Packing and covering: planar separator and shifting

Sándor Kisfaludi-Bak

Computational Geometry
Summer semester 2020

max planck institut
informatik
Overview

- Planar separator theorem (slides by Mark de Berg)
Overview

- Planar separator theorem (slides by Mark de Berg)
- Independent set in planar graphs (slides by MdB)
Overview

• Planar separator theorem (slides by Mark de Berg)

• Independent set in planar graphs (slides by MdB)

• Exact algorithms for packing and covering
Overview

• Planar separator theorem (slides by Mark de Berg)

• Independent set in planar graphs (slides by MdB)

• Exact algorithms for packing and covering

• Shifting strategy: approximation schemes
Planar graphs: graphs that can be drawn without crossing edges
Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton,Tarjan 1979)
Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

For any planar graph \(G = (V, E) \) there is a separator \(S \subset V \) of size \(O(\sqrt{n}) \) such that \(V \setminus S \) can be partitioned into subsets \(A \) and \(B \), each of size at most \(\frac{2}{3}n \) and with no edges between them.
Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

For any planar graph \(G = (V, E) \) there is a separator \(S \subset V \) of size \(O(\sqrt{n}) \) such that \(V \setminus S \) can be partitioned into subsets \(A \) and \(B \), each of size at most \(\frac{2}{3}n \) and with no edges between them.
Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

For any planar graph $G = (V, E)$ there is a separator $S \subset V$ of size $O(\sqrt{n})$ such that $V \setminus S$ can be partitioned into subsets A and B, each of size at most $\frac{2}{3}n$ and with no edges between them.

Such a $(2/3)$-balanced separator can be computed in $O(n)$ time.

slide by Mark de Berg
Fact: Any planar graph is the contact graph of a set of interior-disjoint disks.
A geometric proof of the Planar Separator Theorem

Fact: Any planar graph is the contact graph of a set of interior-disjoint disks.

Proof idea: Find a square σ intersecting $O(\sqrt{n})$ disks that is a balanced separator.
A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of n interior-disjoint disks, there is an α-balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.
Theorem. For any contact graph of n interior-disjoint disks, there is an α-balanced separator of size $O(\sqrt{n})$, where $\alpha = \frac{36}{37}$.

Proof.

The smallest square containing at least $n/37$ disks.
Theorem. For any contact graph of n interior-disjoint disks, there is an α-balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

\[\sqrt{n} \text{ squares } \sigma_1, \ldots, \sigma_{\sqrt{n}} \]

at distance $1/\sqrt{n}$ from each other
Theorem. For any contact graph of \(n\) interior-disjoint disks, there is an \(\alpha\)-balanced separator of size \(O(\sqrt{n})\), where \(\alpha = 36/37\).

Proof.

\(\sqrt{n}\) squares \(\sigma_1, \ldots, \sigma_{\sqrt{n}}\) at distance \(1/\sqrt{n}\) from each other.
Theorem. For any contact graph of n interior-disjoint disks, there is an α-balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

\sqrt{n} squares $\sigma_1, \ldots, \sigma_{\sqrt{n}}$ at distance $1/\sqrt{n}$ from each other

Constructing the separator:
Select a square σ_i that intersects $O(\sqrt{n})$ disks and put these disks into the separator.
A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of \(n \) interior-disjoint disks, there is an \(\alpha \)-balanced separator of size \(O(\sqrt{n}) \), where \(\alpha = 36/37 \).

Proof.

\(\sqrt{n} \) squares \(\sigma_1, \ldots, \sigma_{\sqrt{n}} \) at distance \(1/\sqrt{n} \) from each other

Constructing the separator:
Select a square \(\sigma_i \) that intersects \(O(\sqrt{n}) \) disks and put these disks into the separator.
Theorem. For any contact graph of \(n\) interior-disjoint disks, there is an \(\alpha\)-balanced separator of size \(O(\sqrt{n})\), where \(\alpha = 36/37\).

Proof.

\(\sqrt{n}\) squares \(\sigma_1, \ldots, \sigma_{\sqrt{n}}\) at distance \(1/\sqrt{n}\) from each other

Constructing the separator:
Select a square \(\sigma_i\) that intersects \(O(\sqrt{n})\) disks and put these disks into the separator.

Things to check
- separator is \((36/37)\)-balanced
- does square \(\sigma_i\) with the desired property actually exist??
A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of \(n \) interior-disjoint disks, there is an \(\alpha \)-balanced separator of size \(O(\sqrt{n}) \), where \(\alpha = \frac{36}{37} \).

Proof.

![Diagram showing the smallest square containing at least \(n/37 \) disks, with a (36/37)-balanced separator indicated.](slide by Mark de Berg)
Theorem. For any contact graph of n interior-disjoint disks, there is an α-balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

- Smallest square containing at least $n/37$ disks
- The separator is $(36/37)$-balanced
 - At least $n/37$ disk inside
 - At most $36n/37$ disks inside
Theorem. For any contact graph of \(n \) interior-disjoint disks, there is an \(\alpha \)-balanced separator of size \(O(\sqrt{n}) \), where \(\alpha = \frac{36}{37} \).

Proof.

Does \(\sigma_i \) intersecting \(O(\sqrt{n}) \) disks exist?

The total number of disk-square intersections is

\[
\leq \sum_{i=1}^{n_{\text{small}}} (1 + \text{diam}(D_i) \cdot \sqrt{n})
\]

\[
\leq n_{\text{small}} + O(\sqrt{n}) \cdot \sum_{i=1}^{n_{\text{small}}} \sqrt{\text{area}(D_i)}
\]

\[
= O(n)
\]

The last step uses

- \(\sum_{i=1}^{n_{\text{small}}} \text{area}(D_i) = O(1) \) (sort of . . .)

- \(\sum_{i=1}^{k} \sqrt{a_i} \leq \sum_{i=1}^{k} \sqrt{\frac{\sum_{i=1}^{k} a_i}{k}} \)
Theorem. For any contact graph of \(n \) interior-disjoint disks, there is an \(\alpha \)-balanced separator of size \(O(\sqrt{n}) \), where \(\alpha = 36/37 \).

Proof.

Does \(\sigma_i \) intersecting \(O(\sqrt{n}) \) disks exist?

total number of disk-square intersections

\[
\leq \sum_{i=1}^{n_{\text{small}}} (1 + \text{diam}(D_i) \cdot \sqrt{n})
\leq n_{\text{small}} + O(\sqrt{n}) \cdot \sum_{i=1}^{n_{\text{small}}} \sqrt{\text{area}(D_i)}
= O(n)
\]
Theorem. For any contact graph of \(n \) interior-disjoint disks, there is an \(\alpha \)-balanced separator of size \(O(\sqrt{n}) \), where \(\alpha = 36/37 \).

Proof.

Does \(\sigma_i \) intersecting \(O(\sqrt{n}) \) disks exist?

total number of disk-square intersections

\[
\leq \sum_{i=1}^{n_{\text{small}}} (1 + \text{diam}(D_i) \cdot \sqrt{n})
\]

\[
\leq n_{\text{small}} + O(\sqrt{n}) \cdot \sum_{i=1}^{n_{\text{small}}} \sqrt{\text{area}(D_i)}
\]

\[
= O(n)
\]

\[
\implies \text{one of the } \sigma_i \text{'s intersects } O(\sqrt{n}) \text{ disks}
\]
Theorem. \textsc{Independent Set} can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.
Theorem. Independent Set can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Theorem. **Independent Set** can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{	ext{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{	ext{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Theorem. **Independent Set** can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Theorem. **Independent Set** can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Theorem. \textbf{Independent Set} can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Theorem. Independent Set can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Theorem. **Independent Set** can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Theorem. Independent Set can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Subexponential algorithms on planar graphs

Theorem. Independent Set can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Theorem. independent set can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Theorem. **Independent Set** can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

1. Compute $(2/3)$-balanced separator S of size $O(\sqrt{n})$.
2. For each independent set $I_S \subseteq S$ (including empty set) do
 (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 (c) $I(S) := I_S \cup I_A \cup I_B$
3. Return the largest of the sets $I(S)$ found in Step 2.
Theorem. \textsc{Independent Set} can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

Running time
Theorem. **Independent Set** can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

Running time

$$T(n) \leq O(n) + 2^{O(\sqrt{n})} \cdot T\left(\frac{2n}{3}\right) \implies T(n) = 2^{O(\sqrt{n})}$$
Overview

- Planar separator theorem (slides by Mark de Berg)
- Independent set in planar graphs (slides by MdB)
- Exact algorithms for packing and covering
- Shifting strategy: approximation schemes
Given a set S of n objects in \mathbb{R}^d, their *intersection graph* has vertex set S and edge set

$$E[S] := \{ss' \mid s, s' \in S \text{ and } s \cap s' \neq \emptyset\}$$
Given a set S of n objects in \mathbb{R}^d, their *intersection graph* has vertex set S and edge set

$$E[S] := \{ss' \mid s, s' \in S \text{ and } s \cap s' \neq \emptyset\}$$
Given a set S of n objects in \mathbb{R}^d, their intersection graph has vertex set S and edge set

$$E[S] := \{ss' \mid s, s' \in S \text{ and } s \cap s' \neq \emptyset\}$$

Planar graphs \subset Disk graphs (object: disks in \mathbb{R}^2)
Packing: discrete vs continuous

Continuous:
Given n objects, do they fit in some other object without overlap?
Continuous:
Given n objects, do they fit in some other object without overlap?
Continuous:
Given n objects, do they fit in some other object without overlap?
Packing: discrete vs continuous

Continuous:
Given n objects, do they fit in some other object without overlap?

Discrete:
Given n objects, find maximum subset of non-overlapping objects
Packing: discrete vs continuous

Continuous:
Given n objects, do they fit in some other object without overlap?

Discrete:
Given n objects, find maximum subset of non-overlapping objects
Packing: discrete vs continuous

Continuous:
Given n objects, do they fit in some other object without overlap?

Discrete:
Given n objects, find maximum subset of non-overlapping objects

Same as max. independent set in intersection graph
Theorem. Independent set in intersection graphs of disks can be solved in $n^{O(\sqrt{k})}$ time, where $k =$ size of max indep. set.
Theorem. Independent set in intersection graphs of disks can be solved in $n^{O(\sqrt{k})}$ time, where $k = \text{size of max indep. set.}$

Proof.
Solution I has k interior-disjoint disks. There is a balanced separator square σ intersecting $O(\sqrt{k})$ disks from I.
Theorem. Independent set in intersection graphs of disks can be solved in \(n^{O(\sqrt{k})} \) time, where \(k \) = size of max indep. set.

Proof.
Solution \(I \) has \(k \) interior-disjoint disks.
There is a balanced separator square \(\sigma \) intersecting \(O(\sqrt{k}) \) disks from \(I \).

Claim. Given \(S \), we can compute a family \(Y \) of \(\text{poly}(n) \) squares containing all attainable square separators of all subsets of \(S \).
for each separator $\sigma \in Y$ do
 for each intersecting $I_\sigma \subset S$ of size $O(\sqrt{k})$ do
 Remove disks in S intersecting σ
 Remove neighbors of I_σ
 Recurse on disks inside σ
 Recurse on disks outside σ
 return largest indep. set found
Exact algorithm for discrete packing II

for each separator $\sigma \in Y$ do
 for each intersecting $I_\sigma \subset S$ of size $O(\sqrt{k})$ do
 Remove disks in S intersecting σ
 Remove neighbors of I_σ
 Recurse on disks inside σ
 Recurse on disks outside σ
 return largest indep. set found

$$T(n, k) = \text{poly}(n) \cdot n^{O(\sqrt{k})} \cdot 2T \left(n, \frac{36}{37}k\right)$$
Exact algorithm for discrete packing II

\begin{align*}
\textbf{for} & \text{ each separator } \sigma \in Y \textbf{ do} \\
\textbf{for} & \text{ each intersecting } I_\sigma \subset S \text{ of size } O(\sqrt{k}) \textbf{ do} \\
& \text{Remove disks in } S \text{ intersecting } \sigma \\
& \text{Remove neighbors of } I_\sigma \\
& \text{Recurse on disks inside } \sigma \\
& \text{Recurse on disks outside } \sigma \\
\textbf{return} & \text{ largest indep. set found}
\end{align*}

\[T(n, k) = \text{poly}(n) \cdot n^{O(\sqrt{k})} \cdot 2T \left(n, \frac{36}{37}k \right) \]

\[T(n, k) = n^{c\sqrt{k} + c\sqrt{(36/37)k} + c\sqrt{(36/37)^2k} + \ldots} = n^{O(\sqrt{k})} \]
Is $n^{O(\sqrt{k})}$ good?

General graphs: Independent set is NP-hard, has $O(n^k k^2)$ algo
Is $n^{O(\sqrt{k})}$ good?

General graphs: Independent set is NP-hard, has $O(n^k k^2)$ algo

Exponential-Time Hypothesis (ETH). There is $\gamma > 0$ such that there is no $2^{\gamma n}$ algorithm for 3-SAT on n variables.

ETH \Rightarrow P \neq NP
Is $n^{O(\sqrt{k})}$ good?

General graphs: Independent set is NP-hard, has $O(n^k k^2)$ algo

Exponential-Time Hypothesis (ETH). There is $\gamma > 0$ such that there is no $2^{\gamma n}$ algorithm for 3-SAT on n variables.

\[\text{ETH} \Rightarrow \text{P} \neq \text{NP} \]

Theorem. There is no $f(k) n^{o(k)}$ algorithm for Independent Set for any computable f, unless ETH fails.
Is $n^{O(\sqrt{k})}$ good?

General graphs: Independent set is NP-hard, has $O(n^k k^2)$ algo

Exponential-Time Hypothesis (ETH). There is $\gamma > 0$ such that there is no $2^{\gamma n}$ algorithm for 3-SAT on n variables.

ETH \Rightarrow P \neq NP

Theorem. There is no $f(k) n^{o(k)}$ algorithm for Independent Set for any computable f, unless ETH fails.

Theorem. There is no $f(k) n^{o(\sqrt{k})}$ algorithm for Independent Set in planar graphs for any computable f, unless ETH fails.
Is $n^{O(\sqrt{k})}$ good?

General graphs: Independent set is NP-hard, has $O(n^k k^2)$ algo

Exponential-Time Hypothesis (ETH). There is $\gamma > 0$ such that there is no $2^{\gamma n}$ algorithm for 3-SAT on n variables.

ETH ⇒ P ≠ NP

Theorem. There is no $f(k)n^{o(k)}$ algorithm for Independent Set for any computable f, unless ETH fails.

Theorem. There is no $f(k)n^{o(\sqrt{k})}$ algorithm for Independent Set **in planar graphs** for any computable f, unless ETH fails.

Theorem. There is no $f(k)n^{o(\sqrt{k})}$ algorithm for Independent Set **in disk graphs** for any computable f, unless ETH fails.
Geometric set cover: discrete vs continuous

Set cover: given m subsets of $\{1, \ldots, n\}$, are there k among them whose union is $\{1, \ldots, n\}$

very hard, can’t be approximated efficiently
Geometric set cover: discrete vs continuous

Set cover: given \(m \) subsets of \(\{1, \ldots, n\} \), are there \(k \) among them whose union is \(\{1, \ldots, n\} \)

very hard, can’t be approximated efficiently

Geometric set cover:

Continuous:

Given \(P \subset \mathbb{R}^2 \), can we cover \(P \) with \(k \) unit disks?
Geometric set cover: discrete vs continuous

Set cover: given m subsets of $\{1, \ldots, n\}$, are there k among them whose union is $\{1, \ldots, n\}$

very hard, can’t be approximated efficiently

Geometric set cover:

Continuous:

Given $P \subset \mathbb{R}^2$, can we cover P with k unit disks?

similar to cont. k-center!
Geometric set cover: discrete vs continuous

Set cover: given \(m \) subsets of \(\{1, \ldots, n\} \), are there \(k \) among them whose union is \(\{1, \ldots, n\} \)

very hard, can’t be approximated efficiently

Geometric set cover:

Continuous:
Given \(P \subset \mathbb{R}^2 \), can we cover \(P \) with \(k \) unit disks?

Discrete:
Given \(P \subset \mathbb{R}^2 \) and \(m \) unit disks \(\mathcal{D} \), can we cover \(P \) with \(k \) disks from \(\mathcal{D} \)?

similar to cont. \(k \)-center!
Theorem (Marx–Pilipczuk, 2015) Discrete geometric set cover with disks can be solved in $m^{O(\sqrt{k})}\text{poly}(n)$ time, where $k =$ size of min cover.
Theorem (Marx–Pilipczuk, 2015) Discrete geometric set cover with disks can be solved in $m^{O(\sqrt{k})}\text{poly}(n)$ time, where $k =$ size of min cover.

Proof based on guessing separator in solution’s Voronoi diagram.

Theorem (Marx–Pilipczuk, 2015). There is no $f(k)(m + n)^{o(\sqrt{k})}$ algorithm for covering points with disks for any computable f, unless ETH fails.
Shifting grids
Approximation schemes
Hochbaum–Maass 1985
Definition. A polynomial time approximation scheme (PTAS) for a minimization problem is an algorithm, which given $\varepsilon > 0$ and the input instance, outputs a feasible solution of value at most $(1 + \varepsilon)OPT$ in $\text{poly}_\varepsilon(n)$ time.

E.g. possible running time: $O(n^{1/\varepsilon})$ or $n^{O(2^{1/\varepsilon})}$
Definition. A polynomial time approximation scheme (PTAS) for a minimization problem is an algorithm, which given \(\varepsilon > 0 \) and the input instance, outputs a feasible solution of value at most \((1 + \varepsilon)OPT\) in \(\text{poly}_\varepsilon(n)\) time.

E.g. possible running time: \(O(n^{1/\varepsilon})\) or \(n^{O(2^{1/\varepsilon})}\)

related complexity classes: PTAS versus APX-hardness
\(P\) is APX-hard \(\Rightarrow\) \(P\) has no PTAS unless \(P=NP\)
PTASes

Definition. A polynomial time approximation scheme (PTAS) for a minimization problem is an algorithm, which given $\varepsilon > 0$ and the input instance, outputs a feasible solution of value at most $(1 + \varepsilon)OPT$ in $\text{poly}_\varepsilon(n)$ time.

E.g. possible running time: $O(n^{1/\varepsilon})$ or $n^{O(2^{1/\varepsilon})}$

related complexity classes: PTAS versus APX-hardness

\mathcal{P} is APX-hard $\Rightarrow \mathcal{P}$ has no PTAS unless P=NP

Example: Independent set is APX-hard on general graphs.

But! Independent set in planar graphs has a PTAS. (Baker '83)
Theorem. The discrete packing of unit disks has a PTAS: given \(n \) unit disks, we can compute an independent set of size \((1 - \varepsilon)OPT\) in \(n^{O(1/\varepsilon)} \) time.
Theorem. The discrete packing of unit disks has a PTAS: given \(n \) unit disks, we can compute an independent set of size \((1 - \varepsilon)OPT\) in \(n^{O(1/\varepsilon)} \) time.

Proof.

Grid of distance 2
\[\Rightarrow \text{each (open) disk intersects } \leq 1 \text{ horizontal and } \leq 1 \text{ vertical grid line} \]
Theorem. The discrete packing of unit disks has a PTAS: given n unit disks, we can compute an independent set of size $(1 - \varepsilon)OPT$ in $n^{O(1/\varepsilon)}$ time.

Proof.

Grid of distance 2
⇒ each (open) disk intersects ≤ 1 horizontal and ≤ 1 vertical grid line

Let $t = \lceil 2/\varepsilon \rceil$.
For a shift (a, b) ($a, b \in \{0, \ldots, t - 1\}$), select horizontal lines $a, a + t, a + 2t, \ldots$
select vertical lines $b, b + t, b + 2t, \ldots$
Theorem. The discrete packing of unit disks has a PTAS: given \(n \) unit disks, we can compute an independent set of size \((1 - \varepsilon)OPT\) in \(n^{O(1/\varepsilon)} \) time.

Proof.

Grid of distance 2

\[\Rightarrow \text{each (open) disk intersects } \leq 1 \text{ horizontal and } \leq 1 \text{ vertical grid line} \]

Let \(t = \lceil 2/\varepsilon \rceil \).

For a shift \((a, b) \ (a, b \in \{0, \ldots, t - 1\})\),

select horizontal lines \(a, a+t, a+2t, \ldots \)

select vertical lines \(b, b+t, b+2t, \ldots \)

Remove disks intersecting selected lines
Shifting strategy: solving cells

\begin{align*}
 a & \quad b \quad b + t \quad b + 2t \\
 a + t & \\
 a + 2t &
\end{align*}
Shifting strategy: solving cells

Large cells have area $O(1/\varepsilon^2)$
\Rightarrow max indep. set has size $k = O(1/\varepsilon^2)$
\Rightarrow max indep. set found in $n^{O(\sqrt{k})} = n^{O(1/\varepsilon)}$ time.
Shifting strategy: solving cells

Large cells have area $O(1/\varepsilon^2)$
\Rightarrow max indep. set has size
$k = O(1/\varepsilon^2)$
\Rightarrow max indep. set found in
$n^{O(\sqrt{k})} = n^{O(1/\varepsilon)}$ time.

Claim. The union of large cell solutions has size at least
$(1 - \varepsilon)OPT$ for some shift (a, b).
Shifting strategy: solving cells

Large cells have area $O(1/\varepsilon^2)$
⇒ max indep. set has size $k = O(1/\varepsilon^2)$
⇒ max indep. set found in $n^{O(\sqrt{k})} = n^{O(1/\varepsilon)}$ time.

Claim. The union of large cell solutions has size at least $(1 - \varepsilon)OPT$ for some shift (a, b).

Proof. Of the $t = \lceil 2/\varepsilon \rceil$ shifts for horizontals, there is some $a \in \{0, \ldots, t - 1\}$ intersecting $\leq \frac{\varepsilon}{2} OPT$ solution disks. Similarly there is b s.t. verticals intersect $\leq \frac{\varepsilon}{2} OPT$.
⇒ (a, b) works.
Discrete packing outlook

- Extends to unit balls in higher dimensions: $n^{O(1/\varepsilon^{d-1})}$

- $n^{O(1/\varepsilon)}$ is essentially tight in \mathbb{R}^2 (Marx 2007)

- Local search: slower PTAS for “pseudodisks” (last lecture?)
Discrete packing outlook

- Extends to unit balls in higher dimensions: $n^{O(1/\varepsilon^{d-1})}$

- $n^{O(1/\varepsilon)}$ is essentially tight in \mathbb{R}^2 (Marx 2007)

- Local search: slower PTAS for “pseudodisks” (last lecture?)

But! major open problem:

Is there a PTAS for Independent set of axis-parallel rectangles?

or for axis parallel segments?
Discrete packing outlook

• Extends to unit balls in higher dimensions: $n^{O(1/\varepsilon^{d-1})}$

• $n^{O(1/\varepsilon)}$ is essentially tight in \mathbb{R}^2 (Marx 2007)

• Local search: slower PTAS for “pseudodisks” (last lecture?)

But! major open problem:
Is there a PTAS for Independent set of axis-parallel rectangles?
or for axis parallel segments?

Best known: $n^{O((\log \log n/\varepsilon)^4)}$ (Chuzhoy–Ene 2016)
Theorem. There is a PTAS for the continuous covering of points with unit disks with running time $n^{O(1/\varepsilon)}$.
Theorem. There is a PTAS for the continuous covering of points with unit disks with running time \(n^{O(1/\varepsilon)} \).

Proof. A unit disk is canonical if it has 2 input points on its boundary, or its topmost point is an input point.
Theorem. There is a PTAS for the continuous covering of points with unit disks with running time $n^{O(1/\varepsilon)}$.

Proof. A unit disk is canonical if it has 2 input points on its boundary, or its topmost point is an input point.

There is a cover of size $k \iff$ there is a canonical cover of size k.

2 disks per point pair $p, p' \in P$, one disk for each $p \in P$

$2\left(\binom{n}{2}\right) + n \leq n^2$ canonical disks
Shifting for set cover with unit disks

Grid of side length 2, set $t = \lceil 6/\varepsilon \rceil$

Cell disks: canonical disks inside and those intersecting the boundary
Shifting for set cover with unit disks

Grid of side length 2, set $t = \lceil 6/\varepsilon \rceil$

Cell disks: canonical disks inside and those intersecting the boundary
Shifting for set cover with unit disks

Grid of side length 2, set $t = \lceil 6/\varepsilon \rceil$

Cell disks: canonical disks inside and those intersecting the boundary

Whole cell can be covered by $O(1/\varepsilon^2)$ (non-canoncical) disks.

\Rightarrow Min cover in a cell solved in $(n^2)^{O(\sqrt{1/\varepsilon^2})} = n^{O(1/\varepsilon)}$

In C, solution $|S(C)| \leq |OPT(C)|$. Return $U := \bigcup_C S(C)$
Shifting for set cover with unit disks

Grid of side length 2, set \(t = \lceil 6/\varepsilon \rceil \)

Cell disks: canonical disks inside and those intersecting the boundary

Whole cell can be covered by \(O(1/\varepsilon^2) \) (non-canoncical) disks.

\[\Rightarrow \text{Min cover in a cell solved in } (n^2)^{O(\sqrt{1/\varepsilon^2})} = n^{O(1/\varepsilon)} \]

In C, solution \(|S(C)| \leq |OPT(C)|\). Return \(U := \bigcup_C S(C) \)

For some shift \(a \) blue intersects \(\leq |OPT|/t \) disks.

\[\Rightarrow \exists (a, b) \text{ intersecting } 2|OPT|/t \leq \varepsilon|OPT|/3 \text{ disks.} \]

Each disk of OPT counted in \(\leq 4 \) cells.

\[|U| \leq \sum_C |OPT(C)| \leq |OPT| + 3\varepsilon|OPT|/3 = (1 + \varepsilon)|OPT| \]