Nice Triangulations

Given a point set S in the plane produce a *nice triangulation* \mathcal{T} of S, i.e. each triangle Δ of \mathcal{T} is “nicely shaped.”
Nice Triangulations

Given a point set S in the plane produce a nice triangulation \mathcal{T} of S, i.e. each triangle Δ of \mathcal{T} is “nicely shaped.”

Different definitions of “nicely shaped” triangle Δ:
- smallest angle is large
- the largest angle is small
- all angles are acute
- ratio of radius of circumcircle and radius of incircle is small
- ratio of longest edge and shortest edge is small
- ratio of longest edge and corresponding altitude is small
- ...
Nice Triangulations

Given a point set S in the plane produce a nice triangulation \mathcal{T} of S, i.e. each triangle Δ of \mathcal{T} is “nicely shaped.”

Different definitions of “nicely shaped” triangle Δ:

- smallest angle is large
- the largest angle is small
- all angles are acute
- ratio of radius of circumcircle and radius of incircle is small
- ratio of longest edge and shortest edge is small
- ratio of longest edge and corresponding altitude is small
- ...

All this notions are closely related and the respective “small” and “large” can be appropriately parameterized and related to each other.
Nice Triangulations

- $\theta(\Delta)$: smallest angle of Δ
- $R(\Delta)$: ratio of longest edge and shortest edge
- $A(\Delta)$: ratio of longest edge and corresponding altitude (“aspect ratio”)

Relations:

\[
\frac{1}{\sin \theta(\Delta)} \leq A(\Delta) \leq \frac{2}{\sin \theta(\Delta)} \quad \text{and} \quad R(\Delta) < A(\Delta)
\]
Nice Triangulations

- $\theta(\Delta)$: smallest angle of Δ
- $R(\Delta)$: ratio of longest edge and shortest edge
- $A(\Delta)$: ratio of longest edge and corresponding altitude ("aspect ratio")

Relations:

\[
\frac{1}{\sin \theta(\Delta)} \leq A(\Delta) \leq \frac{2}{\sin \theta(\Delta)} \quad \text{and} \quad R(\Delta) < A(\Delta)
\]

\mathcal{T} triangulation

- $\theta(\mathcal{T}) = \min_{\Delta \in \mathcal{T}} \theta(\Delta)$
- $R(\mathcal{T}) = \max_{\Delta \in \mathcal{T}} R(\Delta)$
- $A(\mathcal{T}) = \max_{\Delta \in \mathcal{T}} A(\Delta)$

Looking for triangulations \mathcal{T} of S so that min-angle $\theta(\mathcal{T})$ is large, of $R(\mathcal{T})$ is small, of $A(\mathcal{T})$ is small.
Theorem:
Among all triangulations \mathcal{T} of S the Delaunay triangulation maximizes the minimum angle, i.e. $\theta(DT(S)) = \max\{\theta(\mathcal{T}) | \mathcal{T} \text{ triangulation of } S\}$.
Nice Triangulations

Theorem:
Among all triangulations \mathcal{T} of S the Delaunay triangulation maximizes the minimum angle, i.e. $\theta(\text{DT}(S)) = \max\{\theta(\mathcal{T}) | \mathcal{T} \text{ triangulation of } S\}$.

Proof idea:
Flip algorithm makes sorted vector of all triangle angles in the triangulation lexicographically increase.
Problem:
For some point sets S, there are no nice triangulations, i.e. $\theta(T)$ is small for all triangulations T of S (and $A(T)$ and $R(T)$ are large).
Nice Triangulations

Problem:
For some point sets S, there are no nice triangulations, i.e. $\theta(T)$ is small for all triangulations T of S (and $A(T)$ and $R(T)$ are large).
Nice Triangulations

Problem:
For some point sets S, there are no nice triangulations, i.e. $\theta(T)$ is small for all triangulations T of S (and $A(T)$ and $R(T)$ are large).

Idea: Add points to S (so-called “Steiner points”) so that a nice triangulation on the larger set is possible
Nice Triangulations

Idea: Add points to S (so-called “Steiner points”) so that a nice triangulation on the larger set is possible.

This is always possible!!!
Nice Triangulations

Idea: Add points to S (so-called “Steiner points”) so that a nice triangulation on the larger set is possible.

This is always possible!!!

1. Draw sufficiently fine grid, so that points in S are separated by two layers of boxes.
Nice Triangulations

Idea: Add points to S (so-called “Steiner points”) so that a nice triangulation on the larger set is possible.

This is always possible!!!
Nice Triangulations

Idea: Add points to S (so-called “Steiner points”) so that a nice triangulation on the larger set is possible.

This is always possible!!!

1. Draw sufficiently fine grid, so that points in S are separated by two layers of boxes.
2. For each point in S warp the closest grid point to its position.
3. Triangulate each quadrilateral.
Nice Triangulations

Idea: Add points to S (so-called “Steiner points”) so that a nice triangulation on the larger set is possible.

*This is always possible***

1. Draw sufficiently fine grid, so that points in S are separated by two layers of boxes.
2. For each point in S warp to closest grid point to its position.
3. Triangulate each quadrilateral.

Way too many new vertices!!!
Quadtrees

Def.: A quadtree is a rooted tree, where each internal node has 4 children. Each node corresponds to a square, and the squares of the leaves form a partition of the root square.

From T. Mchedlidze, KIT
Quadtrees

Def.: A quadtree is a rooted tree, where each internal node has 4 children. Each node corresponds to a square, and the squares of the leaves form a partition of the root square.
Quadtrees

Def.: A **quadtree** is a rooted tree, where each internal node has 4 children. Each node corresponds to a square, and the squares of the leaves form a partition of the root square.

Def.: For a point set P in a square $Q = [x_Q, x'_Q] \times [y_Q, y'_Q]$ define the quadtree $\mathcal{T}(P)$

- if $|P| \leq 1$ then $\mathcal{T}(P)$ is a leaf, then Q stores P
- otherwise let $x_{\text{mid}} = \frac{x_Q + x'_Q}{2}$ and $y_{\text{mid}} = \frac{y_Q + y'_Q}{2}$ and

 \[
 \begin{align*}
 P_{NE} & := \{ p \in P \mid p_x > x_{\text{mid}} \text{ and } p_y > y_{\text{mid}} \} \\
 P_{NW} & := \{ p \in P \mid p_x \leq x_{\text{mid}} \text{ and } p_y > y_{\text{mid}} \} \\
 P_{SW} & := \{ p \in P \mid p_x \leq x_{\text{mid}} \text{ and } p_y \leq y_{\text{mid}} \} \\
 P_{SE} & := \{ p \in P \mid p_x > x_{\text{mid}} \text{ and } p_y \leq y_{\text{mid}} \}
 \end{align*}
 \]

$\mathcal{T}(P)$ has root v, then Q has 4 children storing P_i and Q_i ($i \in \{NE, NW, SW, SE\}$).
Example
Example
Example

From T. Mchedlidze, KIT
Quadtree Properties

The recursive definition of quadtrees leads directly to an algorithm for constructing them.
Quadtree Properties

The recursive definition of quadtrees leads directly to an algorithm for constructing them.

What is the depth of a quadtree on \(n \) points?
Quadtree Properties

The recursive definition of quadtrees leads directly to an algorithm for constructing them.

What is the depth of a quadtree on \(n \) points?

Lemma 1: The depth of \(\mathcal{T}(P) \) is at most \(\log(s/c) + 3/2 \), where \(c \) is the smallest distance in \(P \) and \(s \) is the length of a side of \(Q \).
Quadtree Properties

The recursive definition of quadtrees leads directly to an algorithm for constructing them.

What is the depth of a quadtree on n points?

Lemma 1: The depth of $\mathcal{T}(P)$ is at most $\log(s/c) + 3/2$, where c is the smallest distance in P and s is the length of a side of Q.

Theorem 1: A quadtree $\mathcal{T}(P)$ on n points with depth d has $O((d + 1)n)$ nodes and can be constructed in $O((d + 1)n)$ time.
Finding Neighbors

\[\text{NorthNeighbor}(v, \mathcal{T}) \]

Input: Nodes \(v \) in quadtree \(\mathcal{T} \)

Output: Deepest node \(v' \) not deeper than \(v \) with \(v'.Q \) to the north. Neighbor of \(v.Q \)

\[
\begin{align*}
\text{if } v &= \text{root}(\mathcal{T}) \text{ then return } \text{nil} \\
\pi &\leftarrow \text{parent}(v) \\
\text{if } v &= \text{SW-}/SE\text{-child of } \pi \text{ then return } NW-\text{/NE-child of } \pi
\end{align*}
\]

\[
\begin{align*}
\mu &\leftarrow \text{NorthNeighbor}(\pi, \mathcal{T}) \\
\text{if } \mu &= \text{nil or } \mu \text{ leaf then} \\
\text{ return } \mu \\
\text{else} \\
\text{ if } v &= NW-/NE\text{-child of } \pi \text{ then return } SW-\text{/SE-child of } \mu
\end{align*}
\]
Finding Neighbors

NorthNeighbor\((v, T)\)

Input: Nodes \(v\) in quadtree \(T\)

Output: Deepest node \(v'\) not deeper than \(v\) with \(v'.Q\) to the north.

Neighbor of \(v.Q\)

\[\begin{align*}
\text{if } v &= \text{root}(T) \text{ then return nil} \\
\pi &\leftarrow \text{parent}(v) \\
&\text{if } v = \text{SW- or SE-child of } \pi \text{ then return NW- or NE-child of } \pi \\
\mu &\leftarrow \text{NorthNeighbor}(\pi, T) \\
&\text{if } \mu = \text{nil} \text{ or } \mu \text{ leaf then return } \mu \\
&\text{else} \\
&\quad \text{if } v = \text{NW- or NE-child of } \pi \text{ then return SW- or SE-child of } \mu
\end{align*}\]

Theorem 2: Let \(T\) be a quadtree with depth \(d\). The neighbor of a node \(v\) in any direction can be found in \(O(d + 1)\) time.
Balanced Subtrees

Def.: A quadtree is called **balanced** if any two neighboring squares differ at most a factor two in size. A quadtree is called balanced if its subdivision is balanced.
Balanced Quadtrees

Def.: A quadtree is called **balanced** if any two neighboring squares differ at most a factor two in size. A quadtree is called balanced if its subdivision is balanced.
Def.: A quadtree is called **balanced** if any two neighboring squares differ at most a factor two in size. A quadtree is called balanced if its subdivision is balanced.
Balancing Quadtrees

balancequadtree(\mathcal{T})

Input: Quadtrees \(\mathcal{T} \)

Output: A balanced version of \(\mathcal{T} \)

\(L \leftarrow \) List of all leaves of \(\mathcal{T} \)

while \(L \) not empty do

\(\mu \leftarrow \) extract leaf from \(L \)

if \(\mu.Q \) too large then

Divide \(\mu.Q \) into four parts and put four leaves in \(\mathcal{T} \)

add new leaves to \(L \)

if \(\mu.Q \) now has neighbors that are too large then add it to \(L \)

return \(\mathcal{T} \)
Balancing Quadtrees

BalanceQuadtree(\mathcal{T})

Input: Quadtree \mathcal{T}

Output: A balanced version of \mathcal{T}

$L \leftarrow$ List of all leaves of \mathcal{T}

while L not empty do

\[\mu \leftarrow \text{extract leaf from } L \]

if $\mu.Q$ too large then

Divide $\mu.Q$ into four parts and put four leaves in \mathcal{T}

add new leaves to L

if $\mu.Q$ now has neighbors that are too large then add it to L

return \mathcal{T}

From T. Mchedlidze, KIT
Balancing Quadtrees

BalanceQuadtree(\(T \))

Input: Quadtree \(T \)

Output: A balanced version of \(T \)

\(L \leftarrow \) List of all leaves of \(T \)

while \(L \) not empty **do**

\[\mu \leftarrow \text{extract leaf from } L \]

if \(\mu.Q \) too large **then**

\[\text{Divide } \mu.Q \text{ into four parts and put four leaves in } T \]

\[\text{add new leaves to } L \]

if \(\mu.Q \) now has neighbors that are too large **then** add it to \(L \)

return \(T \)

How large can a balanced quadtree be?
Balancing Quadtrees

BalanceQuadtree(\mathcal{T})

Input: Quadtree \mathcal{T}

Output: A balanced version of \mathcal{T}

$L \leftarrow$ List of all leaves of \mathcal{T}

while L not empty **do**

$\mu \leftarrow$ extract leaf from L

if $\mu.Q$ too large **then**

Divide $\mu.Q$ into four parts and put four leaves in \mathcal{T}

add new leaves to L

if $\mu.Q$ now has neighbors that are too large **then** add it to L

return \mathcal{T}

Thm 3: Let \mathcal{T} be a quadtree with m nodes and depth d. The balanced version \mathcal{T}_B of \mathcal{T} has $O(m)$ nodes and can be constructed in $O((d + 1)m)$ time.
Quadtrees for Nice Triangulations

Quadtrees for Nice Triangulations

In each quadrilateral incident to \(p \) choose diagonal that yields triangles with better aspect ratio.

Lemma: For each triangle \triangle incident to an orange edge the aspect ratio is at most 4, i.e. $A(\triangle) \leq 4$.

In each quadrilateral incident to p choose diagonal that yields triangles with better aspect ratio.
Quadtrees for Nice Triangulations

In each quadrilateral incident to p choose diagonal that yields triangles with better aspect ratio.

Point needs one layer of empty boxes around its own box. Need non-interference between layers of different points.
Splitting Crowded Boxes

Box b is crowded if at least one of the following holds:

- b contains more than one point of S
- b has side length ℓ, contains a single point $p \in S$, but some other point of S is closer than $\sqrt{2}\ell$ to p.
- b contains one point of S but one of the 8 neighbors around b has a split side.
Box b is crowded if at least one of the following holds:

- b contains more than one point of S
- b has side length ℓ, contains a single point $p \in S$, but some other point of S is closer than $2\sqrt{2}\ell$ to p.
- b contains one point of S but one of the 8 neighbors around b has a split side.
Nice triangulation for S:

0. Put a sufficiently large square box Q around S and make the root of a quadtree.

1. while there is a crowded box, split it and ensure balance

2. for each $p \in S$ move the closest corner of its containing leaf box to p and triangulate the incident quadrilaterals with aspect ratio at most 4

3. triangulate each empty leaf box into at most 8 isosceles right triangles (aspect ratio $\sqrt{2}$)
Nice triangulation for S:

0. Put a sufficiently large square box Q around S and make the root of a quadtree.

1. while there is a crowded box, split it and ensure balance

2. for each $p \in S$ move the closes corner of its containing leaf box to p and traingulate the incident quadrilaterals with aspect ratio at most 4

3. triangulate each empty leaf box into at most 8 isosceles right triangles (aspect ratio $\sqrt{2}$)
Results

Lemma: This algorithm produces a triangulation \mathcal{T} for S with aspect ration $A(\mathcal{T})$ at most 4.
Results

Lemma: This algorithm produces a triangulation \mathcal{T} for S with aspect ration $A(\mathcal{T})$ at most 4.

Lemma: There is a constant c independent of S so that the size of \mathcal{T} is at most

$$c \cdot \sum_{\Delta \in \mathcal{DT}(S)} \log R(\Delta)$$

where $\mathcal{DT}(S)$ is the Delaunay triangulation of S, and $R(\Delta)$ is the ratio of longest and shortest side of triangle Δ.
Results

Lemma: This algorithm produces a triangulation \mathcal{T} for S with aspect ratio $A(\mathcal{T})$ at most 4.

Lemma: There is a constant c independent of S so that the size of \mathcal{T} is at most

$$c \cdot \sum_{\Delta \in \mathcal{D}T(S)} \log R(\Delta)$$

where $\mathcal{D}T(S)$ is the Delaunay triangulation of S, and $R(\Delta)$ is the ratio of longest and shortest side of triangle Δ.

Theorem: There is a constant d independent of S so that for any triangulation \mathcal{T}' that has S in its vertex set we have

$$|\mathcal{T}| \leq d \cdot |\mathcal{T}'| \log A(\mathcal{T}')$$
Outlook “Nice Triangulations” (Meshing)

Drawbacks of this result:
- bad constants
- not anisotropic (rotating the coordinate systems changes triangulations)

Viable alternative algorithms via refining Delaunay triangulations.

Generalization to meshing problems when edges are given as input are possible, but quadtree based approaches have similar shortcomings.

Quadtree based approaches do generalize to higher dimensions.
Outlook Quadtrees

- Quadtrees find many applications in Computer Graphics, Image Processing, Geographic Information System, etc.
 They are useful whenever different scales are to be represented.
- There is a variant “compressed quadtree” that uses just space linear in the size of the input.
- “skip quadrees” allow searches and also updates in logarithmic expected time.
- Quadtrees readily generalize to higher dimensions (“octtree”).