
Orthogonal Range Searching

Sándor Kisfaludi-Bak

Computaional Geometry
Summer semester 2020

Overview

• Intro and problem definition

Overview

• Intro and problem definition

• Kd trees

Overview

• Intro and problem definition

• Kd trees

• Range trees

Overview

• Intro and problem definition

• Fractional cascading

• Kd trees

• Range trees

Overview

• Intro and problem definition

• Fractional cascading

• Kd trees

• Range trees

• Priority search trees

The obvious applciation

tons sold last year

sugar

cocoa

Database of cakes.

The obvious applciation

tons sold last year

sugar

cocoa

Database of cakes.

Which cakes have
• sugar content [0.12,0.17]
• cocoa content [0.05,0.1]
• and sold btw. 3 and 4 tons

last year?

The obvious applciation

tons sold last year

sugar

cocoa

Database of cakes.

Which cakes have
• sugar content [0.12,0.17]
• cocoa content [0.05,0.1]
• and sold btw. 3 and 4 tons

last year?

Orthogonal range query

The obvious applciation

tons sold last year

sugar

cocoa

Database of cakes.

Which cakes have
• sugar content [0.12,0.17]
• cocoa content [0.05,0.1]
• and sold btw. 3 and 4 tons

last year?

Orthogonal range query

Task: support such queries efficiently

Problem definition

Given n points in Zd or Qd,
1. Preprocess them in Õ(n) time and space to
2. support orthogonal range queries in poly(logn) +O(k)
3. on a Word RAM.

Problem definition

Given n points in Zd or Qd,
1. Preprocess them in Õ(n) time and space to
2. support orthogonal range queries in poly(logn) +O(k)
3. on a Word RAM.

output size

Problem definition

Given n points in Zd or Qd,
1. Preprocess them in Õ(n) time and space to
2. support orthogonal range queries in poly(logn) +O(k)
3. on a Word RAM.

output size

Static: preprocess and answer queries

Dynamic: update insertions and deletions in poly(log(n))

The 1-dimensional problem

Query: [x, x′]

The 1-dimensional problem

Query: [x, x′]

Option 1. Use sorted array:
Binary search for x
Report next until exceeds x′

The 1-dimensional problem

Query: [x, x′]

Option 1. Use sorted array:
Binary search for x
Report next until exceeds x′ Static

only

The 1-dimensional problem

Query: [x, x′]

Option 1. Use sorted array:
Binary search for x
Report next until exceeds x′ Static

only

Option 2. Binary search tree:

7531 10 16

8

7
8

5

3

1 10

The 1-dimensional problem

Query: [x, x′]

Option 1. Use sorted array:
Binary search for x
Report next until exceeds x′ Static

only

Option 2. Binary search tree:

7531 10 16

8

7
8

5

3

1

P in the leaves
Query: [4, 11]

10

inner vertex = largest value in left child’s subtree

Answering a query
Binary search for Split(x, x′)
Search for x, reporting right child subtrees
Search for x′, reporting left child subtrees

Dynamic solution in R1

Split(x, x′)

π(x) π(x′)

Answering a query
Binary search for Split(x, x′)
Search for x, reporting right child subtrees
Search for x′, reporting left child subtrees

Dynamic solution in R1

Split(x, x′)

π(x) π(x′)

Space = O(n)

Answering a query
Binary search for Split(x, x′)
Search for x, reporting right child subtrees
Search for x′, reporting left child subtrees

Dynamic solution in R1

Split(x, x′)

π(x) π(x′)

Space = O(n)

Preprocess = O(n log n)

Answering a query
Binary search for Split(x, x′)
Search for x, reporting right child subtrees
Search for x′, reporting left child subtrees

Dynamic solution in R1

Split(x, x′)

π(x) π(x′)

Space = O(n)

Preprocess = O(n log n)

Update = O(log n)

Answering a query
Binary search for Split(x, x′)
Search for x, reporting right child subtrees
Search for x′, reporting left child subtrees

Dynamic solution in R1

Split(x, x′)

π(x) π(x′)

Space = O(n)

Preprocess = O(n log n)

Update = O(log n)

Query = O(log n+ k)

Kd trees

Bentley 1975

Kd trees in R2

Assume distinct x- and y-coords

Idea:

Kd trees in R2

Assume distinct x- and y-coords

Idea:

p1

p2

p3

p4

p5

p6

p7

p8

p9
p10

Kd trees in R2

Assume distinct x- and y-coords

Idea:

`1

p1

p2

p3

p4

p5

p6

p7

p8

p9
p10

`1`1

' median x-coordinate

Kd trees in R2

Assume distinct x- and y-coords

Idea:

`1

`2

`3

p1

p2

p3

p4

p5

p6

p7

p8

p9
p10

`1`1

`2 `3

' median x-coordinate

Kd trees in R2

Assume distinct x- and y-coords

Idea:

`1

`2

`3

`4

`5

`6

`7p1

p2

p3

p4

p5

p6

p7

p8

p9
p10

`1`1

`2 `3

`4 `5 `6 `7

' median x-coordinate

Kd trees in R2

Assume distinct x- and y-coords

Idea:

`1

`2

`3

`4

`5

`6

`7

`8

`9

p1

p2

p3

p4

p5

p6

p7

p8

p9
p10

`1`1

`2 `3

`4 `5 `6 `7

p9 p1 p5 p10 p2 p7`9`8

' median x-coordinate

Kd trees in R2

Assume distinct x- and y-coords

Idea:

`1

`2

`3

`4

`5

`6

`7

`8

`9

p1

p2

p3

p4

p5

p6

p7

p8

p9
p10

`1`1

`2 `3

`4 `5 `6 `7

p9 p1 p5 p10 p2 p7

p3 p4 p6 p8

`9`8

' median x-coordinate

Kd tree anatomy

Space: O(n)
Tree has O(log n) depth.

Preprocessing: use linear time median:
T (n) = 2T (n/2) +O(n) ⇒ O(n log n)

Kd tree anatomy

Space: O(n)
Tree has O(log n) depth.

Preprocessing: use linear time median:
T (n) = 2T (n/2) +O(n) ⇒ O(n log n)

`1

`2

`4

`5

`6

`7

`8

`9

p1

p2

p3

p4

p5

p6

p7

p8

p9
p10

Each ` has a rectangular region

`3

Kd tree anatomy

Space: O(n)
Tree has O(log n) depth.

Preprocessing: use linear time median:
T (n) = 2T (n/2) +O(n) ⇒ O(n log n)

`1

`2

`4

`5

`6

`7

`8

`9

p1

p2

p3

p4

p5

p6

p7

p8

p9
p10

Each ` has a rectangular region

`3 reg(`1) = R2

Child regions of `:
separated by `

Querying a kd tree

query

Querying a kd tree

query

Report subtree if reg(`) ⊆ Q

Querying a kd tree

query

Report subtree if reg(`) ⊆ Q

If reg(`) intersects ∂Q: check!

Querying a kd tree

query

Report subtree if reg(`) ⊆ Q

If reg(`) intersects ∂Q: check!

Searching, reporting covered regions: O(log n+ k)

Querying a kd tree

query

Report subtree if reg(`) ⊆ Q

If reg(`) intersects ∂Q: check!

Searching, reporting covered regions: O(log n+ k)

How many regions can intersect ∂Q?

Regions interseted by the boundary

Claim. A vertical line intersects at most O(
√
n) node regions.

I(n): vert. line intersects this
many regions in kd tree of size n

`

lc(`)

Regions interseted by the boundary

Claim. A vertical line intersects at most O(
√
n) node regions.

I(n): vert. line intersects this
many regions in kd tree of size n

Two grandchild regions are not in-
tersected

`

lc(`)

Regions interseted by the boundary

Claim. A vertical line intersects at most O(
√
n) node regions.

I(n): vert. line intersects this
many regions in kd tree of size n

Two grandchild regions are not in-
tersected

`

I(n) = 2 + 2I(n/4)

reg(`) and reg(leftchild(`)) Intersections in red subtrees

lc(`)

Kd tree query time

I(n) = 2 + 2I(n/4) = 2 + 2 · (2 + 2 · (. . .)) = 2 + 4 + · · · + 2log4 n

Kd tree query time

⇒ I(n) = O(
√
n)

I(n) = 2 + 2I(n/4) = 2 + 2 · (2 + 2 · (. . .)) = 2 + 4 + · · · + 2log4 n

Kd tree query time

Q has ≤ 2 vertical and ≤ 2 horizontal sides
⇒ ∂Q intersects O(

√
n) regions

⇒ I(n) = O(
√
n)

I(n) = 2 + 2I(n/4) = 2 + 2 · (2 + 2 · (. . .)) = 2 + 4 + · · · + 2log4 n

Kd tree query time

Q has ≤ 2 vertical and ≤ 2 horizontal sides
⇒ ∂Q intersects O(

√
n) regions

⇒ I(n) = O(
√
n)

Orthogonal range queries of a 2-dim kd tree take O(
√
n+ k)

time.

I(n) = 2 + 2I(n/4) = 2 + 2 · (2 + 2 · (. . .)) = 2 + 4 + · · · + 2log4 n

Range trees

Range tree in R2

Binary search tree on x-xoordinates
Each node has a new BST for y-coords of descendant leaves

v

T (v)

BST on x

BST on descendants of v
sorted for y-coord.

Auxiliary tree

Range tree in R2

Binary search tree on x-xoordinates
Each node has a new BST for y-coords of descendant leaves

v

T (v)

BST on x

BST on descendants of v
sorted for y-coord.

Construction:
• Presort on y-coord to array A

Construct(v,A):

• Construct T (v) using A
• Find median x, split A to Aleft, Aright

• Construct(lc(v), Aleft), Construct(rc(v), Aright)

Auxiliary tree

Range tree in R2

Binary search tree on x-xoordinates
Each node has a new BST for y-coords of descendant leaves

v

T (v)

BST on x

BST on descendants of v
sorted for y-coord.

Construction:
• Presort on y-coord to array A

Construct(v,A):

• Construct T (v) using A
• Find median x, split A to Aleft, Aright

• Construct(lc(v), Aleft), Construct(rc(v), Aright)

O(n log n)

O(n)
O(n)

Auxiliary tree

Range tree in R2

Binary search tree on x-xoordinates
Each node has a new BST for y-coords of descendant leaves

v

T (v)

BST on x

BST on descendants of v
sorted for y-coord.

Construction:
• Presort on y-coord to array A

Construct(v,A):

• Construct T (v) using A
• Find median x, split A to Aleft, Aright

• Construct(lc(v), Aleft), Construct(rc(v), Aright)

O(n log n)

O(n)
O(n)

O(n log n)

Auxiliary tree

Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(log n) reported subtree roots

π(x) π(x′)

Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(log n) reported subtree roots

Do 1-dim query on each of the
O(log n) selected y-treesπ(x) π(x′)

Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(log n) reported subtree roots

Do 1-dim query on each of the
O(log n) selected y-trees

∑
v O(log n+ kv) = O(log2 n+ k)

Total query time:

π(x) π(x′)

Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(log n) reported subtree roots

Do 1-dim query on each of the
O(log n) selected y-trees

∑
v O(log n+ kv) = O(log2 n+ k)

Total query time:

In Rd, it gives O(logd n+ k)

π(x) π(x′)

Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(log n) reported subtree roots

Do 1-dim query on each of the
O(log n) selected y-trees

∑
v O(log n+ kv) = O(log2 n+ k)

Total query time:

In Rd, it gives O(logd n+ k) But! space is up to Θ(n logd−1 n)

π(x) π(x′)

Each level stores chunks of
a (d− 1)-dim range tree

Handling degeneracies

Composite numbers: a, b ∈ R→ (a|b)
Sorted lexicographically.

Handling degeneracies

Composite numbers: a, b ∈ R→ (a|b)
Sorted lexicographically.

repalce p = (x, y) with p∗ = ((x|y), (y|x)) for each p ∈ P

⇒ all first and second coords are distinct

Handling degeneracies

Composite numbers: a, b ∈ R→ (a|b)
Sorted lexicographically.

repalce p = (x, y) with p∗ = ((x|y), (y|x)) for each p ∈ P

⇒ all first and second coords are distinct

Given query Q = [x, x′]× [y, y′], replace by

Q∗ =
[
(x| −∞), (x′|∞)

]
×
[
(y| −∞), (y′|∞)

]

Handling degeneracies

Composite numbers: a, b ∈ R→ (a|b)
Sorted lexicographically.

repalce p = (x, y) with p∗ = ((x|y), (y|x)) for each p ∈ P

⇒ all first and second coords are distinct

Given query Q = [x, x′]× [y, y′], replace by

Q∗ =
[
(x| −∞), (x′|∞)

]
×
[
(y| −∞), (y′|∞)

]
Observation.

p ∈ Q⇔ p∗ ∈ Q∗

(Special) Fractional cascading

Lueker 1978, Willard 1978
Chazelle and Guibas 1986

Speeding up binary searches on subsets

2 3 5 8 13 21 34 55 89 92 95 99

8 13 34 552 92 95

Array and subarray, query [4, 45]
⇒ two binary searhces?

A

B

Speeding up binary searches on subsets

2 3 5 8 13 21 34 55 89 92 95 99

8 13 34 552 92 95

Array and subarray, query [4, 45]
⇒ two binary searhces?

Add pointer from A[x] to the smallest in B larger than A[x]

A

B

Speeding up binary searches on subsets

2 3 5 8 13 21 34 55 89 92 95 99

8 13 34 552 92 95

Array and subarray, query [4, 45]
⇒ two binary searhces?

Add pointer from A[x] to the smallest in B larger than A[x]

NULL

A

B

Speeding up binary searches on subsets

2 3 5 8 13 21 34 55 89 92 95 99

8 13 34 552 92 95

Array and subarray, query [4, 45]
⇒ two binary searhces?

Add pointer from A[x] to the smallest in B larger than A[x]

NULL

A

B

Binary search A, use pointer of smallest reported

Layered range trees in R2

Idea:
Replace 2nd level BSTs for y-coords w/ sorted arrays Av

+ 2 pointers per entry

At node v, array Av has:

Layered range trees in R2

Idea:
Replace 2nd level BSTs for y-coords w/ sorted arrays Av

+ 2 pointers per entry

At node v, array Av has:

• Points in decendant leafs of v sorted by y-coords

Layered range trees in R2

Idea:
Replace 2nd level BSTs for y-coords w/ sorted arrays Av

+ 2 pointers per entry

At node v, array Av has:

• Points in decendant leafs of v sorted by y-coords

• Each entry (a, b) ∈ Av has:

– Pointer to entry in Alc(v) with smallest y-coord ≥ b
– Pointer to entry in Arc(v) with smallest y-coord ≥ b

Layered range trees in R2

Idea:
Replace 2nd level BSTs for y-coords w/ sorted arrays Av

+ 2 pointers per entry

At node v, array Av has:

• Points in decendant leafs of v sorted by y-coords

• Each entry (a, b) ∈ Av has:

– Pointer to entry in Alc(v) with smallest y-coord ≥ b
– Pointer to entry in Arc(v) with smallest y-coord ≥ b

2 3 5 8 13 21 34 55 89 92 95 99

8 13 34 552 92

Av

5 21 89 953 99

y-coords
of entries

Alc(v) Arc(v)

Layered range trees in R2

Idea:
Replace 2nd level BSTs for y-coords w/ sorted arrays Av

+ 2 pointers per entry

At node v, array Av has:

• Points in decendant leafs of v sorted by y-coords

• Each entry (a, b) ∈ Av has:

– Pointer to entry in Alc(v) with smallest y-coord ≥ b
– Pointer to entry in Arc(v) with smallest y-coord ≥ b

2 3 5 8 13 21 34 55 89 92 95 99

8 13 34 552 92

Av

5 21 89 953 99

y-coords
of entries

Alc(v) Arc(v)

NULL

Layered range trees in R2

Idea:
Replace 2nd level BSTs for y-coords w/ sorted arrays Av

+ 2 pointers per entry

At node v, array Av has:

• Points in decendant leafs of v sorted by y-coords

• Each entry (a, b) ∈ Av has:

– Pointer to entry in Alc(v) with smallest y-coord ≥ b
– Pointer to entry in Arc(v) with smallest y-coord ≥ b

2 3 5 8 13 21 34 55 89 92 95 99

8 13 34 552 92

Av

5 21 89 953 99

y-coords
of entries

Alc(v) Arc(v)

Layered range trees in R2

Idea:
Replace 2nd level BSTs for y-coords w/ sorted arrays Av

+ 2 pointers per entry

At node v, array Av has:

• Points in decendant leafs of v sorted by y-coords

• Each entry (a, b) ∈ Av has:

– Pointer to entry in Alc(v) with smallest y-coord ≥ b
– Pointer to entry in Arc(v) with smallest y-coord ≥ b

2 3 5 8 13 21 34 55 89 92 95 99

8 13 34 552 92

Av

5 21 89 953 99

y-coords
of entries

Alc(v) Arc(v)

NULL

Querying a layered range tree

Query: [x, x′]× [y, y′]

Search top (x-)tree for x and x′.
At v = Split(x, x′), binary search for y in Av → Av.find(y)

Querying a layered range tree

Query: [x, x′]× [y, y′]

Search top (x-)tree for x and x′.
At v = Split(x, x′), binary search for y in Av → Av.find(y)

Stepping to lc(v), follow left pointer from Av.find(y)

Querying a layered range tree

Query: [x, x′]× [y, y′]

Search top (x-)tree for x and x′.
At v = Split(x, x′), binary search for y in Av → Av.find(y)

Stepping to lc(v), follow left pointer from Av.find(y)

⇒ Maintaining position in Alc(v) at each step takes O(1) time!

If w is root of a selected subtree:
Reporting from T (w) can be done from Aw

in O(1 + kw) time.

Querying a layered range tree

Query: [x, x′]× [y, y′]

Search top (x-)tree for x and x′.
At v = Split(x, x′), binary search for y in Av → Av.find(y)

Stepping to lc(v), follow left pointer from Av.find(y)

⇒ Maintaining position in Alc(v) at each step takes O(1) time!

If w is root of a selected subtree:
Reporting from T (w) can be done from Aw

in O(1 + kw) time.

Total query time: O(log n+ k)

Priority search trees

McCreight 1985

Priority search tree

Priority queue (insert, pop max)
+

Binary search tree

Priority search tree

Priority queue (insert, pop max)
+

Binary search tree

Construction:

• root r stores point with max y-coord
medx(root) := median x-coordinate of P \ {r}

Priority search tree

Priority queue (insert, pop max)
+

Binary search tree

Construction:

• root r stores point with max y-coord
medx(root) := median x-coordinate of P \ {r}

• left subtree: points p ∈ P \ {r} with px ≤ medx(r)

Priority search tree

Priority queue (insert, pop max)
+

Binary search tree

Construction:

• root r stores point with max y-coord
medx(root) := median x-coordinate of P \ {r}

• left subtree: points p ∈ P \ {r} with px ≤ medx(r)

• right subtree: points p ∈ P \ {r} with px > medx(r)

Priority search tree

Priority queue (insert, pop max)
+

Binary search tree

Construction:

• root r stores point with max y-coord
medx(root) := median x-coordinate of P \ {r}

• left subtree: points p ∈ P \ {r} with px ≤ medx(r)

• right subtree: points p ∈ P \ {r} with px > medx(r)

Priority search tree

Priority queue (insert, pop max)
+

Binary search tree

Construction:

• root r stores point with max y-coord
medx(root) := median x-coordinate of P \ {r}

• left subtree: points p ∈ P \ {r} with px ≤ medx(r)

• right subtree: points p ∈ P \ {r} with px > medx(r)

Priority search tree

Priority queue (insert, pop max)
+

Binary search tree

Construction:

• root r stores point with max y-coord
medx(root) := median x-coordinate of P \ {r}

• left subtree: points p ∈ P \ {r} with px ≤ medx(r)

• right subtree: points p ∈ P \ {r} with px > medx(r)

Space: O(n)

Construction: O(n log n)

Answering 3-sided queries

Wlog queries of the type [x, x′]× [y,∞]

(x, y) (x′, y)

Answering 3-sided queries

Wlog queries of the type [x, x′]× [y,∞]

(x, y) (x′, y)

To answer the query from root = v:

π(x) π(x′)

Report subtree of v:
O(1 + kv)

Answering 3-sided queries

Wlog queries of the type [x, x′]× [y,∞]

(x, y) (x′, y)

To answer the query from root = v:

π(x) π(x′)

Report subtree of v:
O(1 + kv)

+ check each node stored
on the search paths!

Answering 3-sided queries

Wlog queries of the type [x, x′]× [y,∞]

(x, y) (x′, y)

To answer the query from root = v:

Query time: O(log n+ k)

π(x) π(x′)

Report subtree of v:
O(1 + kv)

+ check each node stored
on the search paths!

Current best data structures

Assume coordinates fit in machine words on w bits.
Multiply all by logw ' log log n.

Static Dynamic

s:O(n)
q:O(logε n+ k logε n)

or
s:O(n log log n),

q:O(log log n+ k log log n)
or

s:O(n logε n),
q:O(log log n+ k)

s:O(n log2/3+o(1) n)
q:O(logn

log logn + k)

u:O(log2/3+o(1) n)

Chan–Larsen–Pătras,cu Chan–Tsakalidis

amortized

Range searching axis-parallel intervals

→ intervals ending in Q:
range searching on endpoints

→ intervals ”crossing” Q?

Range searching axis-parallel intervals

→ intervals ending in Q:
range searching on endpoints

→ intervals ”crossing” Q?

if horizontal, they cross left
boundary of Q

Range searching axis-parallel intervals

→ intervals ending in Q:
range searching on endpoints

→ intervals ”crossing” Q?

if horizontal, they cross left
boundary of Q

Given a vertical query segment, report all horizontal segments
it is crossing.

Range searching axis-parallel intervals

→ intervals ending in Q:
range searching on endpoints

→ intervals ”crossing” Q?

if horizontal, they cross left
boundary of Q

Given a vertical query segment, report all horizontal segments
it is crossing.

line

Range searching axis-parallel intervals

→ intervals ending in Q:
range searching on endpoints

→ intervals ”crossing” Q?

if horizontal, they cross left
boundary of Q

Given a vertical query segment, report all horizontal segments
it is crossing.

line

⇔ in R1, which intervals contain query point q?

Interval trees (Edelsbrunner 1980 McCreight 1980)

right childleft child

stored in root

`

root has intervals intersected by `
sorted for left endpoints in a list
(same for right)

median x-coord
of endpoints

Interval trees (Edelsbrunner 1980 McCreight 1980)

right childleft child

stored in root

`

root has intervals intersected by `
sorted for left endpoints in a list
(same for right)

median x-coord
of endpoints

Preprocess: O(n log n)

Query (R1): O(log n+ k)

Space: O(n)

Interval trees (Edelsbrunner 1980 McCreight 1980)

right childleft child

stored in root

`

root has intervals intersected by `
sorted for left endpoints in a list
(same for right)

median x-coord
of endpoints

Preprocess: O(n log n)

Query (R1): O(log n+ k)

If segment query:
use priority search tree instead of list

Q

Space: O(n)

