Binary Search Trees

Key set \(K = \{3, 7, 12, 18, 25, 29, 37, 43, 51, 55, 61, 71\} \)

Size \(n = |K| \)
Key set $K = \{3, 7, 12, 18, 25, 29, 37, 43, 51, 55, 61, 71\}$

Size $n = |K|$

T Binary Search Tree for K

v node of T: v.LC, v.RC, v.PAR, v.key

T_v subtree rooted at v

K_v keys in T_v
Binary Search Trees

Key set $K = \{3, 7, 12, 18, 25, 29, 37, 43, 51, 55, 61, 71\}$

Size $n = |K|$

T Binary Search Tree for K

v node of T: v.LC, v.RC, v.PAR, v.key

T_v subtree rooted at v

K_v keys in T_v
Key set $K = \{3, 7, 12, 18, 25, 29, 37, 43, 51, 55, 61, 71\}$

Size $n = |K|$

T Binary Search Tree for K

v node of T: v.LC, v.RC, v.PAR, v.key

T_v subtree rooted at v

K_v keys in T_v

Additional leaf for each primitive interval

\overline{T} Extended Binary Search Tree for K
Binary Search Trees

Key set $K = \{3, 7, 12, 18, 25, 29, 37, 43, 51, 55, 61, 71\}$

Size $n = |K|$

T Binary Search Tree for K

v node of T: v.LC, v.RC, v.PAR, v.key

T_v subtree rooted at v

K_v keys in T_v

Additional leaf for each primitive interval

\overline{T} Extended Binary Search Tree for K

I_v is the union of the primitive intervals associated with the leaves of $\overline{T_v}$ together with K_v
Binary Search Trees

Key set $K = \{3, 7, 12, 18, 25, 29, 37, 43, 51, 55, 61, 71\}$

Size $n = |K|$

T Binary Search Tree for K

v node of T: v.LC, v.RC, v.PAR, v.key

T_v subtree rooted at v

K_v keys in T_v

Additional leaf for each primitive interval

\overline{T} Extended Binary Search Tree for K

I_v is the union of the primitive intervals associated with the leaves of \overline{T} together with K_v

key $x \in \mathbb{R}$:

$\text{path}(x) = \{v \in \overline{T} | x \in I_v\}$
Binary Search Trees

Key set $K = \{3, 7, 12, 18, 25, 29, 37, 43, 51, 55, 61, 71\}$

Size $n = |K|$

T Binary Search Tree for K

v node of T: v.LC, v.RC, v.PAR, v.key

T_v subtree rooted at v

K_v keys in T_v

Additional leaf for each primitive interval

\overline{T} Extended Binary Search Tree for K

I_v is the union of the primitive intervals associated with the leaves of $\overline{T_v}$ together with K_v

key $x \in \mathbb{R}$:

$\text{path}(x) = \{v \in \overline{T} | x \in I_v\}$

interval $[\alpha, \beta]$ with $\alpha, \beta \in K$:

$\text{span}[\alpha, \beta] = \{v \in \overline{T} | I_v \subseteq [\alpha, \beta] \text{ but } I_v.PAR \not\subseteq [\alpha, \beta]\}$
Binary Search Trees

Size \(n = |K| \)

\(v \) node of \(T \):
- \(T_v \) subtree rooted at \(v \)
- \(K_v \) keys in \(T_v \)
- \(I_v \) is the union of the primitive intervals associated with the leaves of \(\overline{T_v} \) together with \(K_v \)

Key \(x \in \mathbb{R} \):
- \(\text{path}(x) = \{ v \in T | x \in I_v \} \)

Interval \([\alpha, \beta] \) with \(\alpha, \beta \in K \):
- \(\text{span}[\alpha, \beta] = \{ v \in \overline{T} | I_v \subseteq [\alpha, \beta] \text{ but } I_v.PAR \not\subseteq [\alpha, \beta] \} \)

Lemma: \(T \) binary tree for \(n \) keys with height \(O(\log n) \).
- for any key \(x \) we have \(|\text{path}(x)| = O(\log n) \)
- for any interval \([\alpha, \beta]\) we have \(|\text{span}[\alpha, \beta]| = O(\log n) \)
- If \(\alpha, \beta \in K \) then \([\alpha, \beta] = \bigcup \{ I_v | v \in \text{span}[\alpha, \beta] \} \).
- \(\text{path}(x) \) and \(\text{span}[\alpha, \beta] \) can be found in \(O(\log n) \) time.
Size $n = |K|$

v node of T:
- T_v subtree rooted at v
- K_v keys in T_v
- I_v is the union of the primitive intervals associated with the leaves of T_v together with K_v

A set of objects, each $a \in A$ has a value a, key associated with it.

A range tree for A is a balanced binary search tree T whose key set K contains $\{a.key | a \in A\}$ and that stores for each node v of T the set $A_v = \{a \in A | a.key \in K_v\}$.
Range Trees

Size \(n = |K| \)

\(v \) node of \(T \):
- \(T_v \) subtree rooted at \(v \)
- \(K_v \) keys in \(T_v \)
- \(I_v \) is the union of the primitive intervals associated with the leaves of \(\overline{T_v} \) together with \(K_v \)

A set of objects, each \(a \in A \) has a value \(a.key \) associated with it.

A range tree for \(A \) is a balanced binary search tree \(T \) whose key set \(K \) contains \(\{a.key | a \in A\} \) and that stores for each node \(v \) of \(T \) the set \(A_v = \{a \in A | a.key \in K_v\} \).

Lemma: Let \(A \) be a set of objects with keys in \(K \), and \(n = |K| \). Let \(T \) be a range tree for \(A \) with key set \(K \)

- \(\sum_{v \in T} |A_v| = O(|A| \log n) \)
- Given interval \([\alpha, \beta]\) the set \(\{a \in A | a.key \in [\alpha, \beta]\} \) can be found as a disjoint union of \(O(\log n) \) blocks in \(O(\log n) \) time.
- If \(|A| = O(n) \) and the \(A_v \)'s are stored in data structures that admit updates in time \(O(\log^k n) \) then the range tree can be updated in time \(O(\log^{k+1} n) \).
Size $n = |K|$

v node of T:
- T_v subtree rooted at v
- K_v keys in T_v
- I_v is the union of the primitive intervals associated with the leaves of $\overline{T_v}$ together with K_v

A set of objects, each $a \in A$ has a segment $a.seg$ associated with it.

A segment tree for A is a balanced binary search tree T whose key set K contains all endpoints of segments $\{a.seg|a \in A\}$ and that stores for each node v of T the set $S_v = \{a \in A|v \in \text{span}(a.seg)\}$.
Size $n = |K|$

v node of T:

- T_v subtree rooted at v
- K_v keys in T_v
- I_v is the union of the primitive intervals associated with the leaves of T_v together with K_v

A set of objects, each $a \in A$ has a segment $a\cdot\text{seg}$ associated with it.

A segment tree for A is a balanced binary search tree T whose key set K contains all endpoints of segments $\{a\cdot\text{seg}| a \in A\}$ and that stores for each node v of T the set $S_v = \{a \in A| v \in \text{span}(a\cdot\text{seg})\}$.

Lemma: Let A be a set of objects each associated with a segment with endpoints in K. Let $n = |K|$ and let T be a segment tree for A with key set K

- $\sum_{v \in T} |S_v| = O(|A| \log n)$
- Given key $x \in \mathbb{R}$ the set $\{a \in A| x \in a\cdot\text{seg}\}$ can be found as a disjoint union of $O(\log n)$ blocks in $O(\log n)$ time.
- If $|A| = O(n)$ and the S_v’s are stored in data structures that admit updates in time $O(\log^k n)$ then the segment tree can be updated in time $O(\log^{k+1} n)$.
Hierarchies of Range and Segment Trees

Example 1:

A set of n objects each having an x-key and y-key. Build a data structure for A so that for any axis-parallel rectangle $B = x_{seg} \times y_{seg}$ you can tell quickly for which objects in A you have $(a.xkey, a.ykey) \in B$.
Example 2:

A set of \(n \) objects each having an \(x_{\text{seg}} \) and \(y_{\text{seg}} \), defining the axis-parallel rectangle \(a.\text{Box} = x_{\text{seg}} \times y_{\text{seg}} \).

Build a data structure for \(A \) so that for any query point \(q \in \mathbb{R}^2 \) you can determine quickly for which objects in \(A \) you have \(q \in a.\text{Box} \).
Hierarchies of Range and Segment Trees

Example 3:

A a set of \(n \) horizontal segments \(a \cdot xseg \).

Build a data structure for \(A \) so that for any vertical query segment \(s \) you can determine quickly the segments in \(A \) that intersect \(q \).
Hierarchies of Range and Segment Trees

Example 3:

A a set of \(n \) horizontal segments \(a \cdot xseg \).
Build a data structure for \(A \) so that for any vertical query segment \(s \) you can determine quickly the segments in \(A \) that intersect \(q \).
Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.
Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

Sweep horizontal line $L_t : y = t$ from bottom to top across the plane.
Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

Sweep horizontal line $L_t : y = t$ from bottom to top across the plane and maintain an **Invariant** so that in the end the veracity of the invariant implies correctness of the computation.
Sweep Algorithms

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

INV Invariant

SLS (Sweepline structure): Maintains interaction between L_t and the geometry

EQ (Event queue): Priority Queue for predicting the next “event”, i.e. qualitative change during the sweep
Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

INV Invariant Geometric-Semantic-Part: Maintain A_t the area of the intersection of the boxes that is in L_t^-

SLS (Sweepline structure): Maintains interaction between L_t and the geometry

EQ (Event queue): Priority Queue for predicting the next “event”, i.e. qualitative change during the sweep
Sweep Algorithms

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

SLS (Sweepline structure): Maintains interaction between L_t and the geometry
Let B_t the boxes in B that intersect L_t. SLS stores the interval set $\{b \cap L_t | b \in B_t\}$ in a structure that allows updates and queries for the length of the union of all intervals in the structure.
Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

EQ (Event Queue): Events happen when L_t meets a lower or upper edge of a box in B. There are two types: lower and upper. EQ maintains all these events in a priority queue.
Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

Invariant semantic-geometric:
Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.
Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.
Sweep Algorithms
Sweep Algorithms

Example: Given a set S of n non-horizontal segments in the plane, report all their pairwise intersections.
Example: Given a set S of n non-horizontal segments in the plane, report all their pairwise intersections.

Invariant semantic-geometric:
Sweep Algorithms

Example: Given a set S of n non-horizontal segments in the plane, report all their pairwise intersections.

Invariant SLS:
Sweep Algorithms

Example: Given a set S of n non-horizontal segments in the plane, report all their pairwise intersections.

$$L_t$$

Invariant EQ:
Sweep Algorithms

Example: Given a set S of n non-horizontal segments in the plane, report all their pairwise intersections.
Sweep Algorithms

Example: Given a set B of n non-horizontal, non-intersecting blue segments in the plane and given a set R of n non-horizontal, non-intersecting red segments, report the number of red-blue intersections.
Sweep Algorithms

Example: Given a set \(B \) of \(n \) non-horizontal, non-intersecting blue segments in the plane and given a set \(R \) of \(n \) non-horizontal, non-intersecting red segments, report the number of red-blue intersections.
Example: Given a set B of n non-horizontal, non-intersecting blue segments in the plane and given a set R of n non-horizontal, non-intersecting red segments, report the number of red-blue intersections.