
Voronoi Diagrams and Delaunay Triangulations

Sándor Kisfaludi-Bak

Computaional Geometry
Summer semester 2020

Overview

• Voronoi diagrams – definition and properties

Overview

• Voronoi diagrams – definition and properties

• Fortune’s algorithm (1987)

Overview

• Voronoi diagrams – definition and properties

• Fortune’s algorithm (1987)

• Delaunay graphs and triangulations

Overview

• Voronoi diagrams – definition and properties

• Delaunay triangulation via divide and conquer
(Guibas and Stolfi, 1985)

• Fortune’s algorithm (1987)

• Delaunay graphs and triangulations

Overview

• Voronoi diagrams – definition and properties

• Delaunay triangulation via divide and conquer
(Guibas and Stolfi, 1985)

• Fortune’s algorithm (1987)

• Delaunay graphs and triangulations

• Lifting to a paraboloid; computation via convex hull
Next lecture!

Motivation – nearest neighbor

Given: P ⊂ R2.

Motivation – nearest neighbor

Given: P ⊂ R2.

What is the nearest point in P to a given query point q ∈ R2?

q

Motivation – nearest neighbor

Given: P ⊂ R2.

What is the nearest point in P to a given query point q ∈ R2?

q

• Accident at q. Which hospital in P should send helicopter?

• Where in P should I get my ice cream if I’m at q?

Voronoi diagram

The Voronoi diagram of P ⊂ Rd is the partition of Rd

according to the closest point of P .

Voronoi diagram

The Voronoi diagram of P ⊂ Rd is the partition of Rd

according to the closest point of P .

If |P | = n, then partition into n cells
s.t. cell of p ∈ P consist of q ∈ Rd where

dist(q, p) < dist(q, p′) for all p′ ∈ P \ {p}

Voronoi diagram

The Voronoi diagram of P ⊂ Rd is the partition of Rd

according to the closest point of P .

If |P | = n, then partition into n cells
s.t. cell of p ∈ P consist of q ∈ Rd where

dist(q, p) < dist(q, p′) for all p′ ∈ P \ {p}

Voronoi diagram

The Voronoi diagram of P ⊂ Rd is the partition of Rd

according to the closest point of P .

If |P | = n, then partition into n cells
s.t. cell of p ∈ P consist of q ∈ Rd where

dist(q, p) < dist(q, p′) for all p′ ∈ P \ {p}

perpendicular bisector

Voronoi diagram

The Voronoi diagram of P ⊂ Rd is the partition of Rd

according to the closest point of P .

If |P | = n, then partition into n cells
s.t. cell of p ∈ P consist of q ∈ Rd where

dist(q, p) < dist(q, p′) for all p′ ∈ P \ {p}

perpendicular bisector

Voronoi diagram

The Voronoi diagram of P ⊂ Rd is the partition of Rd

according to the closest point of P .

If |P | = n, then partition into n cells
s.t. cell of p ∈ P consist of q ∈ Rd where

dist(q, p) < dist(q, p′) for all p′ ∈ P \ {p}

perpendicular bisector bisectors, center of
circumcircle

Voronoi diagram

The Voronoi diagram of P ⊂ Rd is the partition of Rd

according to the closest point of P .

If |P | = n, then partition into n cells
s.t. cell of p ∈ P consist of q ∈ Rd where

dist(q, p) < dist(q, p′) for all p′ ∈ P \ {p}

perpendicular bisector bisectors, center of
circumcircle

Historical notes

Voronoi diagram = Dirichlet tessellation

Goes back to Descartes

Historical notes

Voronoi diagram = Dirichlet tessellation

Goes back to Descartes

18501907

1644

Complexity and properties in R2

If P has 3 non-collinear pts
⇒ Vor(P) is connected

Each Cell(p) is intersection of half-planes.
Each cell is convex (bounded or unbounded) polygon.

Vor(P): collection of segments and rays on cell boundaries

Complexity and properties in R2

If P has 3 non-collinear pts
⇒ Vor(P) is connected

Each Cell(p) is intersection of half-planes.
Each cell is convex (bounded or unbounded) polygon.

Vor(P): collection of segments and rays on cell boundaries

Lemma Vor(P) has total complexity O(n).

Complexity and properties in R2

If P has 3 non-collinear pts
⇒ Vor(P) is connected

Each Cell(p) is intersection of half-planes.
Each cell is convex (bounded or unbounded) polygon.

Vor(P): collection of segments and rays on cell boundaries

Lemma Vor(P) has total complexity O(n).

Proof. There are n cells.
Euler’s formula
⇒ O(n) edges, O(n) vertices.

v∞

Circumcircles in Voronoi diagrams

Lemma
(i) q is a vertex of Vor(P) iff C(q) has at least 3 points of P
(ii) q is on edge btw. cell(p) and cell(p′) iff C(q) ∩ P = {p, p′}

C(q): largest circle around q whose interior has no pts from P

Circumcircles in Voronoi diagrams

Lemma
(i) q is a vertex of Vor(P) iff C(q) has at least 3 points of P
(ii) q is on edge btw. cell(p) and cell(p′) iff C(q) ∩ P = {p, p′}

C(q): largest circle around q whose interior has no pts from P

Fortune’s algorithm (1987)

Sweeping with a wavefront

Top-down sweep

` sweep line

Sweeping with a wavefront

Top-down sweep

` sweep line

p

p′

q

Sweeping with a wavefront

Top-down sweep

` sweep line

p

p′

If q is on undiscovered edge btw. Cell(p) and Cell(p′)

dist(p, q) = dist(p′, q)⇒ dist(p, q) ≥ dist(q, `)

q is below the parabola with focus p and axis `

q

Sweeping with a wavefront

Top-down sweep

` sweep line

p

p′

If q is on undiscovered edge btw. Cell(p) and Cell(p′)

dist(p, q) = dist(p′, q)⇒ dist(p, q) ≥ dist(q, `)

q is below the parabola with focus p and axis `

q

Sweeping with a wavefront

Top-down sweep

` sweep line

p

p′

If q is on undiscovered edge btw. Cell(p) and Cell(p′)

dist(p, q) = dist(p′, q)⇒ dist(p, q) ≥ dist(q, `)

q is below the parabola with focus p and axis `

Vor(P) above waverfront is correct

q

wavefront
lower envelope of parabolas

Sweeping

• Invariant
Part of diagram above wavefront is correctly computed

Sweeping

• Invariant
Part of diagram above wavefront is correctly computed

• Sweep line structure
Intersection of diagram with `

Sweeping

• Invariant
Part of diagram above wavefront is correctly computed

• Sweep line structure
Intersection of diagram with `
Wavefront (vertices and parabolas in order)

Sweeping

• Invariant
Part of diagram above wavefront is correctly computed

• Sweep line structure
Intersection of diagram with `

• Event queue:
new parabola on wavefront
remove arc from wavefront

Wavefront (vertices and parabolas in order)

Sweeping

• Invariant
Part of diagram above wavefront is correctly computed

• Sweep line structure
Intersection of diagram with `

• Event queue:
new parabola on wavefront
remove arc from wavefront

Wavefront (vertices and parabolas in order)

⇔ ` passes through p ∈ P

Sweeping

• Invariant
Part of diagram above wavefront is correctly computed

• Sweep line structure
Intersection of diagram with `

• Event queue:
new parabola on wavefront
remove arc from wavefront

Wavefront (vertices and parabolas in order)

⇔ ` passes through p ∈ P
⇔ ` touches circle pp′p′′

p

p′

p′′ p

p′

p′′

Wavefront complexity and queue maintenance

Observation. The wavefront consists of at most 2n− 1
parabolic arcs.

Proof : n new arcs added, each splits an existing arc into at
most 2 arcs

Wavefront complexity and queue maintenance

Observation. The wavefront consists of at most 2n− 1
parabolic arcs.

Proof : n new arcs added, each splits an existing arc into at
most 2 arcs

Event queue: contains unswept points and some circles pp′p′′

currently intersected by `

iff parabolas of p, p′, p′′ are consecutive on wavefront

Wavefront complexity and queue maintenance

Observation. The wavefront consists of at most 2n− 1
parabolic arcs.

Proof : n new arcs added, each splits an existing arc into at
most 2 arcs

Event queue: contains unswept points and some circles pp′p′′

currently intersected by `

iff parabolas of p, p′, p′′ are consecutive on wavefront

updated with each change to wavefront.

Fortune’s sweep more precisely

• Invariant
Part of diagram above wavefront is correctly computed
EQ contains:
- unswept points
- parabola disappearance events for consecutive arc triplets
of wavefront with intersecting circumcircle

Fortune’s sweep more precisely

• Invariant
Part of diagram above wavefront is correctly computed
EQ contains:
- unswept points
- parabola disappearance events for consecutive arc triplets
of wavefront with intersecting circumcircle

• Sweep line structure
Wavefront as self-balancing BST on wavefront vertices,
represented by focus pairs (p, p′), ordered left to right

Fortune’s sweep more precisely

• Invariant
Part of diagram above wavefront is correctly computed
EQ contains:
- unswept points
- parabola disappearance events for consecutive arc triplets
of wavefront with intersecting circumcircle

• Sweep line structure
Wavefront as self-balancing BST on wavefront vertices,
represented by focus pairs (p, p′), ordered left to right

• Event queue:
new parabola on wavefront (new point swept)
remove existing arc from wavefront
Stored as priority queue

Fortune’s sweep more precisely

• Invariant
Part of diagram above wavefront is correctly computed
EQ contains:
- unswept points
- parabola disappearance events for consecutive arc triplets
of wavefront with intersecting circumcircle

• Sweep line structure
Wavefront as self-balancing BST on wavefront vertices,
represented by focus pairs (p, p′), ordered left to right

• Event queue:
new parabola on wavefront (new point swept)
remove existing arc from wavefront
Stored as priority queue

O(n) events with O(log n) time per event ⇒ O(n log n)

Fortune’s sweep conclusion

Theorem The Voronoi diagram of n points in R2 can be
computed in O(n log n) time and O(n) space.

Fortune’s sweep conclusion

Theorem The Voronoi diagram of n points in R2 can be
computed in O(n log n) time and O(n) space.

⇒ Nearest Neighbor solved in O(n) space and O(log n)
query time with a point location data strucutre on the Voronoi
diagram.

Fortune’s sweep conclusion

Theorem The Voronoi diagram of n points in R2 can be
computed in O(n log n) time and O(n) space.

⇒ Nearest Neighbor solved in O(n) space and O(log n)
query time with a point location data strucutre on the Voronoi
diagram.

q

Fortune’s sweep conclusion

Theorem The Voronoi diagram of n points in R2 can be
computed in O(n log n) time and O(n) space.

⇒ Nearest Neighbor solved in O(n) space and O(log n)
query time with a point location data strucutre on the Voronoi
diagram.

q

General Voronoi diagrams

Voronoi diagram in different metrics:
• Manhattan (L1), Lp

• Hyperbolic
• Edge weighted planar graph
• abstract (for some definition of ”bisector”)

General Voronoi diagrams

Voronoi diagram in different metrics:
• Manhattan (L1), Lp

• Hyperbolic
• Edge weighted planar graph
• abstract (for some definition of ”bisector”)

Other generalizations:
• of segments
• additively/multiplicatively weighted
• power diagram
• Farthest point
• Order-k

Delaunay triangulations

Triangualtions, complexity

Triangulation of P :
subdivision of conv(P) into triangles (simplices) whose vertex
set is P

Triangualtions, complexity

Triangulation of P :
subdivision of conv(P) into triangles (simplices) whose vertex
set is P

P ⊂ R2 ⇒ triangulation has total complexity O(n)

Triangualtions, complexity

Triangulation of P :
subdivision of conv(P) into triangles (simplices) whose vertex
set is P

P ⊂ R2 ⇒ triangulation has total complexity O(n)

”Good” triangulation?

• Terrain reconstruction: Avoid long skinny triangles

Triangualtions, complexity

Triangulation of P :
subdivision of conv(P) into triangles (simplices) whose vertex
set is P

P ⊂ R2 ⇒ triangulation has total complexity O(n)

”Good” triangulation?

• Terrain reconstruction: Avoid long skinny triangles

Triangualtions, complexity

Triangulation of P :
subdivision of conv(P) into triangles (simplices) whose vertex
set is P

P ⊂ R2 ⇒ triangulation has total complexity O(n)

”Good” triangulation?

• Terrain reconstruction: Avoid long skinny triangles

• Distance along triangualtion edges approximates Euclidean
distance

Delaunay triangulation definition

Definition A Delaunay triangulation of P is a triangulation
where the circumcircle of any triangle has no points of P in its
interior.

Delaunay triangulation definition

Definition A Delaunay triangulation of P is a triangulation
where the circumcircle of any triangle has no points of P in its
interior.

e

bad triangles

α

β

α+ β > π

Delaunay triangulation definition

Definition A Delaunay triangulation of P is a triangulation
where the circumcircle of any triangle has no points of P in its
interior.

e

bad triangles

α

β

α+ β > π

e′

good triangles

flip α′
β′

α′ + β′ ≤ π

Delaunay triangulation definition

Definition A Delaunay triangulation of P is a triangulation
where the circumcircle of any triangle has no points of P in its
interior.

e

bad triangles

α

β

α+ β > π

e′

good triangles

flip α′
β′

α′ + β′ ≤ π
DT is a triangulation whose angles (when ordered in increasing
sequence) are lexicographically maximized.

Example

Example

The dual of Voronoi

Voronoi vertex v at
circumcenter of pp′p′′

circumcircle of pp′p′′ has no point of P in its interior

p
p′

p′′

v

The dual of Voronoi

Voronoi vertex v at
circumcenter of pp′p′′

circumcircle of pp′p′′ has no point of P in its interior

pp′p′′ is a triangle in the
Delaunay triangulation

p
p′

p′′

v

Example: Voronoi and Delaunay

Voronoi edges

dual (Delaunay) edges

they define the Delaunay Graph

Example: Voronoi and Delaunay

Voronoi edges

dual (Delaunay) edges

≥ 4 points on same circle ⇒
Vor. vertex of degree ≥ 4

Face F of size ≥ 4 in Delaunay graph

(any triangulation of F has good triangles)

they define the Delaunay Graph

Example: Voronoi and Delaunay

Voronoi edges

dual (Delaunay) edges

≥ 4 points on same circle ⇒
Vor. vertex of degree ≥ 4

Face F of size ≥ 4 in Delaunay graph

(any triangulation of F has good triangles)

1) DG is plane graph
2) DT is unique and DT=DG
iff no 4 points on one circle

they define the Delaunay Graph

Incremental Delaunay with flips

e

bad triangles

α

β

α+ β > π

e′

good triangles

flip α′
β′

α′ + β′ ≤ π

T is a Delaunay-tr.
⇔

No bad triangles
⇔

No bad edges to flip

good
flip

Incremental Delaunay with flips

e

bad triangles

α

β

α+ β > π

e′

good triangles

flip α′
β′

α′ + β′ ≤ π

T is a Delaunay-tr.
⇔

No bad triangles
⇔

No bad edges to flip

good
flip

Simple incremental algorithm:

- add points one at a time in random order
- maintain DT (i) = DT (p1 . . . , pi)
- maintain special point location data structure on DT (i)

Incremental Delaunay with flips

e

bad triangles

α

β

α+ β > π

e′

good triangles

flip α′
β′

α′ + β′ ≤ π

T is a Delaunay-tr.
⇔

No bad triangles
⇔

No bad edges to flip

good
flip

Simple incremental algorithm:

- add points one at a time in random order
- maintain DT (i) = DT (p1 . . . , pi)
- maintain special point location data structure on DT (i)

Use flips to update triangulation

After adding pi:

1. Find triangle ∆(pp′p′′) ∈ DT (i− 1) where pi ∈ ∆(pp′p′′)
2. Connect pi to p, p′, p′′ (to get triangulation)
3. Flip until no more bad edges,

updating point location throughout

Flip algorithm

After adding pi:

1. Find triangle ∆(pp′p′′) ∈ DT (i− 1) where pi ∈ ∆(pp′p′′)
2. Connect pi to p, p′, p′′ (to get triangulation)
3. Flip until no more bad edges,

updating point location throughout

Flip algorithm

Could be Ω(n) flips!

After adding pi:

1. Find triangle ∆(pp′p′′) ∈ DT (i− 1) where pi ∈ ∆(pp′p′′)
2. Connect pi to p, p′, p′′ (to get triangulation)
3. Flip until no more bad edges,

updating point location throughout

Flip algorithm

Could be Ω(n) flips!

Theorem The randomized incremental construction has
expected running time O(n log n) and needs O(n) space in
expectation.

Delaunay triangulation via divdie and conquer
(Guibas and Stolfi, 1985)

Divide and conquer DT

median x

Task: merge in O(n) time

T (n) = 2T (n/2) +O(n)

DT(left) DT(right)

Divide and conquer DT

median x

Task: merge in O(n) time

T (n) = 2T (n/2) +O(n)

DT(left) DT(right)

Some triangles became bad...

Bubble-up merge

Start with common lower tangent. O(n)

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Good triangle! new edge found

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Good triangle! new edge found

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Good triangle! new edge found

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Bubble-up merge

Start with common lower tangent. O(n)

Push a bubble through the base edge until new vertex is hit

Properties:
1. All bubbles are empty
2. edge deletions are justified (they intersect some valid edge)
3. gives triangulation with only valid triangles ⇒ gives a DT

Finding the next bubble

v

v1
v2v3

New vertex is DT-neighbor of v or w. (Find candidates v′, w′

choose best)

w

Finding the next bubble

v

v1
v2v3

New vertex is DT-neighbor of v or w. (Find candidates v′, w′

choose best)

w

v1, v2, . . . : neighbors of v in CCW order after w

Finding the next bubble

v

v1
v2v3

New vertex is DT-neighbor of v or w. (Find candidates v′, w′

choose best)

w

v1, v2, . . . : neighbors of v in CCW order after w

Claim There is an i such that

· · · ⊃ slice(vvi−1w) ⊃ slice(vviw) ⊂ slice(vvi+1w) ⊂ . . .

Proof of unimodality

v

v1
v2v3

w `t1t2

ti := other intersection of ` and circle(vvivi+1)

Claim There is an i such that

· · · ⊃ slice(vvi−1w) ⊃ slice(vviw) ⊂ slice(vvi+1w) ⊂ . . .

Proof of unimodality

v

v1
v2v3

w `t1t2

ti := other intersection of ` and circle(vvivi+1)

∆(vvi−1vi),∆(vvivi+1) are empty triangles in DT(left)
⇒ t1, t2, . . . moves left on `

Claim There is an i such that

· · · ⊃ slice(vvi−1w) ⊃ slice(vviw) ⊂ slice(vvi+1w) ⊂ . . .

Proof of unimodality

v

v1
v2v3

w `t1t2

ti := other intersection of ` and circle(vvivi+1)

ti to the right of w
⇔

w ∈ disk(vvivi+1)
⇔

vi+1 ∈ disk(vviw)

∆(vvi−1vi),∆(vvivi+1) are empty triangles in DT(left)
⇒ t1, t2, . . . moves left on `

Claim There is an i such that

· · · ⊃ slice(vvi−1w) ⊃ slice(vviw) ⊂ slice(vvi+1w) ⊂ . . .

Proof of unimodality

v

v1
v2v3

w `t1t2

ti := other intersection of ` and circle(vvivi+1)

ti to the right of w
⇔

w ∈ disk(vvivi+1)
⇔

vi+1 ∈ disk(vviw)

∆(vvi−1vi),∆(vvivi+1) are empty triangles in DT(left)
⇒ t1, t2, . . . moves left on `

Next hit in DTleft: vi where ti is first to the left of w

`

Claim There is an i such that

· · · ⊃ slice(vvi−1w) ⊃ slice(vviw) ⊂ slice(vvi+1w) ⊂ . . .

Bubble-up merge running time

Any edge vvi passed is not DT edge (not empty disk)
⇒ delete such edges

Bubble-up merge running time

Any edge vvi passed is not DT edge (not empty disk)
⇒ delete such edges

• find common tangents
• starting at bottom tangent= vw:

– find vi = next hit on left by stepping through N(v) in
CCW order, deleting passed edges

– find wj = next hit on right by stepping through N(w) in
CW order, deleting passed edges

– check which of vi,wj works
– set vw as new edge
until vw is other tangent

Bubble-up merge running time

Any edge vvi passed is not DT edge (not empty disk)
⇒ delete such edges

• find common tangents
• starting at bottom tangent= vw:

– find vi = next hit on left by stepping through N(v) in
CCW order, deleting passed edges

– find wj = next hit on right by stepping through N(w) in
CW order, deleting passed edges

– check which of vi,wj works
– set vw as new edge
until vw is other tangent

O(n)

O(1) steps per deleted edge, O(n) deleted edges

Bubble-up merge running time

Any edge vvi passed is not DT edge (not empty disk)
⇒ delete such edges

• find common tangents
• starting at bottom tangent= vw:

– find vi = next hit on left by stepping through N(v) in
CCW order, deleting passed edges

– find wj = next hit on right by stepping through N(w) in
CW order, deleting passed edges

– check which of vi,wj works
– set vw as new edge
until vw is other tangent

O(n)

O(1) steps per deleted edge, O(n) deleted edges

Bubble merge runs in O(n)

