, the nodes will fire and the liveness condition is met.
Otherwise, they will use input 1 for the instance starting in round r′ ≤ r + T and
fire in round r′ + T − 1 < r + 2T . We conclude that liveness holds in all cases and
the first condition of response time 2R is satisfied.

The message size bound is immediate from the fact that there is one instance of
the counting algorithm, one instance of the consensus algorithm, and one additional
broadcasted bit due to sending the GO signals.

b) This follows by using the Phase King algorithm (running time O(f) and message size
1) together with the O(f)-counting algorithm of stabilization time O(f) and message
size O(log f) obtained by plugging it into the counting framework from the lecture.

c) Given a firing squad algorithm with stabilization and response times S and R,
respectively, we solve consensus as follows. For an arbitrary initial state, we set
GO(v, r) = 0 for all rounds r 6= S + R + 1 and GO(v, S + R + 1) = bv, i.e., to the
input of v in the consensus routine. If there is a round r ∈ {S+R+1, . . . , S+2R+1}
in which v fires, it outputs 1. By agreement, safety, and liveness of the firing squad
algorithm, this output satisfies the agreement and validity properties of consensus.
To make this into an R-round consenus algorithm, we initialize each node with the
state it has at the beginning of round S + R + 1; it knows whether it fires in the



prescribed range within R rounds, i.e., we end up with an R-round consensus algo-
rithm. As we know that consensus requires at least f + 1 rounds in the worst case,
it follows that R ≥ f + 1.

2

In this exercise, you show how to obtain a silent (binary) consensus algorithm from an
arbitrary consensus algorithm. As usual, we assume that f < n/3. Here’s a description
of the new algorithm up to determining its output:

The new protocol C ′ can be seen as a “wrapper” protocol that manipulates the
inputs and then lets each node decide whether it participates in an instance of the
original protocol. In the first round of the new protocol, C ′, each participating node
broadcasts its input if it is 1 and otherwise sends nothing. If a node receives fewer than
n− f times the value 1, it sets its input to 0. In the second round, the same pattern is
applied.

Subsequently, C is executed by all nodes that received at least f + 1 messages in the
first round. If during the execution of C a node

1. cannot process the messages received in a given round in accordance with C (this
may happen e.g. when not all of the correct nodes participate in the instance,
which is not covered by the model assumptions of C),

2. would have to send more bits than it would have according to the known bound
M(C), or

3. would violate the running time bound of C,

then the node (locally) aborts the execution of C.

a) Prove that the protocol is silent.

b) Define suitable rules for determining the output of the new protocol C ′ based on the
first two rounds of the wrapper, whether the execution of C was aborted, and, if it
wasn’t, on its output. Show agreement and validity of C ′ with these rules.

Solution

a) If all correct nodes have input 0, they will not transmit in the first two rounds. In
particular, they will not receive more than f messages in the first round and not
participate in the execution of C. Hence correct nodes do not send messages at all.

b) A node outputs 0 in the new protocol if it did not participate in the execution of C,
aborted it, or received f or fewer messages in the second round, and it outputs the
result according to the run of C otherwise.

We distinguish two cases. First, suppose that all correct nodes participate in the
execution of C at the beginning of the third round. As all nodes participate, the
bounds on resilience, communication complexity, and running time that apply to C
hold in this execution, and no node will quit executing the protocol before termi-
nation. To establish agreement and validity, again we distinguish two cases. If all
nodes output the outcome of the execution of C, these properties follow right away
since C satisfies them; here we use that although the initial two rounds might affect
the inputs of nodes, a node will change its input to 0 only if there is at least one
correct node with input 0. On the other hand, if some node outputs 0 because it
received f or fewer messages in the second round of C ′, no node received more than
2f < n− f messages in the second round. Consequently, all nodes executed C with



input 0 and computed output 0 by the agreement property of C, implying agreement
and validity of the new protocol.

The second case is that some correct node does not participate in the execution of C.
Thus, it received at most f messages in the first round of C ′, implying that no node
received more than 2f < n− f messages in this round. Consequently, correct nodes
set their input to 0 and will not transmit in the second round. While some nodes
may execute C, all correct nodes will output 0 no matter how C behaves. Since
nodes abort the execution of C if the bounds on communication or time complexity
are about to be violated, the claimed bounds for the new protocol hold.

3*

a) Contemplate your experience with the lecture.

b) Come up with clever ideas on what we could do better next time.

c) Join us for ice cream and spill the beans!


